Een fundamenteel aspect van supply chain management is nauwkeurige vraagvoorspelling. Sommige productitems hebben een intermitterend vraagpatroon waardoor ze vrijwel onmogelijk te voorspellen zijn met traditionele, op smoothing gebaseerde prognosemethoden. We behandelen het probleem van het voorspellen van intermitterende vraag (of onregelmatige vraag), dwz willekeurige vraag met een groot deel nulwaarden. Dit patroon is kenmerkend voor de vraag naar bedrijven die grote voorraden service- en reserveonderdelen beheren in sectoren als de luchtvaart, ruimtevaart, automobielindustrie, hightech en elektronica, maar ook in MRO (Maintenance, Repair and Overhaul).
Nauwkeurige prognoses van de vraag zijn belangrijk bij voorraadbeheer, maar de intermitterende aard van de vraag maakt prognoses bijzonder moeilijk voor de planning van serviceonderdelen. Soortgelijke problemen doen zich voor wanneer een organisatie langzaam bewegende artikelen produceert en verkoopprognoses nodig heeft voor planningsdoeleinden. Omdat prognoses van intermitterende en klonterige vraag zo onbetrouwbaar zijn, voorspellen de meeste bedrijven voorraadbehoeften voornamelijk op basis van subjectieve bedrijfskennis, voorspellen ze slechts een fractie van hun grotere voorraadvolume, gebruiken ze eenvoudige "vuistregel"-schattingen of traditionele statistische prognoses die ten onrechte aannemen een bepaald type vraagdistributie voor voorraadbeheer.
In de onderstaande artikelen leest u best practices uit de sector over het verbeteren van intermitterende vraagprognoses en het creëren van efficiëntie in de toeleveringsketen.
De voorspelling is belangrijk, maar misschien niet zoals u denkt
Waar of niet waar: de prognose is niet van belang voor het voorraadbeheer van reserveonderdelen. Op het eerste gezicht lijkt deze verklaring duidelijk onjuist. Prognoses zijn immers cruciaal voor het plannen van de voorraadniveaus, toch? Het hangt ervan af wat je onder ‘voorspelling’ verstaat. Als u een ouderwetse prognose met één cijfer bedoelt (“de vraag naar artikel CX218b zal volgende week 3 eenheden bedragen en de week erna 6 eenheden”), dan nee. Als je de betekenis van voorspelling verruimt tot een kansverdeling die rekening houdt met onzekerheden in zowel vraag als aanbod, dan ja.
Waarom MRO-bedrijven zich zorgen moeten maken over overtollige voorraad
Geven MRO-bedrijven echt prioriteit aan het verminderen van de overtollige voorraad reserveonderdelen? Vanuit organisatorisch oogpunt blijkt uit onze ervaring dat dit niet noodzakelijk het geval is. Discussies in de bestuurskamer gaan doorgaans over het uitbreiden van wagenparken, het verwerven van nieuwe klanten, het voldoen aan Service Level Agreements (SLA's), het moderniseren van de infrastructuur en het maximaliseren van de uptime. In bedrijfstakken waar activa die worden ondersteund door reserveonderdelen honderden miljoenen kosten of aanzienlijke inkomsten genereren (bijvoorbeeld de mijnbouw of de olie- en gassector), doet de waarde van de voorraad nauwelijks de wenkbrauwen fronsen en hebben organisaties de neiging grote hoeveelheden buitensporige voorraden over het hoofd te zien.
Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen
In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren.
Bottom Line-strategieën voor de planning van reserveonderdelen
Het beheer van reserveonderdelen brengt tal van uitdagingen met zich mee, zoals onverwachte storingen, veranderende schema's en inconsistente vraagpatronen. Traditionele prognosemethoden en handmatige benaderingen zijn niet effectief in het omgaan met deze complexiteit. Om deze uitdagingen het hoofd te bieden, schetst deze blog de belangrijkste strategieën die prioriteit geven aan serviceniveaus, probabilistische methoden gebruiken om bestelpunten te berekenen, het voorraadbeleid regelmatig aanpassen en een speciaal planningsproces implementeren om overmatige voorraad te voorkomen. Verken deze strategieën om de inventaris van reserveonderdelen te optimaliseren en de operationele efficiëntie te verbeteren.
Bereid uw reserveonderdelenplanning voor op onverwachte schokken
In het onvoorspelbare zakenklimaat van vandaag moeten we ons zorgen maken over verstoringen in de toeleveringsketen, lange doorlooptijden, stijgende rentetarieven en een volatiele vraag. Met al deze uitdagingen is het voor organisaties nog nooit zo belangrijk geweest om het gebruik van onderdelen en voorraadniveaus nauwkeurig te voorspellen en het bevoorradingsbeleid, zoals bestelpunten, veiligheidsvoorraden en bestelhoeveelheden, te optimaliseren. In deze blog onderzoeken we hoe bedrijven gebruik kunnen maken van innovatieve oplossingen, zoals voorraadoptimalisatie en software voor het voorspellen van onderdelen die gebruikmaken van machine learning-algoritmen, probabilistische prognoses en analyses om voorop te blijven lopen en hun toeleveringsketens te beschermen tegen onverwachte schokken.
Waarom wisselcurves voor reserveonderdelen essentieel zijn voor onderdelenplanning
Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt.
Het probleem
Sommige productitems hebben een intermitterend vraagpatroon waardoor ze vrijwel onmogelijk te voorspellen zijn met traditionele, op smoothing gebaseerde prognosemethoden. Items met intermitterende vraag – ook wel bekend als klonterige, volatiele, variabele of onvoorspelbare vraag – hebben veel nul- of laagvolumewaarden afgewisseld met willekeurige pieken in de vraag die vaak vele malen groter zijn dan het gemiddelde. Dit probleem doet zich vooral voor bij bedrijven die grote voorraden service- en reserveonderdelen beheren in sectoren als de luchtvaart, ruimtevaart, automobielindustrie, hightech en elektronica, evenals in MRO (Maintenance, Repair and Overhaul).
Intermittent demand
In deze bedrijven kan maar liefst 80% van de onderdelen en productitems een intermittent of lumpy demand hebben. Intermittent demand maakt het moeilijk om de safety stock en de voorraadvereisten voor het serviceniveau nauwkeurig in te schatten die nodig zijn voor een succesvolle planning van de supply chain. Omdat de forecastsvan intermittent en lumpy demand zo onbetrouwbaar zijn, forecasten de meeste bedrijven de voorraadbehoeften op basis van subjectieve zakelijke kennis, forecasten ze slechts een fractie van hun hogere volumevoorraad, gebruiken ze eenvoudige "vuistregel"-schattingen of traditionele statistische forecasts die ten onrechte uitgaan van een bepaald type vraagverdeling voor voorraadbeheer. Het resultaat is dat er elk jaar miljarden dollars worden verspild vanwege ofwel te hoge voorraadkosten of slechte klantenservice vanwege stock-outs.
Intermittent demand - ook bekend als lumpy, volatile, variable or unpredictable demand.
De slimme oplossing
SmartForecasts en Smart Inventory Optimization gebruiken een unieke empirische en probabilistische forecasting benadering die resulteert in nauwkeurige forecasts van voorraadvereisten waar de vraag intermittent is. De oplossing werkt vooral goed wanneer de vraag niet overeenkomt met een eenvoudige normaalverdeling. Onze gepatenteerde, met APICS bekroonde "bootstrapping"-technologie genereert snel tienduizenden mogelijke scenario's van toekomstige vraagreeksen en cumulative demand values gedurende de lead time van een artikel. Deze scenario's zijn statistisch vergelijkbaar met de waargenomen gegevens van het item, en ze leggen de relevante details van intermitterende vraag vast zonder te vertrouwen op de veronderstellingen die gewoonlijk worden gemaakt over de aard van vraagverdelingen door traditionele forecasting methoden. Het resultaat is een zeer nauwkeurige voorspelling van de volledige verdeling van de cumulative demand values over de volledige lead time van een artikel. Met de informatie die deze vraagverdelingen bieden, kunt u eenvoudig de safety stock van uw bedrijf en de voorraadbehoeften op service level plannen voor duizenden met tussenpozen gevraagde artikelen met een nauwkeurigheid van bijna 100%.
De voordelen
Bedrijven die onze krachtige intermitterende demand en planning software gebruiken, verminderen doorgaans de permanente voorraad met 20% in het eerste jaar, verhogen de beschikbaarheid van onderdelen met 10-20% en verminderen de behoefte aan en de bijbehorende kosten van noodoverslag om gaten in hun supply chain te dichten. De voorraden van reparatie- en service parts zijn echt geoptimaliseerd, wat leidt tot efficiëntere operaties, verbeteringen in de klantenservice en aanzienlijk minder geld dat vastzit in de voorraad.
Wit papier: Smart Software Gen2
In deze whitepaper introduceren we ‘Gen2’, onze volgende generatie probabilistische modelleringstechnologie die het Smart IP&O Platform aandrijft. We vertellen over de evolutie van de voorspellingsmethoden van Smart Software en beschrijven hoe Gen2 de mogelijkheden die Gen1 zo nuttig hebben gemaakt voor zoveel bedrijven aanzienlijk uitbreidt. Ten slotte zullen we ook een overzicht op hoog niveau geven van de waarschijnlijkheidswiskunde achter Gen2. Vul dit formulier in en wij sturen u het document per e-mail.