De slimme voorspeller

  Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Nee, niet dat soort regimewisseling: niets over kruisraketten en stealth-bommenwerpers. En nee, we hebben het niet over het andere soort regimeverandering dat dichter bij huis komt: het door elkaar schuiven van de C-Suite bij uw bedrijf.

"Regimeverandering" heeft een derde betekenis die relevant is voor uw beroep als vraagplanner of voorraadbeheerder. Voor onderzoekers in economie en financiën betekent regimeverandering plotselinge verschuivingen in het karakter van een tijdreeks van willekeurige waarnemingen. De willekeurige tijdreeks in kwestie is hier de volgorde van dagelijkse (of wekelijkse of maandelijkse) vraagtellingen voor uw producten en voorraaditems.

De meeste prognosesoftware gebruikt statistische algoritmen om de historische vraag te verwerken. Het kan extra stappen toevoegen, zoals het opnemen van veldinformatie van verkopers, maar alles begint met de vraaggeschiedenis van welk item u ook moet beheren.

De vraag die opkomt bij regime change is: welke gegevens gebruikt u? Het simpele antwoord is "Alles", want dat leidt tot de meest nauwkeurige voorspellingen - maar alleen als uw datawereld stabiel is. Als uw datawereld turbulent is, betekent het gebruik van alle data dat u prognoses baseert op vervlogen omstandigheden. Op zijn beurt, het invoeren van verouderde gegevens in uw voorspellende algoritmen leidt onvermijdelijk tot verminderde prognosenauwkeurigheid.

Merk op dat omgaan met regimeverandering niet hetzelfde is als omgaan met uitschieters. Uitschieters zijn meestal eenmalige uitzonderingen die worden veroorzaakt door voorbijgaande gebeurtenissen, zoals een knik in uw toeleveringsketen veroorzaakt door een enorme sneeuwstorm die alle doorvoerpaden verstikt. Regime change houdt daarentegen aan over een langere periode en kan daarom meer schade toebrengen aan uw prognoses. Hier is een analogie: uitschieters gaan over het weer en regimeverandering gaat over het klimaat.

De meest ingrijpende vormen van regimeverandering zijn existentieel. Figuur 1 toont een voorbeeld van een existentiële verandering: er was lange tijd helemaal geen vraag, toen was er opeens vraag. Als u geen vraag naar een artikel had omdat het niet bestond, maar u behoudt nul vraagwaarden in uw database, en vervolgens gaat het artikel live en heeft u verkopen, dan is de overgang van niets naar iets een extreme verandering van regime. Het opnemen van al die nulvraagwaarden van vóór "Dag één" zal de statistische prognoses zeker naar beneden vertekenen waar ze zouden moeten zijn. Hetzelfde gebeurt als u een product doodt maar geen vraag blijft registreren: het opnemen van al die recente nullen verslechtert uw vraagprognoses.

In principe zou een zorgvuldige administratie deze problemen moeten elimineren. U dient alleen zinvolle nulwaarden op te nemen. Als je een nieuw item hebt, begin dan met opnemen wanneer het live gaat. Als je geen vraag meer hebt naar een item en er ook geen verwacht, verwijder het dan uit je database, of voorspel in ieder geval nul vraag.

Helaas is er een verschil tussen principe en praktijk. We zien veel gevallen waarin de gegevensrecords voor zowel nieuwe als slapende items niet correct worden bijgehouden, met "nepnullen" verward met "echte nullen". Dit probleem is niet noodzakelijkerwijs het gevolg van incompetentie: meestal is het een bijproduct van de omvang van het probleem, waarbij te weinig mensen proberen om te veel items bij te houden.

Deze existentiële regimeveranderingen zijn relatief gemakkelijk te hanteren in vergelijking met meer subtiele vormen, die meer items lijken te treffen. Figuur 2 toont twee voorbeelden van regimeveranderingen in een patroon van lopende verkopen. Er zijn een aantal factoren die de vraag naar een artikel kunnen veranderen: prestaties van het verkooppersoneel, marketing- en reclame-inspanningen, acties van concurrenten en leveranciers, nieuwe klanten die ontstaan of oude klanten die verdwijnen, enz. Als de vraag naar een artikel gestaag doorgaat 1 eenheid per dag maar ineens verdubbelt (of vice versa), dat is een verandering van regime. In de nieuwe wereldorde is de vraag 2 eenheden/dag en de prognoses zouden dat moeten weerspiegelen. In plaats daarvan zullen algoritmen voor statistische prognoses te weinig vraag voorspellen als ze alle gegevens krijgen, ook die van vóór de regimewisseling.

Hoe bescherm je jezelf tegen regimeverandering? Het antwoord is hetzelfde voor de wreedste dictator of de meest onschuldige eisenplanner: Intelligentie. En omdat er veel bedreigingen zijn, kan de intelligentie het beste worden geautomatiseerd. Moderne softwaresystemen hebben de mogelijkheid om tienduizenden items te screenen op tekenen van regimeverandering. Vervolgens kan de software uw aandacht vestigen op de problematische items en u vragen aan te geven welke recente gegevens u in berekeningen wilt gebruiken. Of de software kan automatisch detecteren en corrigeren voor verandering van regime, snel werkend op een schaal die elke drukbezette persoon die "met de hand" werkt gemakkelijk zou verslaan.

 

Laat een reactie achter

gerelateerde berichten

Managing Spare Parts Inventory: Best Practices

Het beheren van de voorraad reserveonderdelen: beste praktijken

In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs.

12 Causes of Overstocking and Practical Solutions

12 Oorzaken van Overstocking en Praktische Oplossingen

Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen.

FAQ: Mastering Smart IP&O for Better Inventory Management.

FAQ: Slimme IP&O voor beter voorraadbeheer.

Effective supply chain and inventory management are essential for achieving operational efficiency and customer satisfaction. This blog provides clear and concise answers to some basic and other common questions from our Smart IP&O customers, offering practical insights to overcome typical challenges and enhance your inventory management practices. Focusing on these key areas, we help you transform complex inventory issues into strategic, manageable actions that reduce costs and improve overall performance with Smart IP&O.

recente berichten

  • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 Ways to Improve Supply Chain Decision Speed5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Two employees checking inventory in temporary storage in a distribution warehouse.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ Mastering Smart IP&O for Better Inventory ManagementFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 Key Demand Planning Trends Shaping the Future7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Managing Spare Parts Inventory: Best PracticesHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centering Act Spare Parts Timing Pricing and ReliabilityCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]