Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen

Wat is er anders aan voorraadplanning voor onderhoud, reparatie en bewerkingen (MRO) vergeleken met voorraadplanning in productie- en distributieomgevingen? Kortom, het is de aard van de vraagpatronen in combinatie met het gebrek aan bruikbare bedrijfskennis.

Vraagpatronen

Fabrikanten en distributeurs hebben de neiging zich te concentreren op de topverkopers die het grootste deel van hun omzet genereren. Er is doorgaans een grote vraag naar deze artikelen, die relatief eenvoudig te voorspellen zijn met traditionele tijdreeksmodellen die inspelen op voorspelbare trends en/of seizoensinvloeden. Daarentegen hebben MRO-planners bijna altijd te maken met een intermitterende vraag, die schaarser, willekeuriger en moeilijker te voorspellen is. Bovendien zijn de fundamentele hoeveelheden van belang verschillend. MRO-planners geven uiteindelijk het meeste om de ‘wanneer’-vraag: wanneer gaat er iets kapot? Terwijl de anderen zich concentreren op de “hoeveel” vraag van verkochte eenheden.

 

Zakelijke kennis

Productie- en distributieplanners kunnen vaak rekenen op het verzamelen van klant- en verkoopfeedback, die kan worden gecombineerd met statistische methoden om de nauwkeurigheid van de prognoses te verbeteren. Aan de andere kant zijn lagers, tandwielen, verbruiksartikelen en repareerbare onderdelen zelden bereid hun mening te delen. Met MRO is bedrijfskennis over welke onderdelen nodig zijn en wanneer niet betrouwbaar (behalve gepland onderhoud wanneer verbruiksartikelen in grotere volumes worden vervangen). Het succes van de MRO-voorraadplanning gaat dus slechts zo ver als het vermogen van hun waarschijnlijkheidsmodellen om toekomstig gebruik te voorspellen. En omdat de vraag zo wisselend is, kunnen ze met traditionele benaderingen niet voorbij Go komen.

 

Methoden voor MRO

In de praktijk is het gebruikelijk dat MRO- en activa-intensieve bedrijven hun voorraden beheren door hun toevlucht te nemen tot statische Min/Max-niveaus op basis van subjectieve veelvouden van gemiddeld gebruik, aangevuld met incidentele handmatige aanpassingen op basis van onderbuikgevoelens. Het proces wordt een slechte mix van statisch en reactief, met als resultaat dat er veel tijd en geld wordt verspild aan het versnellen.

Er zijn alternatieve planningsmethoden die meer op wiskunde en data zijn gebaseerd, hoewel deze stijl van plannen bij MRO minder gebruikelijk is dan in de andere domeinen. Er zijn twee toonaangevende benaderingen voor het modelleren van defecten aan onderdelen en machines: modellen gebaseerd op de betrouwbaarheidstheorie en modellen voor ‘conditiegebaseerd onderhoud’ gebaseerd op realtime monitoring.

 

Betrouwbaarheidsmodellen

Betrouwbaarheidsmodellen zijn de eenvoudigste van de twee en vereisen minder gegevens. Ze gaan ervan uit dat alle artikelen van hetzelfde type, bijvoorbeeld een bepaald reserveonderdeel, statistisch gelijkwaardig zijn. Hun belangrijkste onderdeel is een ‘gevarenfunctie’, die het risico op falen in het volgende korte tijdsinterval beschrijft. De gevarenfunctie kan worden vertaald in iets dat beter geschikt is voor besluitvorming: de ‘overlevingsfunctie’, wat de waarschijnlijkheid is dat het item nog steeds werkt na X gebruiksduur (waarbij X kan worden uitgedrukt in dagen, maanden, kilometers, gebruik, enz.). Figuur 1 toont een constante gevaarfunctie en de bijbehorende overlevingsfunctie.

 

MRO- en reserveonderdelenfunctie en de overlevingsfunctie ervan

Figuur 1: Constante gevarenfunctie en zijn overlevingsfunctie

 

Een gevarenfunctie die niet verandert, houdt in dat alleen willekeurige ongelukken een storing veroorzaken. Een gevaarfunctie die in de loop van de tijd toeneemt, impliceert daarentegen dat het artikel versleten is. En een afnemende gevaarfunctie impliceert dat een item zich vestigt. Figuur 2 toont een toenemende gevaarfunctie en de bijbehorende overlevingsfunctie.

 

MRO en reserveonderdelen Vergroten van de gevaarfunctie en overlevingsfunctie

Figuur 2: Toenemende gevarenfunctie en zijn overlevingsfunctie

 

Betrouwbaarheidsmodellen worden vaak gebruikt voor goedkope onderdelen, zoals mechanische bevestigingsmiddelen, waarvan de vervanging misschien niet moeilijk of duur is (maar toch essentieel kan zijn).

 

Conditiegebaseerd onderhoud

Modellen gebaseerd op real-time monitoring worden gebruikt ter ondersteuning van condition-based onderhoud (CBM) voor dure zaken als straalmotoren. Deze modellen gebruiken gegevens van sensoren die in de items zelf zijn ingebed. Dergelijke gegevens zijn doorgaans complex en bedrijfseigen, evenals de waarschijnlijkheidsmodellen die door de gegevens worden ondersteund. Het voordeel van real-time monitoring is dat je problemen kunt zien aankomen, dat wil zeggen dat de verslechtering zichtbaar wordt gemaakt en dat voorspellingen kunnen voorspellen wanneer het item de rode lijn zal bereiken en daarom uit het speelveld moet worden gehaald. Dit maakt geïndividualiseerd, proactief onderhoud of vervanging van het artikel mogelijk.

Figuur 3 illustreert het soort gegevens dat in CBM wordt gebruikt. Elke keer dat het systeem wordt gebruikt, is er een bijdrage aan de cumulatieve slijtage ervan. (Houd er echter rekening mee dat gebruik soms de staat van het apparaat kan verbeteren, bijvoorbeeld wanneer regen een machine koel houdt). U kunt de algemene trend naar boven zien richting een rode lijn, waarna het apparaat onderhoud nodig heeft. U kunt de cumulatieve slijtage extrapoleren om in te schatten wanneer deze de rode lijn zal bereiken en dienovereenkomstig plannen.

 

MRO en Spare Parts real-time monitoring voor condition-based onderhoud

Figuur 3: Ter illustratie van real-time monitoring voor conditiegebaseerd onderhoud

 

Voor zover ik weet, maakt niemand zulke modellen van klanten met eindproducten om te voorspellen wanneer en hoeveel ze de volgende keer zullen bestellen, misschien omdat de klanten er bezwaar tegen zouden hebben om voortdurend hersenmonitors te dragen. Maar CBM, met zijn complexe monitoring en modellering, wint aan populariteit voor systemen die niet kunnen falen, zoals straalmotoren. Ondertussen hebben klassieke betrouwbaarheidsmodellen nog steeds veel waarde voor het beheer van grote vloten met goedkopere maar nog steeds essentiële artikelen.

 

Smart's aanpak
De bovengenoemde op condities gebaseerde onderhouds- en betrouwbaarheidsbenaderingen vereisen een buitensporige last voor het verzamelen en opschonen van gegevens die veel MRO-bedrijven niet aankunnen. Voor die bedrijven biedt Smart een aanpak waarbij geen betrouwbaarheidsmodellen hoeven te worden ontwikkeld. In plaats daarvan exploiteert het gebruiksgegevens op een andere manier. Het maakt gebruik van op waarschijnlijkheid gebaseerde modellen van zowel gebruik als doorlooptijden van leveranciers om duizenden mogelijke scenario's voor doorlooptijden van bevoorrading en vraag te simuleren. Het resultaat is een nauwkeurige verdeling van de vraag en de doorlooptijden voor elk verbruiksonderdeel, die kan worden benut om de optimale voorraadparameters te bepalen. Figuur 4 toont een simulatie die begint met een scenario voor de vraag naar reserveonderdelen (bovenste grafiek) en vervolgens een scenario oplevert van voorhanden aanbod voor bepaalde keuzes van Min/Max-waarden (onderste lijn). Key Performance Indicators (KPI's) kunnen worden geschat door de resultaten van veel van dergelijke simulaties te middelen.

MRO- en reserveonderdelensimulatie van de vraag en voorraad

Figuur 4: Een voorbeeld van een simulatie van de vraag naar reserveonderdelen en de voorhanden voorraad

U kunt hier lezen over de aanpak van Smart bij het voorspellen van reserveonderdelen: https://smartcorp.com/wp-content/uploads/2019/10/Probabilistic-Forecasting-for-Intermittent-Demand.pdf

 

 

Software voor planning van reserveonderdelen

De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

 

 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    Centreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen

    Net zoals de beroemde astronoom Copernicus ons begrip van de astronomie transformeerde door de zon in het centrum van ons universum te plaatsen, nodigen wij u vandaag uit om uw benadering van voorraadbeheer opnieuw centraal te stellen. En ook al is dit advies niet zo verhelderend, het zal uw bedrijf helpen voorkomen dat u verstrikt raakt in de aantrekkingskracht van voorraadproblemen – voortdurend heen en weer geslingerd tussen voorraadtekorten, overtollige zwaartekracht en de onverwachte kosmische kosten van het bespoedigen van goederen.

    In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren.

    In servicegerichte bedrijven zijn de gevolgen van voorraadtekorten vaak zeer groot. Het bereiken van een hoog serviceniveau is afhankelijk van de beschikbaarheid van de juiste onderdelen op het juiste moment. Het hebben van de juiste onderdelen is echter niet de enige factor. Uw Supply Chain-team moet voor elk onderdeel een consensusinventarisatieplan ontwikkelen en dit vervolgens voortdurend bijwerken om realtime veranderingen in vraag, aanbod en financiële prioriteiten weer te geven.

     

    Voorraadbeheer met serviceniveaugestuurde planning combineert de mogelijkheid om duizenden items te plannen met strategische modellering op hoog niveau. Dit vereist het aanpakken van de kernproblemen waarmee voorraadmanagers worden geconfronteerd:

    • Gebrek aan controle over het aanbod en de bijbehorende doorlooptijden.
    • Onvoorspelbare intermitterende vraag.
    • Conflicterende prioriteiten tussen onderhouds-/mechanische teams en materiaalbeheer.
    • Reactieve ‘afwachtende’ benadering van planning.
    • Verkeerd toegewezen voorraad, waardoor voorraadtekorten en overschotten ontstaan.
    • Gebrek aan vertrouwen in systemen en processen.

    De sleutel tot optimaal beheer van serviceonderdelen is het vinden van de balans tussen het bieden van uitstekende service en het beheersen van de kosten. Om dit te doen, moeten we de kosten van stockout vergelijken met de kosten van het aanhouden van extra voorraad reserveonderdelen. De kosten van een stockout zullen hoger zijn voor kritieke of noodreserveonderdelen, wanneer er een serviceniveauovereenkomst is met externe klanten, voor onderdelen die in meerdere activa worden gebruikt, voor onderdelen met langere doorlooptijden van leveranciers, en voor onderdelen met één enkele leverancier. De voorraadkosten kunnen worden beoordeeld door rekening te houden met de eenheidskosten, de rentetarieven, de magazijnruimte die zal worden verbruikt en de kans op veroudering (onderdelen die worden gebruikt in een wagenpark dat binnenkort met pensioen gaat, hebben bijvoorbeeld een hoger risico op veroudering).

    Om te bepalen hoeveel voorraad er voor elk onderdeel op de plank moet worden gelegd, is het van cruciaal belang om consensus te bereiken over de gewenste sleutelgegevens die de afwegingen blootleggen die het bedrijf moet maken om de gewenste KPI's te bereiken. Deze KPI's omvatten serviceniveaus die u vertellen hoe vaak u aan de gebruiksbehoeften voldoet zonder dat u tekortschiet in de voorraad, vulpercentages die u vertellen welk percentage van de vraag is gevuld, en bestelkosten geven een gedetailleerd overzicht van de kosten die u maakt wanneer u aanvullingsorders plaatst en ontvangt. Je hebt ook holdingkosten, die uitgaven omvatten zoals veroudering, belastingen en opslag, en tekortkosten die betrekking hebben op uitgaven die worden gemaakt wanneer er voorraadtekorten optreden.

    An MRO business or Aftermarket Parts Planning team might desire a 99% service level across all parts – i.e., the minimum stockout risk that they are willing to accept is 1%. But what if the amount of inventory needed to support that service level is too expensive? To make an informed decision on whether there is going to be a return on that additional inventory investment, you’ll need to know the stockout costs and compare that to the inventory costs. To get stockout costs, multiply two key elements: the cost per stockout and the projected number of stockouts. To get inventory value, multiply the units required by the unit cost of each part. Then determine the annual holding costs (typically 25-35% of the unit cost). Choose the option that yields a total lower cost. In other words, if the benefit associated with adding more stock (reduced shortage costs) outweighs the cost (higher inventory holding costs), then go for it. A thorough understanding of these metrics and the associated tradeoffs serves as the compass for decision-making.

    Moderne software helpt bij dit proces doordat u een groot aantal toekomstscenario's kunt simuleren. Door dit te doen, kunt u beoordelen hoe goed uw huidige voorraadbevoorradingsstrategieën waarschijnlijk zullen presteren in het licht van verschillende vraag- en aanbodpatronen. Als er iets tekortschiet of misgaat, is het tijd om uw aanpak opnieuw te kalibreren, waarbij u rekening houdt met actuele gegevens over de gebruiksgeschiedenis, doorlooptijden van leveranciers en kosten om zowel voorraad- als overvoorraadsituaties te voorkomen.

     

    Verbeter uw op serviceniveau gebaseerde voorraadplan op consistente wijze.

    Concluderend is het van cruciaal belang om uw serviceniveaugestuurde plan voortdurend te beoordelen. Door systematisch prestatiescenario's op te stellen en te verfijnen, kunt u belangrijke meetgegevens en doelen definiëren, de verwachte prestaties benchmarken en de berekening van het voorraadbeleid voor alle artikelen automatiseren. Dit iteratieve proces omvat het monitoren, herzien en herhalen van elke planningscyclus.

    De diepgang van uw analyse binnen dit voorraadbeleid is afhankelijk van de gegevens waarover u beschikt en de configuratiemogelijkheden van uw planningssysteem. Om optimale resultaten te bereiken, is het noodzakelijk om voortdurende gegevensanalyses uit te voeren. Dit impliceert dat een handmatige benadering van dataonderzoek doorgaans onvoldoende is voor de behoeften van de meeste organisaties.

    Bezoek de volgende blogs voor informatie over hoe Smart Software u kan helpen de doelstellingen van uw servicetoeleveringsketen te bereiken met servicegestuurde planning en meer.

    –   “Uitleggen wat serviceniveau betekent in uw voorraadoptimalisatiesoftware”  Aanbevelingen voor kous kunnen verwarrend zijn, vooral als ze botsen met de behoeften in de echte wereld. In dit bericht leggen we uit wat dat 99%-serviceniveau betekent en waarom het cruciaal is om de voorraad effectief te beheren en klanten tevreden te houden in het huidige competitieve landschap.

    – “Servicegestuurde planning voor bedrijven met serviceonderdelenService-level-driven serviceonderdelenplanning is een proces in vier stappen dat verder gaat dan vereenvoudigde prognoses en vuistregels voor veiligheidsvoorraden. Het biedt planners van serviceonderdelen datagestuurde, risico-aangepaste beslissingsondersteuning.

    –   “Hoe u een doelserviceniveau kiest.Dit is een strategische beslissing over voorraadrisicobeheer, waarbij rekening wordt gehouden met de huidige serviceniveaus en opvullingspercentages, de doorlooptijden van de bevoorrading en de afwegingen tussen kapitaal-, voorraad- en opportuniteitskosten. Leer benaderingen die kunnen helpen.

    –   “De juiste voorspellingsnauwkeurigheid voor voorraadplanning.”  Het feit dat u een serviceniveaudoel stelt, betekent niet dat u dit ook daadwerkelijk zult bereiken. Als u geïnteresseerd bent in het optimaliseren van de voorraadniveaus, concentreer u dan op de nauwkeurigheid van de projectie van het serviceniveau. Leren hoe.

     

    Software voor planning van reserveonderdelen

    De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

    Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

     

     

    Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

     

    Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

     

      5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren

      In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren.

      Het belang van een geoptimaliseerde planning van serviceonderdelen:

      Geoptimaliseerd beheer van serviceonderdelen speelt een cruciale rol bij het beperken van voorraadrisico's en het waarborgen van de beschikbaarheid van kritieke reserveonderdelen. Hoewel subjectieve planning op kleine schaal kan werken, wordt het onvoldoende bij het beheer van grote voorraden van af en toe gevraagde reserveonderdelen. Traditionele prognosebenaderingen houden simpelweg geen rekening met de extreme variabiliteit in de vraag en frequente periodes van nulvraag die zo gewoon zijn bij reserveonderdelen. Dit resulteert in grote misallocaties van voorraden, hogere kosten en slechte serviceniveaus.

      De sleutel tot geoptimaliseerd beheer van serviceonderdelen ligt in het begrijpen van de wisselwerking tussen service en kosten. Software voor voorraadoptimalisatie en vraagplanning, mogelijk gemaakt door probabilistische prognoses en machine learning-algoritmen, kan bedrijven helpen de kosten versus baten van elke voorraadbeslissing beter te begrijpen en voorraad als een concurrentievoordeel te gebruiken. Door binnen enkele seconden nauwkeurige vraagprognoses en een optimaal voorraadbeleid zoals Min/Max, veiligheidsvoorraadniveaus en bestelpunten te genereren, kunnen bedrijven weten hoeveel te veel is en wanneer ze meer moeten toevoegen. Door voorraad als een concurrentievoordeel te hanteren, kunnen bedrijven hun serviceniveau verhogen en de kosten verlagen.

      Verbeter het financiële resultaat van de planning van reserveonderdelen

      1. Nauwkeurige prognoses zijn cruciaal om de voorraadplanning te optimaliseren en effectief aan de vraag van de klant te voldoen. State-of-the-art software voor vraagplanning voorspelt nauwkeurig de voorraadvereisten, zelfs voor intermitterende vraagpatronen. Door prognoses te automatiseren, kunnen bedrijven tijd, geld en middelen besparen en tegelijkertijd de nauwkeurigheid verbeteren.
      2. Voldoen aan de vraag van de klant is een cruciaal aspect van het beheer van serviceonderdelen. Bedrijven kunnen de klanttevredenheid en -loyaliteit vergroten en hun kansen vergroten om toekomstige contracten binnen te halen voor de activa-intensieve apparatuur die ze verkopen door ervoor te zorgen dat reserveonderdelen beschikbaar zijn wanneer dat nodig is. Door effectieve vraagplanning en voorraadoptimalisatie kunnen organisaties doorlooptijden verkorten, voorraadtekorten minimaliseren en serviceniveaus handhaven, waardoor de financiële impact van alle beslissingen wordt verbeterd.
      3. Financiële voordelen kunnen worden behaald door een geoptimaliseerde planning van serviceonderdelen, inclusief de vermindering van voorraad- en productkosten. Overtollige opslag en verouderde inventaris kunnen een aanzienlijke kostenpost zijn voor organisaties. Door best-of-breed voorraadoptimalisatiesoftware te implementeren, kunnen bedrijven kosteneffectieve oplossingen vinden, het serviceniveau verhogen en de kosten verlagen. Dit leidt tot verbeterde voorraadomzet, lagere transportkosten en hogere winstgevendheid.
      4. Inkoopplanning is een ander essentieel aspect van het beheer van serviceonderdelen. Organisaties kunnen voorraadniveaus optimaliseren, doorlooptijden verkorten en voorraadtekorten voorkomen door inkoop en de bijbehorende orderhoeveelheden af te stemmen op nauwkeurige vraagprognoses. Er kunnen bijvoorbeeld nauwkeurige prognoses worden gedeeld met leveranciers, zodat algemene inkoopverplichtingen kunnen worden aangegaan. Dit geeft de leverancier omzetzekerheid en kan in ruil daarvoor meer voorraad aanhouden, waardoor de doorlooptijden worden verkort.
      5. Intermitterende vraagplanning is een bijzondere uitdaging bij het beheer van reserveonderdelen. Conventionele vuistregels schieten tekort in het effectief omgaan met vraagvariabiliteit. Dit komt omdat traditionele benaderingen ervan uitgaan dat de vraag normaal verdeeld is, terwijl dat in werkelijkheid allesbehalve normaal is. Reserveonderdelen vragen om willekeurige uitbarstingen van grote vraag die worden afgewisseld met perioden van nul vraag. De oplossing van Smart Software bevat geavanceerde statistische modellen en machine learning-algoritmen om historische vraagpatronen te analyseren, waardoor een nauwkeurige planning voor intermitterende vraag mogelijk wordt. Bedrijven kunnen de voorraadkosten aanzienlijk verlagen en de efficiëntie verbeteren door deze uitdaging aan te gaan.

      Bewijs van klanten van Smart Software:

      Door te investeren in de software voor voorraadoptimalisatie en vraagplanning van Smart Software kunnen bedrijven kostenbesparingen realiseren, de klantenservice naar een hoger niveau tillen en de operationele efficiëntie verbeteren. Door nauwkeurige vraagprognoses, geoptimaliseerd voorraadbeheer en gestroomlijnde inkoopprocessen kunnen organisaties financiële besparingen realiseren, effectief voldoen aan de eisen van klanten en de algehele bedrijfsprestaties verbeteren.

      • Metro-North Railroad (MNR) ervoer een 8%-vermindering van de onderdelenvoorraad, bereikte een recordhoog klantenserviceniveau van 98,7% en verminderde de voorraadgroei voor nieuwe apparatuur van een verwachte 10% tot slechts 6%. Slimme software speelde een cruciale rol bij het identificeren van meerjarige behoeften aan serviceonderdelen, het verkorten van administratieve doorlooptijden, het opstellen van plannen voor voorraadvermindering voor wagenparken die buiten gebruik worden gesteld en het identificeren van inactieve inventaris voor verwijdering. MNR bespaarde kosten, maximaliseerde verwijderingsvoordelen, verbeterde serviceniveaus en verwierf nauwkeurige inzichten voor weloverwogen besluitvorming, wat uiteindelijk hun bedrijfsresultaten en klanttevredenheid verbeterde.
      • Seneca Companies, marktleider op het gebied van petroleumservices voor de auto-industrie, heeft Smart Software gebruikt om de vraag van klanten te modelleren, de voorraadprestaties te controleren en aanvulling te stimuleren. Buitendiensttechnici omarmden het gebruik ervan en de totale inventarisinvestering daalde met meer dan 25%, van $11 miljoen naar $8 miljoen, terwijl de first-time fix rates van 90%+ behouden bleven.
      • Een toonaangevend elektriciteitsbedrijf implementeerde Smart IP&O in slechts 3 maanden en gebruikte de software vervolgens om de bestelpunten en bestelhoeveelheden voor meer dan 250.000 reserveonderdelen te optimaliseren. Tijdens de eerste fase van de implementatie hielp het platform het nutsbedrijf om de voorraad met $9.000.000 te verminderen met behoud van serviceniveaus. De implementatie was onderdeel van het strategische optimalisatie-initiatief van het bedrijf.

      Optimalisatie van de planning van serviceonderdelen voor concurrentievoordeel

      Geoptimaliseerd beheer van serviceonderdelen is cruciaal voor bedrijven die de efficiëntie willen verbeteren, kosten willen verlagen en de beschikbaarheid van noodzakelijke reserveonderdelen willen waarborgen. Organisaties kunnen op dit gebied aanzienlijke waarde ontsluiten door te investeren in de software voor voorraadoptimalisatie en vraagplanning van Smart Software. Bedrijven kunnen betere financiële prestaties behalen en een concurrentievoordeel behalen in hun respectievelijke markten door verbeterde data-analyse, automatisering en voorraadplanning.

      Smart Software is ontworpen voor de moderne markt, die volatiel is en altijd verandert. Het kan SKU-proliferatie, langere toeleveringsketens, minder voorspelbare doorlooptijden en meer intermitterende en minder voorspelbare vraagpatronen aan. Het kan ook worden geïntegreerd met vrijwel elke ERP-oplossing op de markt, door in de praktijk bewezen naadloze verbindingen of door een eenvoudig import-/exportproces te gebruiken dat wordt ondersteund door het datamodel en de dataverwerkingsengine van Smart Software. Door slimme software te gebruiken, kunnen bedrijven voorraad als een concurrentievoordeel gebruiken, de klanttevredenheid verbeteren, het serviceniveau verhogen, de kosten verlagen en aanzienlijk geld besparen.

       

      Software voor planning van reserveonderdelen

      De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

      Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

       

       

      Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

       

      Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

       

        Bottom Line-strategieën voor de planning van reserveonderdelen

        Het beheer van reserveonderdelen brengt tal van uitdagingen met zich mee, zoals onverwachte storingen, veranderende schema's en inconsistente vraagpatronen. Traditionele prognosemethoden en handmatige benaderingen zijn niet effectief in het omgaan met deze complexiteit. Om deze uitdagingen het hoofd te bieden, schetst deze blog de belangrijkste strategieën die prioriteit geven aan serviceniveaus, probabilistische methoden gebruiken om bestelpunten te berekenen, het voorraadbeleid regelmatig aanpassen en een speciaal planningsproces implementeren om overmatige voorraad te voorkomen. Verken deze strategieën om de inventaris van reserveonderdelen te optimaliseren en de operationele efficiëntie te verbeteren.

        Onder aan de streep vooraf

        1. Voorraadbeheer is Risicomanagement.

        2. Kan risico's niet goed of op schaal beheren subjectieve planning - Noodzaak om service versus kosten te kennen.

        3. Dat is het niet variabiliteit van vraag en aanbod dat is het probleem – het is hoe je ermee omgaat.

        4. Reserveonderdelen hebben periodieke vraag naar dus traditionele methoden werken niet.

        5.Vuistregel benaderingen houden geen rekening met de variabiliteit van de vraag en wijzen voorraad verkeerd toe.

        6.Gebruik Service Level Driven Planning  (afwegingen tussen service en kosten) om voorraadbeslissingen te stimuleren.

        7.Probabilistisch benaderingen zoals Bootstrapping nauwkeurige schattingen van bestelpunten opleveren.

        8.Onderdelen classificeren en wijs doelen op serviceniveau toe per klasse.

        9.Kalibreer vaak opnieuw - duizenden onderdelen hebben oude, verouderde bestelpunten.

        10.Herstelbare onderdelen speciale behandeling nodig hebben.

         

        Concentreer u op de echte grondoorzaken

        Bottom Line-strategieën voor de planning van reserveonderdelen Oorzaken

        Intermittent Demand

        Bottom Line-strategieën voor het plannen van reserveonderdelen met wisselende vraag

         

        • Langzaam bewegend, onregelmatig of sporadisch met een groot percentage nulwaarden.
        • Waarden die niet gelijk zijn aan nul worden willekeurig gemengd – spikes zijn groot en gevarieerd.
        • Is niet klokvormig (de vraag is niet normaal verdeeld rond het gemiddelde.)
        • Ten minste 70% van de onderdelen van een typisch nutsbedrijf wordt met tussenpozen gevraagd.

        Bottom Line-strategieën voor de planning van reserveonderdelen 4

         

        Normale vraag

        Bottom Line-strategieën voor het plannen van reserveonderdelen met wisselende vraag

        • Zeer weinig periodes zonder vraag (uitzondering zijn seizoensgebonden onderdelen.)
        • Vertoont vaak trend-, seizoens- of cyclische patronen.
        • Lagere niveaus van vraagvariabiliteit.
        • Is klokvormig (de vraag is normaal verdeeld rond het gemiddelde.)

        Bottom Line-strategieën voor de planning van reserveonderdelen 5

        Ga niet af op gemiddelden

        Bottom Line-strategieën voor planningsgemiddelden van reserveonderdelen

        • OK voor het bepalen van typisch gebruik gedurende langere tijd.
        • Voorspelt vaak meer "nauwkeurig" dan sommige geavanceerde methoden.
        • Maar... onvoldoende om te bepalen wat je in voorraad moet hebben.

         

        Buffer niet met veelvouden van gemiddelden

        Voorbeeld: twee even belangrijke onderdelen, dus laten we ze hetzelfde behandelen.
        We zullen meer bestellen wanneer Voorraad ≤ 2 x Gem. Levertijd Vraag.

        Bottom Line-strategieën voor het plannen van reserveonderdelen met meerdere gemiddelden

         

        Gebruik Service Level-afwegingscurven om de veiligheidsvoorraad te berekenen

        Bottom Line-strategieën voor het plannen van reserveonderdelen op serviceniveau

        Standaard Normale Kansen

        OK voor normale vraag. Werkt niet met periodieke vraag!

        Bottom Line-strategieën voor het plannen van reserveonderdelen Standaardkansen

         

        Gebruik geen normale (klokvormige) verdelingen

        • U krijgt de afwegingscurve verkeerd:

        - u richt zich bijvoorbeeld op 95% maar bereikt 85%.

        - u richt zich bijvoorbeeld op 99% maar bereikt 91%.

        • Dit is een enorme misser met kostbare implicaties:

        – U slaat vaker een voorraad op dan verwacht.

        – U begint met het toevoegen van subjectieve buffers ter compensatie en vervolgens met overstock.

        – Gebrek aan vertrouwen/twijfelen aan output verlamt de planning.

         

        Waarom traditionele methoden mislukken bij intermitterende vraag: 

        Traditionele methoden zijn niet ontworpen om kernproblemen in het beheer van reserveonderdelen aan te pakken.

        Behoefte: Kansverdeling (niet klokvormig) van vraag over variabele doorlooptijd.

        • Get: Voorspelling van gemiddeld vraag in elke maand, geen totaal over de doorlooptijd.
        • Get: vastgeschroefd model van variabiliteit, meestal het normale model, meestal verkeerd.

        Behoefte: blootstelling van afwegingen tussen beschikbaarheid van artikelen en voorraadkosten.

        • Krijg: niets van dit alles; krijg in plaats daarvan veel inconsistente, ad-hocbeslissingen.

         

        Gebruik statistische bootstrapping om de verdeling te voorspellen:

        Benut vervolgens de distributie om het voorraadbeleid te optimaliseren.

        Bottom Line-strategieën voor het plannen van reserveonderdelen Distributie voorspellen

         

        Hoe werkt Bootstrapping?

        24 maanden historische vraaggegevens.

        Bottom Line-strategieën voor het plannen van reserveonderdelen Bootstrapping 1

        Bootstrap-scenario's voor een doorlooptijd van 3 maanden.

        Bottom Line-strategieën voor het plannen van reserveonderdelen Bootstrapping 2

        Bootstrapping bereikt het doel van het serviceniveau met een nauwkeurigheid van bijna 100%!

        • Nationale opslagoperatie.

        Taak: voorraadniveaus voorspellen voor 12.000 periodiek gevraagde SKU's op serviceniveaus 95% en 99%

        Resultaten:

        Op serviceniveau 95% was 95.23% niet op voorraad.

        Op serviceniveau 99% was 98.66% niet op voorraad.

        Dit betekent dat u kunt vertrouwen op output om verwachtingen te scheppen en met vertrouwen gerichte voorraadaanpassingen door te voeren die de voorraad verlagen en de service verbeteren.

         

        Stel doelserviceniveaus in op basis van bestelfrequentie en -omvang

        Stel beoogde serviceniveaus in op basis van de bestelfrequentie

         

        Herbestelpunten regelmatig opnieuw kalibreren

        • Statische ROP's veroorzaken overschotten en tekorten.
        • Naarmate de doorlooptijd toeneemt, neemt ook de ROP toe en vice versa.
        • Naarmate het gebruik afneemt, moet de ROP dat ook doen en vice versa.
        • Hoe langer u wacht met herijken, hoe groter de onbalans.
        • Bergen onderdelen te vroeg of te laat besteld.
        • Verspilt de tijd van kopers door de verkeerde bestellingen te plaatsen.
        • Wekt wantrouwen in systemen en dwingt gegevenssilo's af.

        Herbestelpunten regelmatig opnieuw kalibreren

        Doe plannen draaibaar (Onderdelen repareren) Anders

        Plan Rotables (onderdelen repareren) anders

         

        Overzicht

        1. Voorraadbeheer is Risicomanagement.

        2. Kan risico's niet goed of op schaal beheren subjectieve planning - Noodzaak om service versus kosten te kennen.

        3. Dat is het niet variabiliteit van vraag en aanbod dat is het probleem – het is hoe je ermee omgaat.

        4. Reserveonderdelen hebben periodieke vraag naar dus traditionele methoden werken niet.

        5.Vuistregel benaderingen houden geen rekening met de variabiliteit van de vraag en wijzen voorraad verkeerd toe.

        6.Gebruik Service Level Driven Planning  (afwegingen tussen service en kosten) om voorraadbeslissingen te stimuleren.

        7.Probabilistisch benaderingen zoals Bootstrapping nauwkeurige schattingen van bestelpunten opleveren.

        8.Onderdelen classificeren en wijs doelen op serviceniveau toe per klasse.

        9.Kalibreer vaak opnieuw - duizenden onderdelen hebben oude, verouderde bestelpunten.

        10.Herstelbare onderdelen speciale behandeling nodig hebben.

         

        Software voor planning van reserveonderdelen

        De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

        Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

         

         

        Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

         

        Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

         

          Bereid uw reserveonderdelenplanning voor op onverwachte schokken

          Wist je dat het Benjamin Franklin was die de bliksemafleider uitvond om gebouwen te beschermen tegen blikseminslag? Nu hoeven we ons niet elke dag zorgen te maken over blikseminslagen, maar in het onvoorspelbare zakenklimaat van vandaag moeten we ons wel zorgen maken over verstoringen in de toeleveringsketen, lange doorlooptijden, stijgende rentetarieven en een volatiele vraag. Met al deze uitdagingen is het voor organisaties nog nooit zo belangrijk geweest om het gebruik van onderdelen en voorraadniveaus nauwkeurig te voorspellen en het bevoorradingsbeleid, zoals bestelpunten, veiligheidsvoorraden en bestelhoeveelheden, te optimaliseren. In deze blog onderzoeken we hoe bedrijven gebruik kunnen maken van innovatieve oplossingen, zoals voorraadoptimalisatie en software voor het voorspellen van onderdelen die gebruikmaken van machine learning-algoritmen, probabilistische prognoses en analyses om voorop te blijven lopen en hun toeleveringsketens te beschermen tegen onverwachte schokken.

          Planningsoplossingen voor reserveonderdelen
          Optimalisatie van reserveonderdelen is een belangrijk aspect van supply chain management voor veel industrieën. Het omvat het beheer van de inventaris van reserveonderdelen om ervoor te zorgen dat ze beschikbaar zijn wanneer dat nodig is, zonder overtollige voorraad die kapitaal en ruimte in beslag kan nemen. Het optimaliseren van de inventaris van reserveonderdelen is een complex proces dat een grondige kennis van gebruikspatronen, doorlooptijden van leveranciers en de kritieke waarde van elk onderdeel voor het bedrijf vereist.

          In deze blog zal onze primaire nadruk liggen op het cruciale aspect van voorraadoptimalisatie en vraagvoorspelling. Andere hieronder beschreven benaderingen voor het optimaliseren van reserveonderdelen, zoals voorspellend onderhoud en 3D-printen, Master Data Management en gezamenlijke planning, moeten echter worden onderzocht en waar nodig worden toegepast.

          1. Voorspellend onderhoud: Voorspellende analyses gebruiken om te anticiperen wanneer een onderdeel waarschijnlijk defect raakt en het proactief te vervangen, in plaats van te wachten tot het kapot gaat. Deze aanpak kan bedrijven helpen downtime en onderhoudskosten te verminderen en de algehele effectiviteit van apparatuur te verbeteren.
          2. 3d printen: Dankzij de vooruitgang in de 3D-printtechnologie kunnen bedrijven reserveonderdelen op aanvraag produceren, waardoor er minder voorraad nodig is. Dit bespaart niet alleen ruimte en kosten, maar zorgt er ook voor dat onderdelen beschikbaar zijn wanneer dat nodig is.
          3. Beheer van stamgegevens: Gegevensbeheerplatforms zorgen ervoor dat onderdeelgegevens correct worden geïdentificeerd, gecatalogiseerd, opgeschoond en georganiseerd. Maar al te vaak hebben MRO-organisaties hetzelfde onderdeelnummer onder verschillende SKU's. Deze dubbele onderdelen dienen hetzelfde doel, maar hebben verschillende SKU-nummers nodig om naleving van de regelgeving of veiligheid te garanderen. Een onderdeel dat wordt gebruikt ter ondersteuning van een overheidscontract, kan bijvoorbeeld nodig zijn van een Amerikaanse fabrikant om te blijven voldoen aan de "Buy America"-regelgeving. Het is van cruciaal belang dat deze onderdeelnummers worden geïdentificeerd en, indien mogelijk, worden geconsolideerd in één SKU om voorraadinvesteringen binnen de perken te houden.
          4. Gezamenlijke planning: Door samen te werken met leveranciers en klanten om gegevens, prognoses en vraagplanning te delen, kunnen bedrijven doorlooptijden verkorten, de nauwkeurigheid verbeteren en voorraadniveaus verlagen. Prognoses spelen een essentiële rol in samenwerking, aangezien het delen van inzichten over aankopen, vraag en koopgedrag ervoor zorgt dat leveranciers over de informatie beschikken die ze nodig hebben om ervoor te zorgen dat de voorraad voor klanten beschikbaar is.

          Inventory Optimization
          Abraham Lincoln werd ooit als volgt geciteerd: "Geef me zes uur om een boom om te hakken, en ik zal de eerste vier uur besteden aan het slijpen van de bijl"? Lincoln wist dat voorbereiding en optimalisatie de sleutel tot succes waren, net zoals organisaties over de juiste tools moeten beschikken, zoals software voor voorraadoptimalisatie, om hun toeleveringsketen te optimaliseren en voorop te blijven lopen in de markt. Met software voor voorraadoptimalisatie kunnen organisaties hun prognosenauwkeurigheid verbeteren, voorraadkosten verlagen, serviceniveaus verbeteren en doorlooptijden verkorten. Lincoln wist dat het slijpen van de bijl nodig was om de klus effectief te klaren zonder overmatige inspanning. Voorraadoptimalisatie zorgt ervoor dat voorraaddollars effectief worden toegewezen aan duizenden onderdelen, waardoor serviceniveaus worden gegarandeerd en overtollige voorraad wordt geminimaliseerd.

          Reserveonderdelen spelen een doorslaggevende rol bij het handhaven van de operationele efficiëntie, en het ontbreken van kritieke onderdelen kan leiden tot uitvaltijd en verminderde productiviteit. Door de sporadische aard van de vraag naar reserveonderdelen is het moeilijk te voorspellen wanneer een specifiek onderdeel nodig zal zijn, wat resulteert in het risico van over- of onderbevoorrading, die beide kosten kunnen opleveren voor de organisatie. Bovendien brengt het beheren van doorlooptijden voor reserveonderdelen zijn eigen uitdagingen met zich mee. Sommige onderdelen kunnen lange levertijden hebben, waardoor het nodig is om voldoende voorraad aan te houden om tekorten te voorkomen. Het meenemen van overtollige voorraad kan echter kostbaar zijn en kapitaal en opslagruimte in beslag nemen.

          Gezien de talloze uitdagingen waarmee materiaalbeheerafdelingen en planners van reserveonderdelen worden geconfronteerd, is het plannen van de vraag, voorraadniveaus en aanvulling van reserveonderdelen zonder een effectieve oplossing voor voorraadoptimalisatie vergelijkbaar met een poging om een boom om te hakken met een zeer botte bijl! Hoe scherper de bijl, hoe beter uw organisatie deze uitdagingen het hoofd kan bieden.

          De bijl van Smart Software is de scherpste
          Slimme software voor voorraadoptimalisatie en vraagplanning maakt gebruik van een unieke empirische probabilistische prognosebenadering die resulteert in nauwkeurige prognoses van voorraadbehoeften, zelfs wanneer de vraag met tussenpozen is. Aangezien bijna 90% aan reserve- en serviceonderdelen met tussenpozen is, is een nauwkeurige oplossing vereist om aan dit soort vraag te voldoen. De oplossing van Smart werd gepatenteerd in 2001 en aanvullende innovaties werden onlangs gepatenteerd in mei 2023 (aankondigingen volgen binnenkort!). De oplossing werd bekroond als finalist in de APICS Technological Innovation Category voor zijn rol bij het helpen transformeren van de resource management-industrie.

          De rol van intermitterende vraag
          Intermitterende vraag komt niet overeen met een simpele normale of klokvormige verdeling die het onmogelijk maakt om nauwkeurig te voorspellen met traditionele, op afvlakking gebaseerde prognosemethoden. Onderdelen en items met intermitterende vraag – ook wel bekend als klonterige, volatiele, variabele of onvoorspelbare vraag – hebben veel nul- of laagvolumewaarden afgewisseld met willekeurige pieken in de vraag die vaak vele malen groter zijn dan het gemiddelde. Dit probleem doet zich vooral voor bij bedrijven die grote voorraden van service- en reserveonderdelen beheren in sectoren zoals luchtvaart, ruimtevaart, energie- en watervoorziening en nutsbedrijven, automobielindustrie, beheer van zware activa, hightech, evenals in MRO (Maintenance, Repair, en revisie).

          Scenario analyse
          De gepatenteerde en bekroonde technologie van Smart genereert snel tienduizenden mogelijke scenario's van toekomstige vraagreeksen en cumulatieve vraagwaarden over de doorlooptijd van een artikel. Deze scenario's zijn statistisch vergelijkbaar met de geobserveerde gegevens van het artikel en ze leggen de relevante details vast van de intermitterende vraag zonder te vertrouwen op de aannames die gewoonlijk worden gedaan over de aard van vraagverdelingen door traditionele prognosemethoden. Het resultaat is een uiterst nauwkeurige voorspelling van de volledige verdeling van de cumulatieve vraag over de doorlooptijd van een artikel. Het komt erop neer dat bedrijven met de informatie die deze vraagdistributies bieden, eenvoudig veiligheidsvoorraad en voorraadvereisten op serviceniveau kunnen plannen voor duizenden periodiek gevraagde artikelen met een nauwkeurigheid van bijna 100%.

          Benefits
          Door innovatieve oplossingen van Smart Software te implementeren, zoals SmartForecasts voor statistische prognoses, Demand Planner voor consensusplanning van onderdelen en Inventory Optimization voor het ontwikkelen van nauwkeurige aanvullingsfactoren zoals min/max en veiligheidsvoorraadniveaus, krijgen vooruitstrevende leidinggevenden en planners betere controle over hun bedrijfsvoering van de organisatie. Het zal resulteren in de volgende voordelen:

          1. Verbeterde prognosenauwkeurigheid: Nauwkeurige vraagprognoses zijn van fundamenteel belang voor elke organisatie die zich bezighoudt met voorraadbeheer van reserveonderdelen. Voorraadoptimalisatiesoftware maakt gebruik van geavanceerde algoritmen om historische gebruikspatronen te analyseren, trends te identificeren en toekomstige vraag met een hoge mate van nauwkeurigheid te voorspellen. Met dit niveau van precisie bij prognoses kunnen organisaties het risico van over- of onderbevoorrading van hun reserveonderdelenvoorraad vermijden.
          2. Lagere voorraadkosten: Een grote uitdaging waarmee leiders in de toeleveringsketen worden geconfronteerd bij het beheer van de voorraad van reserveonderdelen, zijn de kosten die gepaard gaan met het te allen tijde aanhouden van een optimale voorraad reserveonderdelen. Door voorraadniveaus te optimaliseren met behulp van moderne technologiesystemen zoals kunstmatige intelligentie (AI), machine learning (ML) en voorspellende analyses, kunnen organisaties de transportkosten verlagen en er tegelijkertijd voor zorgen dat ze voldoende voorraden beschikbaar hebben wanneer dat nodig is.
          3. Verbeterde serviceniveaus: Als het gaat om reparatie- en onderhoudsdiensten, is tijd geld! Downtime als gevolg van de onbeschikbaarheid van kritieke reserveonderdelen kan leiden tot verloren productiviteit en inkomsten voor bedrijven in verschillende sectoren, zoals fabrieken, energieopwekkingsfaciliteiten of datacenters die IT-infrastructuurapparatuur beheren. Het optimaliseren van uw reserveonderdelenvoorraad zorgt ervoor dat u altijd de juiste hoeveelheid bij de hand hebt, waardoor de uitvaltijd die wordt veroorzaakt door het wachten op leveringen van leveranciers wordt verminderd.
          4. Kortere doorlooptijden: Een ander voordeel dat voortvloeit uit nauwkeurige vraagprognoses door middel van moderne magazijntechnologieën, is een kortere doorlooptijd bij levering, wat leidt tot een betere klanttevredenheid, aangezien klanten hun bestellingen sneller zullen ontvangen dan voorheen, waardoor de merkloyaliteit wordt verbeterd. Daarom creëert de toepassing van nieuwe strategieën die worden aangestuurd door AI/ML-tools waarde binnen supply chain-operaties, wat leidt tot meer efficiëntie, niet alleen beperkte reductiekosten, maar ook stroomlijning van processen met betrekking tot onder andere productieplanning en logistieke transportplanning

          Conclusie
          Door gebruik te maken van software voor voorraadoptimalisatie en vraagplanning kunnen organisaties verschillende uitdagingen overwinnen, zoals verstoringen in de toeleveringsketen, stijgende rentetarieven en volatiele vraag. Hierdoor kunnen ze de kosten verlagen die gepaard gaan met overtollige opslagruimte en verouderde inventarisitems. Door gebruik te maken van geavanceerde algoritmen, verbetert software voor voorraadoptimalisatie de nauwkeurigheid van prognoses, waardoor organisaties kunnen voorkomen dat ze te veel of te weinig voorraad hebben in hun voorraad reserveonderdelen. Bovendien helpt het de voorraadkosten te verlagen door niveaus te optimaliseren en technologieën zoals kunstmatige intelligentie (AI), machine learning (ML) en voorspellende analyses te gebruiken. Verbeterde serviceniveaus worden bereikt doordat organisaties de juiste hoeveelheid reserveonderdelen direct beschikbaar hebben, waardoor downtime als gevolg van het wachten op leveringen wordt verminderd. Bovendien leidt nauwkeurige vraagprognose tot kortere doorlooptijden, waardoor de klanttevredenheid toeneemt en merkloyaliteit wordt bevorderd. Het toepassen van dergelijke strategieën, aangestuurd door AI/ML-tools, verlaagt niet alleen de kosten, maar stroomlijnt ook processen, waaronder productieplanning en logistieke transportplanning, waardoor uiteindelijk de efficiëntiewinst binnen de toeleveringsketen toeneemt.

           

          Wit papier:

          Wat u moet weten over prognoses en planning van serviceonderdelen

           

          Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.