Bud Schultz, CPA, Vice President of Finance voor NKK Switches, presenteerde de ervaring van zijn bedrijf met vraagplanning tijdens een recent webinar. Het volgende is een korte samenvatting van de belangrijkste punten van Bud; bekijk het volledige webinar door te klikken hier.
Vraag: Vertel ons over de zakelijke en vraagplanningsuitdagingen van NKK.
NKK Switches, gevestigd in Scottsdale, Arizona, is een toonaangevende fabrikant en leverancier van elektromechanische schakelaars. Het bedrijf omvat veel verschillende soorten schakelaars: schakelaars, drukknoppen, draaiknoppen en zelfs sommige programmeerbare soorten schakelaars. We staan bekend om onze hoge kwaliteit en om ons vermogen om te voldoen aan een uitzonderlijk breed scala aan klanteisen op een turnkey (custom configuratie) basis. NKK Switches produceert op maat gemaakte oplossingen van onderdelen die uitsluitend afkomstig zijn van productiefaciliteiten in Japan en China.
Er zijn letterlijk miljoenen mogelijke switchconfiguraties en we weten nooit welke geconfigureerde oplossingen onze klanten zullen bestellen. Dit maakt onze vraag zeer intermitterend en buitengewoon moeilijk te voorspellen. Sterker nog, tot voor kort beschouwden we onze vraag als onvoorspelbaar. We werkten op basis van build-to-order, wat betekende dat bestellingen van klanten pas konden worden uitgevoerd als hun onderdelen waren geproduceerd en vervolgens door NKK tot eindproducten waren verwerkt. Dit resulteerde in lange doorlooptijden, pijnlijk voor onze klanten en een competitieve uitdaging voor onze verkooporganisatie.
Vraag: Wat verwachtte u van een verbeterd product? eis voorspelling?
Toen we begonnen met het onderzoeken van de waarde van vraagvoorspellingssoftware (SmartForecasts van Smart Software), probeerden we de beslissing te bekijken vanuit het oogpunt van Return on Investment (ROI). We hebben wat kapitaalbudgettering gedaan, aannames gedaan over mogelijke verlagingen van voorraadniveaus, lagere voorraadkosten en andere potentiële besparingen. Hoewel de kapitaalbudgetten een positief investeringsrendement opleverden, konden we op basis van die informatie niet verder. We hadden geen vertrouwen in onze aannames en waren bang dat we de veiligheidsvoorraad en voorraadniveaus die de software zou suggereren niet zouden kunnen rechtvaardigen.
Wat we niet hadden verwacht, was een uitdaging van ons moederbedrijf. In het licht van de mogelijkheden van een nieuw geïmplementeerd ERP-systeem, zouden ze een nieuwe aanpak overwegen. Als we aantoonbaar betrouwbare vraagprognoses zouden kunnen maken, zouden ze overwegen om grondstoffen in te kopen en schakelcomponenten te produceren op basis van build-to-forecast in plaats van build-to-order. Dit opende de deur naar een veel diepere impact. We hebben de werkelijke cijfers gedurende een periode van twaalf maanden afgezet tegen de prognoses en ontdekten dat onze prognoses, met name in totaal, uitzonderlijk nauwkeurig waren: de werkelijke vraag lag binnen 3% van de prognose. Toen we eenmaal de geldigheid van onze prognoses konden bewijzen, konden we doorgaan met het plan van het moederbedrijf om producten te vervaardigen op basis van die prognoses.
V: Hoe hebben nauwkeurige prognoses van productlijnen met intermitterende vraaggegevens de activiteiten van NKK getransformeerd?
Van de vele verschillende combinaties die we op bestelling produceren, kunnen afzonderlijke onderdelen van schakelaars een zeer intermitterende vraag vertonen (lange periodes met nul bestellingen en dan schijnbaar willekeurige pieken), maar we kunnen meer consistente patronen in schakelaarreeksen identificeren. Alle onderdeelnummers in een bepaalde serie hebben gemeenschappelijke componenten en grondstoffen, zoals plastic behuizing, beugels en andere hardware, goud, zilver en LED's.
Door onze productiefaciliteiten te voorzien van betrouwbare prognoses, konden we ingrijpende veranderingen doorvoeren. Onze fabrieken zouden kunnen beginnen met het inkopen van grondstoffen die in totaal uiteindelijk zouden worden gebruikt bij de productie van verschillende onderdeelnummers binnen die serie, zelfs als de specifieke te produceren onderdeelnummers onbekend waren op het moment dat de prognoses werden gemaakt. En in veel gevallen was het, ondanks de onregelmatige vraaggeschiedenisgegevens, voor de leveranciers zelfs mogelijk om specifieke onderdeelnummers te produceren op basis van de prognose.
Zodra het programma volledig is geïmplementeerd, verwachten we dat onze doorlooptijden zullen worden teruggebracht tot de helft van de tijd of zelfs minder. Kortere doorlooptijden zullen resulteren in lagere bestelpunten, resulterend in hogere serviceniveaus terwijl we onze voorraadvereisten verminderen.
Bud Schultz leidt alle financiële en boekhoudkundige functies bij NKK. Zijn achtergrond als Certified Public Accountant, advocaat, ingenieur en piloot voor de Amerikaanse luchtmacht biedt een uniek perspectief op financiën voor technische en productieactiviteiten.
gerelateerde berichten
Het beheren van de voorraad reserveonderdelen: beste praktijken
In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs.
Innovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten.
Toekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert.