Breid Epicor BisTrack uit met Smart IP&O's dynamische planning en voorspelling van herbestellingspunten

In dit artikel zullen we de functionaliteit voor 'voorgestelde bestellingen' in Epicor BisTrack bekijken, de beperkingen ervan uitleggen en samenvatten hoe Smart Inventory Planning & Optimization (Smart IP&O) kan helpen de voorraad te verminderen en voorraadtekorten te minimaliseren door de afwegingen tussen voorraadrisico's nauwkeurig te beoordelen. en voorraadkosten.

Automatisering van bevoorrading in Epicor BisTrack
Epicor BisTrack's “Suggested Ordering” kan de aanvulling beheren door voor te stellen wat te bestellen en wanneer, via op punten gebaseerd beleid voor herbestelling, zoals min-max en/of handmatig gespecificeerde leveringsweken. BisTrack bevat een aantal basisfunctionaliteiten om deze parameters te berekenen op basis van gemiddeld gebruik of omzet, doorlooptijd van leveranciers en/of door de gebruiker gedefinieerde seizoensaanpassingen. Als alternatief kunnen nabestelpunten volledig handmatig worden opgegeven. BisTrack presenteert de gebruiker vervolgens een lijst met voorgestelde bestellingen door inkomend aanbod, huidige voorraad, uitgaande vraag en voorraadbeleid op elkaar af te stemmen.

Hoe Epicor BisTrack “Aanbevolen bestelling” werkt
Om een lijst met voorgestelde bestellingen te krijgen, specificeren gebruikers de methoden achter de suggesties, inclusief locaties waarvoor ze bestellingen moeten plaatsen en hoe ze het voorraadbeleid kunnen bepalen dat bepaalt wanneer een suggestie wordt gedaan en in welke hoeveelheid.

Extend Epicor BisTrack Planning and Forecasting

Eerst wordt het veld “methode” gespecificeerd uit de volgende opties om te bepalen welk soort suggestie wordt gegenereerd en voor welke locatie(s):

Aankoop – Aanbevelingen voor inkooporders genereren.

  1. Gecentraliseerd voor alle vestigingen – Genereert suggesties voor één locatie die inkopen doet voor alle andere locaties.
  2. Per individueel filiaal – Genereert suggesties voor meerdere locaties (leveranciers verzenden rechtstreeks naar elk filiaal).
  3. Per bronvertakking – Genereert suggesties voor een bronvertakking die materiaal zal overbrengen naar vertakkingen die deze bedient (“hub en sprak”).
  4. Individuele vestigingen met overdrachten – Genereert suggesties voor een individuele vestiging die materiaal zal overdragen naar vestigingen die zij bedient (“hub and spoke”, waarbij de “hub” geen bronfiliaal hoeft te zijn).

Vervaardiging – Genereer werkordersuggesties voor gefabriceerde goederen.

  1. Per productietak.
  2. Per individuele vestiging.

Overdracht van brontak – Genereer overdrachtssuggesties van een bepaalde vestiging naar andere vestigingen.

Extend Epicor BisTrack Planning and Forecasting 2222

Vervolgens wordt de “bestelling voorstellen aan” gespecificeerd uit de volgende opties:

  1. Minimum – Stelt bestellingen voor “tot” de minimale beschikbare hoeveelheid (“min”). Voor elk artikel waarvan de voorraad minder is dan de minimumhoeveelheid, zal BisTrack een bestelsuggestie voorstellen om aan te vullen tot dit aantal.
  2. Maximaal wanneer minder dan min – Stelt bestellingen voor “tot” een maximale voorhanden hoeveelheid wanneer de minimale voorhanden hoeveelheid wordt overschreden (bijvoorbeeld een min-max voorraadbeleid).
  1. Gebaseerd op dekking (gebruik) – Stelt bestellingen voor op basis van dekking voor een door de gebruiker gedefinieerd aantal leveringsweken met betrekking tot een opgegeven doorlooptijd. Intern gegeven gebruik Afhankelijk van de vraag zal BisTrack bestellingen aanbevelen waarbij het aanbod kleiner is dan de gewenste dekking om het verschil te dekken.
  1. Gebaseerd op meer dan (verkoop) – Stelt bestellingen voor op basis van dekking voor een door de gebruiker gedefinieerd aantal leveringsweken met betrekking tot een opgegeven doorlooptijd. Gegeven verkooporders Afhankelijk van de vraag zal BisTrack bestellingen aanbevelen waarbij het aanbod kleiner is dan de gewenste dekking om het verschil te dekken.
  1. Alleen maximum – Stelt bestellingen voor “tot” een maximale voorhanden hoeveelheid waarbij het aanbod minder is dan dit maximum.

Ten slotte kunnen gebruikers, als BisTrack de drempels voor herbestellingen kan bepalen, aanvullende voorraaddekking specificeren als buffervoorraad, doorlooptijden, hoeveel maanden historische vraag er rekening mee moet houden, en kunnen ze ook handmatig periode-voor-periode wegingsschema's definiëren om de seizoensinvloeden te benaderen. De gebruiker krijgt een lijst met voorgestelde bestellingen op basis van de gedefinieerde criteria. Een inkoper kan vervolgens met één klik op de knop inkooporders voor leveranciers genereren.

Extend Epicor BisTrack Planning and Forecasting

Beperkingen

Vuistregelmethoden

Hoewel BisTrack organisaties in staat stelt automatisch bestelpunten te genereren, zijn deze methoden gebaseerd op eenvoudige gemiddelden die geen rekening houden met seizoensinvloeden, trends of de volatiliteit in de vraag naar een artikel. Gemiddelden zullen altijd achterblijven bij deze patronen en zijn niet in staat trends te volgen. Overweeg een zeer seizoensgebonden product zoals een sneeuwschep. Als we een gemiddelde nemen van de vraag in de zomer/herfst wanneer we het winterseizoen naderen, in plaats van vooruit te kijken, dan zullen de aanbevelingen gebaseerd zijn op de langzamere periodes in plaats van te anticiperen op de komende vraag. Zelfs als we de geschiedenis van een heel jaar of langer in ogenschouw nemen, zullen de aanbevelingen zonder handmatige tussenkomst overcompenseren tijdens de langzamere maanden en het drukke seizoen onderschatten.

Vuistregelmethoden falen ook als ze worden gebruikt als buffer tegen de variabiliteit van vraag en aanbod. De gemiddelde vraag gedurende de doorlooptijd kan bijvoorbeeld 20 eenheden bedragen. Een planner wil echter vaak meer dan 20 eenheden op voorraad hebben om te voorkomen dat de voorraad uitvalt als de doorlooptijden langer zijn dan verwacht of de vraag hoger is dan gemiddeld. Met BisTrack kunnen gebruikers de bestelpunten specificeren op basis van veelvouden van de gemiddelden. Omdat de veelvouden echter geen rekening houden met de mate van voorspelbaarheid en variabiliteit in de vraag, zult u altijd voorspelbare artikelen overbevoorraden en onvoorspelbare artikelen te weinig hebben. Lees dit artikel voor meer informatie over waarom veelvouden van het gemiddelde falen als het gaat om het ontwikkelen van het juiste bestelpunt.

Handmatige invoer
Over de eerder genoemde seizoensinvloeden gesproken: BisTrack biedt de gebruiker de mogelijkheid om deze te benaderen door het gebruik van handmatig ingevoerde “gewichten” voor elke periode. Dit dwingt de gebruiker om voor elk item te beslissen hoe dat seizoenspatroon eruit ziet. Zelfs daarbuiten moet de gebruiker dicteren hoeveel extra weken aan voorraad hij moet meenemen om voorraadtekorten tegen te gaan. en moet specificeren rond welke doorlooptijd moet worden gepland. Is 2 weken extra aanvoer voldoende? Is 3 genoeg? Of is dat teveel? Er is geen manier om dit te weten zonder te raden, en wat logisch is voor één item is misschien niet de juiste aanpak voor alle items.

Intermittent Demand
Veel BisTrack-klanten kunnen bepaalde items als “onvoorspelbaar” beschouwen vanwege de periodieke of ‘klonterige’ aard van hun vraag. Met andere woorden, artikelen die worden gekenmerkt door een sporadische vraag, grote pieken in de vraag en periodes van weinig of helemaal geen vraag. Traditionele methoden – en vooral de vuistregels – zullen niet werken voor dit soort items. Twee extra weken aanvoer voor een zeer voorspelbaar, stabiel artikel kunnen bijvoorbeeld veel te veel zijn; voor een artikel met een zeer volatiele vraag is dezelfde regel mogelijk niet voldoende. Zonder een betrouwbare manier om deze volatiliteit voor elk item objectief te beoordelen, blijven kopers gissen wanneer ze moeten kopen en hoeveel.

Terugkeren naar spreadsheets
De realiteit is dat de meeste BisTrack-gebruikers de neiging hebben om het grootste deel van hun planning offline, in Excel, te doen. Spreadsheets zijn niet speciaal ontworpen voor prognoses en voorraadoptimalisatie. Gebruikers zullen vaak door de gebruiker gedefinieerd bakken vuistregel methoden die vaak meer kwaad dan goed doen. Eenmaal berekend, moeten gebruikers de informatie handmatig opnieuw in BisTrack invoeren. Het tijdrovende karakter van het proces brengt bedrijven ertoe zelden hun voorraadbeleid berekenen - Er gaan vele maanden en soms jaren voorbij tussen de massa-updates, wat leidt tot een reactieve aanpak van ‘instellen en vergeten’, waarbij de enige keer dat een koper/planner het voorraadbeleid beoordeelt, is op het moment van de bestelling. Wanneer beleid wordt herzien nadat het orderpunt al is geschonden, is het te laat. Wanneer het bestelpunt te hoog wordt geacht, is handmatige ondervraging vereist om de geschiedenis te bekijken, voorspellingen te berekenen, bufferposities te beoordelen en opnieuw te kalibreren. Het enorme volume aan bestellingen betekent dat kopers bestellingen gewoon vrijgeven in plaats van de tijd te nemen om alles te beoordelen, wat leidt tot een aanzienlijke overtollige voorraad. Als het bestelpunt te laag is, is het al te laat. Er kan nu een spoedactie nodig zijn, waardoor de kosten omhoog gaan, ervan uitgaande dat de klant niet zomaar ergens anders heen gaat.

Epicor is slimmer
Epicor werkt samen met Smart Software en biedt Smart IP&O aan als een platformonafhankelijke add-on voor zijn ERP-oplossingen, waaronder BisTrack, een gespecialiseerde ERP voor de hout-, hardware- en bouwmaterialenindustrie. De Smart IP&O-oplossing wordt compleet geleverd met een bidirectionele integratie met BisTrack. Hierdoor kunnen klanten van Epicor gebruik maken van speciaal voor dit doel gebouwde, beste voorraadoptimalisatietoepassingen. Met Epicor Smart IP&O kunt u prognoses genereren die trends en seizoensinvloeden vastleggen zonder handmatige configuraties. U kunt het voorraadbeleid automatisch opnieuw kalibreren met behulp van in de praktijk bewezen, geavanceerde statistische en probabilistische modellen die zijn ontworpen om nauwkeurig te plannen Intermittent demand. Veiligheidsvoorraden houden nauwkeurig rekening met variabiliteit in vraag en aanbod, zakelijke omstandigheden en prioriteiten. U kunt profiteren service level gestuurde planning zodat je net genoeg voorraad hebt of gebruik maken van optimalisatie methodes die het meest winstgevende voorraadbeleid en serviceniveaus voorschrijven, waarbij rekening wordt gehouden met de werkelijke kosten van het aanhouden van voorraad. U kunt grondstoffenaankopen ondersteunen met nauwkeurige vraagvoorspellingen over langere horizonten, en 'wat-als'-scenario's uitvoeren om alternatieve strategieën te beoordelen voordat het plan wordt uitgevoerd.

Slimme IP&O-klanten realiseren routinematig een jaarlijks rendement van zeven cijfers door verminderde snelheid, hogere verkopen en minder overtollige voorraden, terwijl ze tegelijkertijd een concurrentievoordeel verwerven door zich te onderscheiden door verbeterde klantenservice. Om een opgenomen webinar te zien, gehost door de Epicor Users Group, waarin het Demand Planning en Inventory Optimization-platform van Smart wordt geprofileerd, registreer u dan hier.

 

 

 

 

Maak gebruik van ERP-planningstuklijsten met slimme IP&O om het onvoorspelbare te voorspellen

In een zeer configureerbare productieomgeving kan het voorspellen van eindproducten een complexe en lastige taak worden. Het aantal mogelijke eindproducten zal enorm stijgen als veel componenten uitwisselbaar zijn. Een traditionele MRP zou ons dwingen om elk afzonderlijk eindproduct te voorspellen, wat onrealistisch of zelfs onmogelijk kan zijn. Verschillende toonaangevende ERP-oplossingen introduceren het concept van de “Planning BOM”, waarmee prognoses op een hoger niveau in het productieproces kunnen worden gebruikt. In dit artikel bespreken we deze functionaliteit in ERP, en hoe u hiervan kunt profiteren met Smart Inventory Planning en Optimization (Smart IP&O) om in het licht van deze complexiteit uw vraag voor te blijven.

Waarom heb ik een planningsstuklijst nodig?

Traditioneel zou elk eindproduct of elke SKU een strak gedefinieerde stuklijst hebben. Als we dat product op voorraad hebben en rond de voorspelde vraag willen plannen, voorspellen we de vraag naar die producten en voeren we vervolgens MRP in om deze voorspelde vraag via de stuklijst van het niveau van het eindproduct naar de componenten te blazen.

Veel bedrijven bieden echter zeer configureerbare producten aan waarbij klanten opties kunnen selecteren voor het product dat ze kopen. Denk bijvoorbeeld eens aan de laatste keer dat u een personal computer kocht. U koos een merk en model, maar van daaruit kreeg u waarschijnlijk opties te zien: welke CPU-snelheid wilt u? Hoeveel RAM wil je? Wat voor harde schijf en hoeveel ruimte? Als dat bedrijf deze computers binnen een redelijke termijn klaar en beschikbaar wil hebben om naar u te verzenden, anticiperen ze plotseling niet langer alleen maar op de vraag naar dat model; ze moeten dat model voorspellen voor elk type CPU, voor alle hoeveelheden RAM, voor alle soorten harde schijven, en ook alle mogelijke combinaties daarvan! Voor sommige fabrikanten kunnen deze configuraties honderden of duizenden mogelijke voltooide goede permutaties opleveren.

Planning BOM emphasizing the large numbers of permutations Laptops Factory Components

Er kunnen zoveel aanpassingen mogelijk zijn dat de vraag op het niveau van het eindproduct in traditionele zin volkomen onvoorspelbaar is. Duizenden van deze computers kunnen elk jaar worden verkocht, maar voor elke mogelijke configuratie kan de vraag extreem laag en sporadisch zijn – misschien worden bepaalde combinaties één keer verkocht en nooit meer.

Dit dwingt deze bedrijven vaak om bestelpunten en veiligheidsvoorraadniveaus vooral op componentniveau te plannen, terwijl ze grotendeels reageren op de sterke vraag op het niveau van eindproducten via MRP. Hoewel dit een geldige aanpak is, ontbreekt het aan een systematische manier om voorspellingen te doen die rekening kunnen houden met verwachte toekomstige activiteiten, zoals promoties, aanstaande projecten of verkoopkansen. Voorspellen op het 'geconfigureerde' niveau is feitelijk onmogelijk, en het is ook niet haalbaar om deze prognoseaannames op componentniveau te verweven.

 

Planning BOM uitgelegd

Dit is waar Planning BOM's van pas komen. Misschien werkt het verkoopteam aan een grote b2b-opportuniteit voor dat model, of is er een geplande promotie voor Cyber Monday. Hoewel het niet realistisch is om met deze aannames voor elke mogelijke configuratie te werken, is het op modelniveau wel heel goed te doen – en enorm waardevol.

De Planningstuklijst kan een prognose op een hoger niveau gebruiken en vervolgens de vraag naar beneden blazen op basis van vooraf gedefinieerde verhoudingen mogelijk componenten. De computerfabrikant weet bijvoorbeeld misschien dat de meeste mensen kiezen voor 16 GB RAM, en veel minder mensen kiezen voor de upgrades naar 32 of 64. Met de planningsstuklijst kan de organisatie (bijvoorbeeld) 60% van de vraag terugblazen naar de 16 GB-optie , 30% naar de 32GB-optie en 10% naar de 64GB-optie. Ze zouden hetzelfde kunnen doen voor CPU's, harde schijven of andere beschikbare aanpassingen.  

Planning BOM Explained with computer random access memory ram close hd

 

Het bedrijf kan zijn prognose nu op dit modelniveau richten, waarbij de planningsstuklijst de componentenmix moet uitzoeken. Het is duidelijk dat het definiëren van deze verhoudingen enige denkkracht vereist, maar het plannen van stuklijsten stelt bedrijven in staat te voorspellen wat anders onvoorspelbaar zou zijn.

 

Het belang van een goede voorspelling

Natuurlijk nog steeds hebben een goede prognose nodig om in een ERP-systeem te laden. Zoals hierin uitgelegd artikelHoewel ERP een prognose kan importeren, kan het er vaak geen genereren en als dat wel het geval is, zijn er vaak veel moeilijk te gebruiken configuraties nodig die niet vaak opnieuw worden bekeken, wat resulteert in onnauwkeurige prognoses. Het is daarom aan het bedrijf om met eigen prognoses te komen, vaak handmatig geproduceerd in Excel. Handmatige prognoses brengen over het algemeen een aantal uitdagingen met zich mee, waaronder maar niet beperkt tot:

  • Het onvermogen om vraagpatronen zoals seizoensinvloeden of trends te identificeren
  • Overmatig vertrouwen op klant- of verkoopprognoses
  • Gebrek aan nauwkeurigheid of prestatieregistratie

Hoe goed de MRP ook is geconfigureerd met uw zorgvuldig overwogen planningsstuklijsten, een slechte prognose betekent een slechte MRP-output en wantrouwen in het systeem: garbage in, garbage out. Als we verdergaan met het voorbeeld van het ‘computerbedrijf’, zonder een systematische manier om belangrijke vraagpatronen en/of domeinkennis in de prognose vast te leggen, kan MRP dit nooit zien.

 

Breid ERP uit met Smart IP&O

Smart IP&O is ontworpen om uw ERP-systeem uit te breiden met een aantal geïntegreerde oplossingen voor vraagplanning en voorraadoptimalisatie. Het kan bijvoorbeeld automatisch statistische prognoses genereren voor grote aantallen artikelen, maakt intuïtieve prognoseaanpassingen mogelijk, houdt de nauwkeurigheid van prognoses bij en stelt u uiteindelijk in staat echte op consensus gebaseerde prognoses te genereren om beter te kunnen anticiperen op de behoeften van uw klanten.

Dankzij de zeer flexibele producthiërarchieën is Smart IP&O perfect geschikt voor prognoses op het niveau van de Planning BOM, zodat u belangrijke patronen kunt vastleggen en bedrijfskennis kunt integreren op de niveaus die er het meest toe doen. Bovendien kunt u op elk niveau van uw stuklijst optimale veiligheidsvoorraden analyseren en inzetten.

 

 

Breid Epicor Prophet 21 uit met Smart IP&O's Forecasting & Dynamic Reorder Point Planning

In dit artikel zullen we de functionaliteit voor het bestellen van voorraad in Epicor P21 bekijken, de beperkingen ervan uitleggen en samenvatten hoe Smart Inventory Planning & Optimization (Smart IP&O) kan helpen de voorraad te verminderen, voorraadtekorten te minimaliseren en het vertrouwen van uw organisatie in uw ERP te herstellen door robuuste voorspellende analyses, op consensus gebaseerde prognoses en wat-als-scenarioplanning.

Functies voor aanvullingsplanning binnen Epicor Prophet 21
Epicor P21 kan de aanvulling beheren door te suggereren wat te bestellen en wanneer via op bestelpunten gebaseerd of op prognoses gebaseerd voorraadbeleid. Gebruikers kunnen dit beleid extern berekenen of dynamisch binnen P21 genereren. Zodra het beleid en de prognoses zijn gespecificeerd, zal P21's Purchase Order Requirements Generator (PORG) geautomatiseerde ordersuggesties maken over wat er moet worden aangevuld en wanneer door inkomende levering, actuele voorraad, uitgaande vraag, voorraadbeleid en vraagprognoses op elkaar af te stemmen.

Epicor P21 heeft 4 aanvullingsmethoden
In het artikelonderhoudsscherm van Epicor P21 kunnen gebruikers kiezen uit een van de vier aanvullingsmethoden voor elk voorraadartikel.

  1. min/max
  2. Bestelpunt/Bestelhoeveelheid
  3. EOQ
  4. Tot

Er zijn aanvullende instellingen en configuraties voor het bepalen van doorlooptijden en het afrekenen van ordermodifiers zoals door de leverancier opgelegde minimale en maximale bestelhoeveelheden. Min/Max en Bestelpunt/Bestelhoeveelheid worden beschouwd als "statisch" beleid. EOQ en Up To worden beschouwd als "dynamisch" beleid en worden berekend binnen P21.

min/max
Het bestelpunt is gelijk aan het Min. Telkens wanneer de voorhanden voorraad onder de Min (bestelpunt) zakt, zal het PORG-rapport een bestelsuggestie creëren tot aan de Max (als de voorraad na de overtreding bijvoorbeeld 20 eenheden is en de Max 100, dan is de bestelhoeveelheid 80) . Min/Max wordt beschouwd als een statisch beleid en eenmaal ingevoerd in P21 blijft het onveranderd tenzij het door de gebruiker wordt overschreven. Gebruikers gebruiken vaak spreadsheets om de min/max-waarden te berekenen en deze van tijd tot tijd bij te werken.

Bestelpunt/Bestelhoeveelheid
Dit is hetzelfde als het Min/Max-beleid, behalve dat in plaats van tot de Max te bestellen, een bestelling wordt voorgesteld voor een vaste hoeveelheid die door de gebruiker is gedefinieerd (bestel bijvoorbeeld altijd 100 eenheden wanneer het bestelpunt wordt overschreden). OP/OQ wordt beschouwd als een statisch beleid en blijft ongewijzigd, tenzij het door de gebruiker wordt overschreven. Gebruikers gebruiken vaak spreadsheets om OP/OQ-waarden te berekenen en deze van tijd tot tijd bij te werken.

EOQ
Het EOQ-beleid is een methode op basis van bestelpunten. Het bestelpunt wordt dynamisch gegenereerd op basis van P21's prognose van vraag over doorlooptijd + vraag over de beoordelingsperiode + veiligheidsvoorraad. De bestelhoeveelheid is gebaseerd op een berekening van de economische bestelhoeveelheid die rekening houdt met bewaarkosten en bestelkosten en probeert een bestelgrootte aan te bevelen die de totale kosten minimaliseert. Wanneer de voorhanden voorraad het bestelpunt overschrijdt, zal het PORG-rapport een bestelling uitzetten die gelijk is aan de berekende EOQ.

Tot
De Up To-methode is een ander dynamisch beleid dat afhankelijk is van een bestelpunt. Het wordt op dezelfde manier berekend als de EOQ-methode met behulp van de voorspelde vraag van P21 over de doorlooptijd + vraag over beoordelingsperiode + veiligheidsvoorraad. De suggestie voor de bestelhoeveelheid is gebaseerd op alles wat nodig is om de voorraad weer aan te vullen "tot" het bestelpunt. Dit komt meestal overeen met een bestelhoeveelheid die consistent is met de doorlooptijdvraag, omdat naarmate de vraag de voorraad onder het bestelpunt drijft, bestellingen worden voorgesteld "tot" het bestelpunt.

Epicor Prophet 21 with Forecasting Inventory Planning P21

Het itemonderhoudsscherm van P21, waar gebruikers het gewenste voorraadbeleid kunnen specificeren en andere instellingen kunnen configureren, zoals veiligheidsvoorraad en bestelmodificaties.

Beperkingen

Voorspellingsmethoden
Er zijn twee prognosemodi in P21: Basis en Geavanceerd. Elk gebruikt een reeks middelingsmethoden en vereist handmatige configuraties en door de gebruiker bepaalde classificatieregels om een vraagprognose te genereren. Geen van beide modi is ontworpen met een out-of-the-box expertsysteem dat automatisch prognoses genereert die rekening houden met onderliggende patronen zoals trend of seizoensinvloeden. Er is veel configuratie vereist die de acceptatie door de gebruiker en wijziging van de veronderstelde prognoseregels die in de initiële implementatie zijn gedefinieerd en die mogelijk niet langer relevant zijn, belemmert. Er is geen manier om de prognosenauwkeurigheid van verschillende configuraties eenvoudig te vergelijken. Is het bijvoorbeeld beter om 24 maanden geschiedenis te gebruiken of 18 maanden? Is het nauwkeuriger om aan te nemen dat een trend moet worden toegepast wanneer een item met 2% per maand groeit of moet het 10% zijn? Is het beter om aan te nemen dat het artikel seizoensgebonden is als 80% of meer van zijn vraag plaatsvindt in 6 maanden van het jaar of 4 maanden van het jaar? Dientengevolge is het gebruikelijk dat classificatieregels te breed of specifiek zijn, wat leidt tot problemen zoals het toepassen van een onjuist prognosemodel, het gebruik van te veel of te weinig geschiedenis, of het over-/onderschatten van de trend en seizoensinvloeden. Bekijk deze blogpost (binnenkort beschikbaar) voor meer informatie over hoe dit werkt

Voorspellingsbeheer en consensusplanning
P21 mist prognosebeheerfuncties waarmee organisaties op meerdere hiërarchische niveaus kunnen plannen, zoals productfamilie, regio of per klant. Prognoses moeten worden gemaakt op het laagste niveau van granulariteit (product per locatie), waar de vraag vaak te wisselvallig is om een goede prognose te krijgen. Er is geen manier om prognoses te delen, samen te werken, te beoordelen of prognoses op geaggregeerd niveau te maken en overeenstemming te bereiken over het consensusplan. Het is moeilijk om zakelijke kennis op te nemen, prognoses op hogere aggregatieniveaus te beoordelen en bij te houden of overschrijvingen de nauwkeurigheid van prognoses verbeteren of schaden. Dit maakt prognoses te eendimensionaal en afhankelijk van de initiële wiskundige configuraties.  

Intermittent Demand
Veel P21-klanten vertrouwen op statische methoden (Min/Max en OP/OQ) vanwege de prevalentie van intermitterende vraag. Ook wel bekend als "klonterig", wordt de intermitterende vraag gekenmerkt door sporadische verkopen, grote pieken in de vraag en veel perioden zonder vraag. Wanneer de vraag intermitterend is, werken traditionele methoden voor prognoses en veiligheidsvoorraden gewoon niet. Omdat distributeurs niet de luxe hebben om alleen snel bewegende producten met een consistente vraag op voorraad te hebben, hebben ze gespecialiseerde oplossingen nodig die zijn ontworpen om periodiek gevraagde artikelen effectief te plannen. 80% of meer van de onderdelen van een distributeur zullen een intermitterende vraag hebben. Het voorraadbeleid dat wordt gegenereerd met behulp van traditionele methoden, zoals die beschikbaar zijn in P21 en andere planningsapplicaties, zal resulteren in onjuiste schattingen van wat er moet worden opgeslagen om het beoogde serviceniveau te bereiken. Zoals geïllustreerd in de onderstaande grafiek, is het niet mogelijk om de pieken consistent te voorspellen. U zit vast aan een prognose die in feite een gemiddelde is van de voorgaande perioden.

Epicor Prophet 21 with Forecasting Inventory Management

Prognoses van intermitterende vraag kunnen de pieken niet voorspellen en vereisen veiligheidsvoorraadbuffers om te beschermen tegen stockouts.

 

Ten tweede kunt u met de veiligheidsvoorraadmethoden van P21 een doelserviceniveau instellen, maar de onderliggende logica gaat er ten onrechte van uit dat de vraag normaal verdeeld. Bij intermitterende vraag is de vraag niet “normaal” en daarom zal de schatting van de veiligheidsvoorraad verkeerd zijn. Dit is wat verkeerd betekent: bij het instellen van een serviceniveau van bijvoorbeeld 98%, is de verwachting dat 98% van de tijd dat de beschikbare voorraad 100% zal vullen met wat de klant nodig heeft uit het schap. Het gebruik van een normale verdeling om veiligheidsvoorraden te berekenen, zal resulteren in grote afwijkingen tussen het beoogde serviceniveau en het werkelijk bereikte serviceniveau. Het is niet ongebruikelijk om situaties te zien waarin het daadwerkelijke serviceniveau het doel met 10% of meer mist (dwz 95% beoogd maar slechts 85% behaalde).

 

Epicor Prophet 21 with Forecasting Inventory Analytics

In deze afbeelding ziet u de vraaggeschiedenis van een onderdeel met tussenpozen en twee distributies op basis van deze vraaggeschiedenis. De eerste distributie is gegenereerd met dezelfde "normale distributie: logica die wordt gebruikt door P21. De tweede is een gesimuleerde verdeling op basis van de probabilistische voorspelling van Smart Software. De "normale" P21-distributie beveelt aan dat er 46 eenheden nodig zijn om het 99%-serviceniveau te bereiken, maar in vergelijking met de werkelijke waarden was er veel meer voorraad nodig. Smart voorspelde nauwkeurig dat er 63 units nodig waren om het serviceniveau te halen.

Deze blog legt uit hoe u de nauwkeurigheid van het serviceniveau van uw systeem kunt testen.

Vertrouwen op spreadsheets en reactieve planning
P21-klanten vertellen ons dat ze sterk afhankelijk zijn van het gebruik van spreadsheets om voorraadbeleid en prognoses te beheren. Spreadsheets zijn niet speciaal gebouwd voor prognoses en voorraadoptimalisatie. Gebruikers zullen vaak door de gebruiker gedefinieerd bakken vuistregel methoden die vaak meer kwaad dan goed doen. Eenmaal berekend, moeten gebruikers de informatie weer invoeren in P21 via handmatige bestandsimport of zelfs handmatige invoer. De tijdrovende aard van het proces leidt ertoe dat bedrijven zelden hun voorraadbeleid berekenen - Er gaan vele maanden en soms jaren voorbij tussen massale updates, wat leidt tot een reactieve benadering van "instellen en vergeten", waarbij de enige keer dat een koper/planner het voorraadbeleid beoordeelt, is op het moment van bestelling. Wanneer het beleid wordt herzien nadat het bestelpunt al is geschonden, is het te laat. Wanneer het orderpunt te hoog wordt geacht, is handmatige ondervraging vereist om de geschiedenis te bekijken, prognoses te berekenen, bufferposities te beoordelen en opnieuw te kalibreren. Het enorme aantal bestellingen betekent dat kopers bestellingen gewoon vrijgeven in plaats van de moeite te nemen om alles te bekijken, wat leidt tot een aanzienlijke overtollige voorraad. Als het bestelpunt te laag is, is het al te laat. Er is nu een versnelling nodig om de kosten op te drijven en zelfs dan loopt u nog steeds omzet mis als de klant ergens anders heen gaat.

Beperkte wat-als-planning
Aangezien functies voor het wijzigen van bestelpunten en bestelhoeveelheden in P21 zijn ingebouwd, is het niet mogelijk om grootschalige wijzigingen aan te brengen in groepen artikelen en de voorspelde resultaten te beoordelen voordat u beslist om vast te leggen. Dit dwingt gebruikers tot een afwachtend proces als het gaat om het wijzigen van parameters. Planners zullen een wijziging aanbrengen en vervolgens de werkelijke resultaten volgen totdat ze er zeker van zijn dat de wijziging dingen heeft verbeterd. Dit op grote schaal beheren – veel planners hebben te maken met tienduizenden items – is buitengewoon tijdrovend en het eindresultaat is een zeldzame herijking van het voorraadbeleid. Dit draagt ook bij aan reactief plannen waarbij planners instellingen pas bekijken nadat er een probleem is opgetreden.

Epicor is slimmer
Epicor werkt samen met Smart Software en biedt Smart IP&O aan als een platformonafhankelijke add-on voor Prophet 21, compleet met een bidirectionele API-gebaseerde integratie. Dit stelt Epicor-klanten in staat om gebruik te maken van speciaal voor dit doel gebouwde toepassingen voor prognoses en voorraadoptimalisatie. Met Epicor Smart IP&O kunt u prognoses genereren die trends en seizoensinvloeden vastleggen zonder dat u eerst handmatige configuraties hoeft toe te passen. U kunt elke planningscyclus automatisch opnieuw kalibreren met behulp van in de praktijk bewezen, geavanceerde statistische en probabilistische modellen die zijn ontworpen om nauwkeurig te plannen voor Intermittent demand. Veiligheidsvoorraden houden nauwkeurig rekening met variabiliteit in vraag en aanbod, zakelijke omstandigheden en prioriteiten. U kunt profiteren service level gestuurde planning zodat je net genoeg voorraad hebt of gebruik maken van optimalisatie methodes die het meest winstgevende voorraadbeleid en serviceniveaus voorschrijven die rekening houden met de werkelijke kosten van voorraadbeheer. U kunt consensusvraagprognoses maken die zakelijke kennis combineren met statistieken, klant- en verkoopprognoses beter beoordelen en met een paar muisklikken vol vertrouwen prognoses en voorraadbeleid uploaden naar Epicor.

Slimme IP&O-klanten realiseren routinematig een jaarlijks rendement van 7 cijfers door minder spoed, meer verkopen en minder overtollige voorraad, terwijl ze tegelijkertijd een concurrentievoordeel behalen door zich te onderscheiden op het gebied van verbeterde klantenservice. Om een opgenomen webinar te zien, gehost door de Epicor Users Group, waarin het platform voor demand planning en voorraadoptimalisatie van Smart wordt geprofileerd, kunt u zich hier registreren: https://smartcorp.com/epicor-smart-inventory-planning-optimization/