7 transformaciones digitales para servicios públicos que impulsarán el rendimiento de MRO

Los servicios públicos en los campos de la electricidad, el gas natural, el agua y las aguas residuales urbanas y las telecomunicaciones son intensivos en activos. La generación, producción, procesamiento, transmisión y distribución de electricidad, gas natural, petróleo y agua dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores.

Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental. Estos esfuerzos se ven obstaculizados por los sistemas de TI desactualizados, las amenazas de seguridad en evolución, las frecuentes interrupciones en la cadena de suministro y la extrema variabilidad de la demanda. Sin embargo, la convergencia de estos desafíos con la tecnología de nube madura y los avances recientes en el análisis de datos, el pronóstico probabilístico y las tecnologías para la gestión de datos presentan a las empresas de servicios públicos una oportunidad generacional para transformar digitalmente su empresa.

Aquí hay siete transformaciones digitales que requieren inversiones iniciales relativamente pequeñas pero generarán retornos de siete cifras.

1. Gestión de inventario es el primer paso en la optimización del inventario MRO. Implica analizar los niveles de inventario actuales y los patrones de uso para identificar oportunidades de mejora. Esto debe incluir la búsqueda de artículos obsoletos, con exceso o falta de existencias. La nueva tecnología de pronóstico probabilístico ayudará a simular el uso futuro de piezas y predecir cómo funcionarán las políticas de almacenamiento actuales. Los planificadores de Pats pueden usar los resultados de la simulación para identificar de manera proactiva dónde deben modificarse las políticas.

2. Previsión precisa y planificación de la demanda son muy importantes para optimizar los inventarios de piezas de servicio de MRO. Un pronóstico preciso de la demanda es un impulsor crítico de la cadena de suministro. Al comprender los patrones de demanda que resultan de los proyectos de capital y el mantenimiento planificado y no planificado, los planificadores de piezas pueden anticipar con mayor precisión las necesidades futuras de inventario, presupuestar adecuadamente y comunicar mejor la demanda anticipada a los proveedores. El software de previsión de piezas se puede utilizar para albergar automáticamente un conjunto preciso de uso histórico que detalla la demanda de piezas planificada frente a la no planificada.

3. Gestión de proveedores y plazos de entrega son componentes importantes de la optimización del inventario de MRO. Implica seleccionar a los mejores proveedores para el trabajo, tener proveedores de respaldo que puedan entregar rápidamente si el proveedor preferido falla y negociar términos favorables. Otro componente importante es identificar el tiempo de entrega correcto para basar las políticas de almacenamiento. Las simulaciones probabilísticas disponibles en el software de planificación de piezas se pueden utilizar para pronosticar la probabilidad de cada posible tiempo de entrega que se enfrentará. Esto dará como resultado una recomendación más precisa de qué almacenar en comparación con el uso de un proveedor cotizado o un tiempo de entrega promedio.

4. Racionalización de SKU y gestión de datos maestros elimina los SKU ineficaces o desactualizados del catálogo de productos y la base de datos de ERP. También identifica diferentes números de pieza que se han utilizado para el mismo SKU. El costo operativo y la rentabilidad de cada producto se evalúan durante este procedimiento, lo que da como resultado una lista común de SKU activos. El software de gestión de datos maestros puede evaluar los catálogos de productos y la información almacenada en bases de datos dispares para identificar las racionalizaciones de SKU y garantizar que las políticas de inventario se basen en el número de pieza común.

5. Sistemas de control de inventario son clave para sincronizar la optimización del inventario. Proporcionan una forma rentable para que las empresas de servicios públicos rastreen, controlen y gestionen su inventario. Ayudan a garantizar que la empresa de servicios públicos tenga los suministros y materiales correctos cuando y donde se necesiten, a la vez que minimizan los costos de inventario.

6. La mejora continua es esencial para optimizar los inventarios de MRO. Implica monitorear y ajustar regularmente los niveles de inventario y las políticas de almacenamiento para garantizar el uso más eficiente de los recursos. Cuando las condiciones de operación cambian, la empresa de servicios públicos debe detectar el cambio y ajustar sus operaciones en consecuencia. Esto significa que los ciclos de planificación deben operar a un ritmo lo suficientemente alto como para adaptarse a las condiciones cambiantes. Aprovechar la previsión probabilística para recalibrar las políticas de almacenamiento de piezas de servicio en cada ciclo de planificación garantiza que las políticas de almacenamiento (como los niveles mínimos/máximos) estén siempre actualizadas y reflejen el uso de piezas y los plazos de entrega de los proveedores más recientes.

7. Planificación para la demanda intermitente con el moderno software de planificación de piezas de repuesto. El resultado es una estimación muy precisa de las existencias de seguridad, los puntos de pedido y las cantidades de los pedidos, lo que conduce a mayores niveles de servicio y menores costos de inventario. El software de pronóstico probabilístico de piezas de repuesto patentado de Smart Software simula la probabilidad de cada posible demanda, determinando con precisión cuánto almacenar para lograr los niveles de servicio objetivo de una empresa de servicios públicos. Aprovechar el software para simular con precisión el flujo de entrada y salida de repuestos reparables predecirá mejor el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con cualquier tamaño de grupo elegido para repuestos reparables.

 

Soluciones de software para la planificación de repuestos

El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

 

 

Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

 

Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

 

    Pronóstico estadístico: cómo funciona la selección automática de métodos en Smart IP&O

    Smart IP&O ofrece pronósticos estadísticos automatizados que seleccionan el método de pronóstico correcto que mejor pronostica los datos. Hace esto para cada serie de tiempo en el conjunto de datos. Este blog ayudará a los legos a comprender cómo se eligen automáticamente los métodos de pronóstico.

    Smart pone a disposición muchos métodos, incluidos el suavizado exponencial simple y doble, el promedio móvil lineal y simple y los modelos de Winters. Cada modelo está diseñado para capturar un tipo diferente de patrón. El criterio para elegir automáticamente un método estadístico de un conjunto de opciones se basa en qué método estuvo más cerca de predecir correctamente el historial retenido.

    El historial de demanda anterior se pasa a cada método y el resultado se compara con los datos reales para encontrar el que más se acerca en general. Ese método "ganador" elegido automáticamente se alimenta de todo el historial de ese artículo para producir el pronóstico.

    La naturaleza general del patrón de demanda del artículo se captura manteniendo diferentes partes de la historia para que un valor atípico ocasional no influya indebidamente en la elección del método. Puede visualizarlo usando el siguiente diagrama donde cada fila representa un pronóstico de 3 períodos en el historial retenido, basado en diferentes cantidades del historial anterior en rojo. Las variaciones de cada pase se promedian juntas para determinar la clasificación general del método frente a todos los demás métodos.

    Aplicación de pronóstico automático y pronóstico estadístico

    Para la mayoría de las series temporales, este proceso puede capturar con precisión las tendencias, la estacionalidad y el volumen promedio. Pero a veces, un método elegido se acerca matemáticamente a la predicción del historial retenido, pero no lo proyecta hacia adelante de una manera que tenga sentido.

    Los usuarios pueden corregir esto utilizando los informes de excepción del sistema y las funciones de filtrado para identificar los elementos que merecen revisión. Luego pueden configurar los métodos de pronóstico automático que desean que se consideren para ese artículo.

     

     

    ¿Cuánto tiempo se debe tomar para calcular los pronósticos estadísticos?
    Los principales factores que afectan la velocidad de su motor de pronóstico 

    ¿Cuánto tiempo debe tomar para calcular un pronóstico de demanda usando métodos estadísticos? Esta pregunta la hacen a menudo los clientes actuales y potenciales. La respuesta realmente depende. Los resultados del pronóstico para un solo elemento se pueden calcular en un abrir y cerrar de ojos, en tan solo unas pocas centésimas de segundo, pero a veces pueden requerir hasta cinco segundos. Para comprender las diferencias, es importante entender que hay más cosas involucradas que solo repasar la aritmética del pronóstico en sí. Aquí hay seis factores que influyen en la velocidad de su motor de pronóstico.

    1) Método de pronóstico.  Las técnicas tradicionales de extrapolación de series de tiempo (como el suavizado exponencial y los métodos de promedio móvil), cuando están codificadas inteligentemente, son muy rápidas. Por ejemplo, el motor de pronóstico automático Smart Forecast que aprovecha estas técnicas y potencia nuestro software de optimización de inventario y planificación de demanda puede generar pronósticos estadísticos sobre 1,000 artículos en 1 segundo. Los métodos de extrapolación producen un pronóstico esperado y una medida resumida de la incertidumbre del pronóstico. Sin embargo, los modelos más complejos en nuestra plataforma que generan escenarios de demanda probabilísticos toman mucho más tiempo con los mismos recursos informáticos. Esto se debe en parte a que crean un volumen de producción mucho mayor, por lo general miles de secuencias de demanda futura plausibles. Más tiempo, sí, pero no tiempo perdido, ya que estos resultados son mucho más completos y forman la base para la optimización posterior de los parámetros de control de inventario.

    2) Recursos informáticos.  Cuantos más recursos arroje al cálculo, más rápido será. Sin embargo, los recursos cuestan dinero y puede que no sea económico invertir en estos recursos. Por ejemplo, para hacer que ciertos tipos de pronósticos basados en aprendizaje automático funcionen, el sistema necesitará realizar cálculos de subprocesos múltiples en varios servidores para entregar resultados rápidamente. Por lo tanto, asegúrese de comprender los recursos informáticos asumidos y los costos asociados. Nuestros cálculos se realizan en la nube de Amazon Web Services, por lo que es posible pagar una gran cantidad de cómputo paralelo si se desea.

    3) Número de series temporales.  ¿Tiene que pronosticar solo unos pocos cientos de artículos en una sola ubicación o muchos miles de artículos en docenas de ubicaciones? Cuanto mayor sea el número de combinaciones de SKU x Ubicación, mayor será el tiempo requerido. Sin embargo, es posible recortar el tiempo para obtener pronósticos de demanda mediante una mejor clasificación de la demanda. Por ejemplo, no es importante pronosticar cada combinación de SKU x Ubicación. El software moderno de planificación de la demanda primero puede subdividir los datos en función de las clasificaciones de volumen/frecuencia antes de ejecutar el motor de pronóstico. Hemos observado situaciones en las que existían más de un millón de combinaciones SKU x Ubicación, pero solo el diez por ciento tenía demanda en los doce meses anteriores.

    4) Clasificación histórica. ¿Está pronosticando utilizando intervalos de tiempo diarios, semanales o mensuales? Cuanto más granular sea la agrupación, más tiempo llevará calcular los pronósticos estadísticos. Muchas empresas se preguntarán: "¿Por qué alguien querría pronosticar diariamente?" Sin embargo, el software de pronóstico de demanda de última generación puede aprovechar los datos diarios para detectar patrones simultáneos de días de la semana y semanas del mes que, de otro modo, quedarían ocultos con los grupos de demanda mensuales tradicionales. Y la velocidad de los negocios continúa acelerándose, amenazando la viabilidad competitiva del ritmo de planificación mensual tradicional.

    5) Cantidad de Historia. ¿Está limitando el modelo alimentándolo solo con el historial de demanda más reciente, o está introduciendo todo el historial disponible en el software de previsión de demanda? Cuanto más historial alimente el modelo, más datos se deben analizar y más tiempo llevará.

    6) Procesamiento analítico adicional.  Hasta ahora, hemos imaginado ingresar el historial de demanda de los artículos y obtener pronósticos. Pero el proceso también puede implicar pasos analíticos adicionales que pueden mejorar los resultados. Ejemplos incluyen:

    a) Detección y eliminación de valores atípicos para minimizar la distorsión causada por eventos únicos como daños por tormentas.

    b) Aprendizaje automático que decide cuánto historial se debe usar para cada elemento detectando el cambio de régimen.

    C) Modelado causal que identifica cómo los cambios en los impulsores de la demanda (como el precio, la tasa de interés, la opinión del cliente, etc.) afectan la demanda futura.

    d) Informe de excepción que utiliza el análisis de datos para identificar situaciones inusuales que ameritan una mayor revisión por parte de la gerencia.

     

    El resto de la historia. También es fundamental comprender que el tiempo para obtener una respuesta implica más que la velocidad de los cálculos de pronóstico. per se. Los datos deben cargarse en la memoria antes de que pueda comenzar la computación. Una vez que se calculan los pronósticos, su navegador debe cargar los resultados para que puedan mostrarse en la pantalla para que usted interactúe con ellos. Si vuelve a pronosticar un producto, puede optar por guardar los resultados. Si está trabajando con jerarquías de productos (agregando pronósticos de artículos hasta familias de productos, familias hasta líneas de productos, etc.), el nuevo pronóstico afectará la jerarquía y todo debe conciliarse. Todo esto lleva tiempo.

    ¿Lo suficientemente rápido para ti? Cuando está evaluando el software para ver si su necesidad de velocidad será satisfecha, todo esto puede probarse como parte de una prueba de concepto o prueba ofrecida por los proveedores de soluciones de software de planificación de la demanda. Pruébelo y asegúrese de que el calcular, cargar y guardar los tiempos son aceptables dado el volumen de datos y los métodos de pronóstico que desea utilizar para respaldar su proceso.

     

     

     

    6 cosas que hacer y no hacer en la planificación de piezas de repuesto

    La gestión de inventarios de piezas de repuesto puede parecer imposible. No sabes qué se romperá y cuándo. Los comentarios de los departamentos mecánicos y los equipos de mantenimiento suelen ser inexactos. Los programas de mantenimiento planificados a menudo se modifican, lo que los convierte en cualquier cosa menos "planificados". Los patrones de uso (es decir, la demanda) suelen ser extremadamente intermitentes, es decir, la demanda salta aleatoriamente entre cero y algo más, a menudo un número sorprendentemente grande. La intermitencia, combinada con la falta de tendencias significativas o patrones estacionales, hace que los métodos tradicionales de pronóstico de series de tiempo sean inexactos. La gran cantidad de combinaciones parte por ubicación hace que sea imposible crear manualmente o incluso revisar pronósticos para partes individuales. Dados todos estos desafíos, pensamos que sería útil delinear una serie de cosas que se deben hacer (y sus correspondientes prohibiciones).

    1. Utilice métodos probabilísticos para calcular los puntos de pedido y los niveles mínimos y máximos.
      Basar las decisiones de almacenamiento en el uso diario promedio no es la respuesta correcta. Tampoco lo es la confianza en los métodos de pronóstico tradicionales como los modelos de suavizado exponencial. Ninguno de los enfoques funciona cuando la demanda es intermitente porque no tienen debidamente en cuenta la volatilidad de la demanda. métodos probabilísticos que simulan miles de posibles escenarios de demanda funcionan mejor. Proporcionan una estimación realista de la distribución de la demanda y pueden manejar todos los ceros y no ceros aleatorios. Esto garantizará que el nivel de inventario tenga el tamaño adecuado para alcanzar cualquier objetivo de nivel de servicio que elija.
       
    2. Use niveles de servicio en lugar de métodos de regla empírica para determinar los niveles de existencias
      Muchas organizaciones de planificación de piezas se basan en múltiplos de la demanda diaria y otros Reglas de juego para determinar las políticas de almacenamiento. Por ejemplo, los puntos de reorden a menudo se basan en la duplicación de la demanda promedio durante el tiempo de entrega o en la aplicación de algún otro múltiplo según la importancia del artículo. Sin embargo, los promedios no tienen en cuenta cuán volátil (o ruidosa) es una pieza y darán lugar a un exceso de existencias de piezas menos ruidosas y una escasez de piezas más ruidosas.
       
    3. Vuelva a calcular con frecuencia las políticas de almacenamiento
      El hecho de que la demanda sea intermitente no significa que nada cambie con el tiempo. Sin embargo, después de entrevistar a cientos de empresas que administran el inventario de piezas de repuesto, encontramos que menos de 10% vuelven a calcular las políticas de almacenamiento mensualmente. Muchos nunca vuelven a calcular las políticas de almacenamiento hasta que surge un “problema”. En miles de piezas, se garantiza que el uso aumentará o disminuirá en al menos algunas de las piezas. Los plazos de entrega de los proveedores también pueden cambiar. El uso de un punto de pedido desactualizado hará que los pedidos se activen demasiado pronto o demasiado tarde, lo que creará muchos problemas. Recálculo de políticas en cada ciclo de planificación asegura que el inventario tendrá el tamaño correcto. No sea reactivo y espere a que ocurra un problema antes de considerar si se debe modificar el valor mínimo o máximo. Para entonces ya es demasiado tarde, es como esperar a que los frenos fallen antes de repararlos. No se preocupe por el esfuerzo de volver a calcular los valores Mín./Máx. para una gran cantidad de SKU: el software moderno lo hace automáticamente. Recuerda: ¡La recalibración de sus políticas de almacenamiento es un mantenimiento preventivo contra el agotamiento de existencias!
       
    4. Obtenga aceptación en los niveles de servicio específicos
      El inventario es costoso y debe tener el tamaño correcto en función de lograr un equilibrio entre la disposición de la organización a agotarse y su disposición a presupuestar repuestos. Con demasiada frecuencia, los planificadores toman decisiones de forma aislada basándose en la evitación del dolor o en las solicitudes de los técnicos de mantenimiento sin tener en cuenta cómo el gasto en una parte afecta la capacidad de la organización para gastar en otra parte. El exceso de inventario en una parte perjudica los niveles de servicio en otras partes al consumir de manera desproporcionada el presupuesto de inventario. Asegúrese de que los objetivos de nivel de servicio y el inventario asociado costos de alcanzar los niveles de servicio son entendidos y aceptados.
       
    5. Ejecute un proceso de planificación separado para piezas reparables
      Algunas piezas son muy costosas de reemplazar, por lo que es preferible enviarlas a las instalaciones de reparación o de vuelta al OEM para su reparación. Tener en cuenta la aleatoriedad del lado del suministro de cuándo se devolverán las piezas reparables y saber si esperar una reparación o comprar un repuesto adicional son fundamentales para garantizar la disponibilidad de los artículos sin un aumento del inventario. Esto requiere informes especializados y el uso de modelos probabilísticos. No trate las piezas reparables como piezas consumibles cuando planifique.
       
    6. Cuente lo que se compra contra el presupuesto, no solo lo que se consume
      Muchas organizaciones asignan las compras totales de piezas a un presupuesto corporativo separado y asignan el presupuesto del equipo mecánico o de mantenimiento a las piezas que se utilizan. En la mayoría de las organizaciones de MRO, especialmente en el transporte público y los servicios públicos, los equipos de reparación dictan lo que se compra. Si lo que se compra no cuenta contra su presupuesto, comprarán en exceso para asegurarse de que nunca haya ninguna posibilidad de desabastecimiento. Literalmente no tienen ningún incentivo para hacerlo bien, por lo que se comprarán decenas de millones en exceso de inventario. Si lo que se compra se refleja en el presupuesto, se prestará mucha más atención a comprar solo lo que realmente se necesita. Reconociendo que el exceso de inventario perjudica el servicio Robar a la organización dinero en efectivo que, de lo contrario, podría usarse en repuestos insuficientes es un paso importante para garantizar una compra de inventario responsable.

    Soluciones de software para la planificación de repuestos

    El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

    Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

     

     

    Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

     

    Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

     

      ¿Sus pronósticos estadísticos sufren el efecto de oscilación?

       ¿Qué es el efecto de oscilación? 

      Es cuando su pronóstico estadístico predice incorrectamente los altibajos observados en su historial de demanda cuando realmente no hay un patrón. Es importante asegurarse de que sus pronósticos no cambien a menos que haya un patrón real.

      Aquí hay una transcripción de un cliente reciente donde se discutió este problema:

      Cliente: “El pronóstico no sigue los patrones que veo en el historial. ¿Por qué no?" 

      Inteligente: “Si miras de cerca, los altibajos que ves no son patrones. Es realmente ruido”.  

      Cliente: “Pero si no predecimos los máximos, nos agotamos”.

      Smart: “Si el pronóstico 'se moviera', sería mucho menos preciso. El sistema pronosticará cualquier patrón que sea evidente, en este caso una tendencia alcista muy leve. Protegeremos el ruido con existencias de seguridad. Los meneos se utilizan para establecer las existencias de seguridad”.

      Cliente: “Está bien. Tiene sentido ahora. 

      ¿Sus pronósticos estadísticos sufren el gráfico de efecto de oscilación?

      El movimiento parece tranquilizador pero, en este caso, está dando como resultado un pronóstico de demanda incorrecto. Los altibajos en realidad no ocurren a la misma hora cada mes. Un mejor pronóstico estadístico se muestra en verde claro.