Escenarios de demanda diaria

En este Videoblog explicaremos cómo la previsión de series temporales se ha convertido en una herramienta fundamental, especialmente a nivel diario, en la que Smart Software ha sido pionero desde sus inicios hace más de cuarenta años. La evolución de las prácticas comerciales de incrementos temporales anuales a incrementos temporales más refinados, como el análisis de datos mensual y ahora diario, ilustra un cambio significativo en las estrategias operativas.

Inicialmente, durante la década de 1980, la práctica habitual de utilizar datos anuales para realizar pronósticos y la introducción de datos mensuales se consideró innovadora. Este período marcó el comienzo de una tendencia hacia el aumento de la resolución del análisis de datos, lo que permitió a las empresas capturar y reaccionar ante cambios más rápidos en la dinámica del mercado. A medida que avanzamos hacia la década de 2000, la norma del análisis de datos mensual estaba bien establecida, pero los "chicos geniales" (innovadores en el borde de la analítica empresarial) comenzaron a experimentar con datos semanales. Este cambio fue impulsado por la necesidad de sincronizar las operaciones comerciales con condiciones de mercado cada vez más volátiles y comportamientos de los consumidores que exigían respuestas más rápidas que las que podían proporcionar los ciclos mensuales. Hoy, en la década de 2020, si bien el análisis de datos mensuales sigue siendo común, la frontera se ha desplazado nuevamente, esta vez hacia el análisis de datos diario, y algunos pioneros incluso se han aventurado en el análisis por horas.

El verdadero poder del análisis de datos diario radica en su capacidad de proporcionar una vista detallada de las operaciones comerciales, capturando las fluctuaciones diarias que podrían pasar desapercibidas en los datos mensuales o semanales. Sin embargo, las complejidades de los datos diarios requieren enfoques analíticos avanzados para extraer información significativa. En este nivel, comprender la demanda requiere lidiar con conceptos como intermitencia, estacionalidad, tendencia y volatilidad. La intermitencia, o la aparición de días sin demanda, se vuelve más pronunciada en una granularidad diaria y exige técnicas de pronóstico especializadas como el método de Croston para predicciones precisas. La estacionalidad a nivel diario puede revelar múltiples patrones (como mayores ventas los fines de semana o días festivos) que los datos mensuales enmascararían. Las tendencias se pueden observar como aumentos o disminuciones de la demanda a corto plazo, lo que exige estrategias de ajuste ágiles. Finalmente, la volatilidad a nivel diario se acentúa, mostrando oscilaciones de la demanda más significativas que las observadas en los análisis mensuales o semanales, lo que puede afectar las estrategias de gestión de inventarios y la necesidad de existencias de reserva. Este nivel de complejidad subraya la necesidad de herramientas analíticas sofisticadas y experiencia en el análisis de datos diario.

En conclusión, la evolución de pronósticos de series temporales menos frecuentes a pronósticos diarios marca un cambio sustancial en la forma en que las empresas abordan el análisis de datos. Esta transición no solo refleja el ritmo acelerado de los negocios, sino que también resalta la necesidad de herramientas que puedan manejar una mayor granularidad de los datos. La dedicación de Smart Software para perfeccionar sus capacidades analíticas para gestionar los datos diarios destaca el movimiento más amplio de la industria hacia una toma de decisiones más dinámica, receptiva y basada en datos. Este cambio no se trata simplemente de mantener el ritmo del tiempo, sino de aprovechar conocimientos detallados para forjar ventajas competitivas en un entorno empresarial en constante cambio.

 

El costo de la planificación con hojas de cálculo

Las empresas que dependen de hojas de cálculo para la planificación de la demanda, la previsión y la gestión de inventario a menudo se ven limitadas por las limitaciones inherentes de las hojas de cálculo. Esta publicación examina los inconvenientes de los enfoques tradicionales de gestión de inventario causados por las hojas de cálculo y sus costos asociados, comparándolos con los importantes beneficios que se obtienen al adoptar tecnologías de planificación de última generación.

Las hojas de cálculo, si bien son flexibles por su infinita capacidad de personalización, son fundamentalmente de naturaleza manual y requieren una importante gestión de datos, aportación humana y supervisión. Esto aumenta el riesgo de errores, desde simples errores al ingresar datos hasta complejos errores de fórmula, que causan efectos en cascada que impactan negativamente en los pronósticos. Además, a pesar de los avances en las funciones colaborativas que permiten que varios usuarios interactúen con una hoja común, los procesos basados en hojas de cálculo suelen estar aislados. El titular de la hoja de cálculo posee los datos. Cuando esto sucede, comienzan a surgir muchas fuentes de datos veraces. Sin la confianza de una fuente de datos acordada, prístina y actualizada automáticamente, las organizaciones no tienen la base necesaria a partir de la cual se pueden construir modelos predictivos, pronósticos y análisis.

Por el contrario, los sistemas de planificación avanzada como Smart IP&O están diseñados para superar estas limitaciones. Dichos sistemas están diseñados para ingerir datos automáticamente a través de API o archivos de sistemas ERP y EAM, transformar esos datos utilizando herramientas ETL integradas y pueden procesar grandes volúmenes de datos de manera eficiente. Esto permite a las empresas gestionar tareas complejas de inventario y previsión con mayor precisión y menos esfuerzo manual porque la recopilación, agregación y transformación de datos ya están realizadas. La transición a sistemas de planificación avanzados es clave para optimizar los recursos por varias razones.

Las hojas de cálculo también tienen un problema de escala. Cuanto más crece el negocio, mayor es el número de hojas de cálculo, libros de trabajo y fórmulas. El resultado es un conjunto de interdependencias rígidas y estrechamente entrelazadas que se vuelven difíciles de manejar e ineficientes. Los usuarios tendrán dificultades para manejar el aumento de la carga y la complejidad con tiempos de procesamiento lentos y la incapacidad de administrar grandes conjuntos de datos y enfrentar desafíos al colaborar entre equipos y departamentos.

Por otro lado, los sistemas de planificación avanzados para la optimización del inventario, la planificación de la demanda y la gestión de inventario son escalables y están diseñados para crecer con el negocio y adaptarse a sus necesidades cambiantes. Esta escalabilidad garantiza que las empresas puedan seguir gestionando su inventario y sus previsiones de forma eficaz, independientemente del tamaño o la complejidad de sus operaciones. Al hacer la transición a sistemas como Smart IP&O, las empresas no sólo pueden mejorar la precisión de su gestión y pronóstico de inventario, sino también obtener una ventaja competitiva en el mercado al ser más receptivos a los cambios en la demanda y más eficientes en sus operaciones.

Beneficios de saltar: Una empresa de servicios eléctricos luchaba por mantener la disponibilidad de piezas de repuesto sin tener un exceso de existencias para más de 250.000 piezas en una red diversa de instalaciones de generación y distribución de energía. Reemplazó su proceso de planificación heredado de veinte años que hacía un uso intensivo de hojas de cálculo con Smart IP&O y una integración en tiempo real a su sistema EAM. Antes de Smart, solo podían modificar los niveles mínimo/máximo y de stock de seguridad con poca frecuencia. Cuando lo hicieron, casi siempre fue porque ocurrió un problema que desencadenó la revisión. Los métodos utilizados para cambiar los parámetros de almacenamiento dependieron en gran medida de la intuición y de los promedios del uso histórico. La empresa de servicios públicos aprovechó los escenarios hipotéticos de Smart para crear gemelos digitales de políticas de almacenamiento alternativas y simuló cómo se comportaría cada escenario en indicadores clave de rendimiento, como el valor del inventario, los niveles de servicio, las tasas de cumplimiento y los costos de escasez. El software identificó aumentos y disminuciones mínimos y máximos específicos que se implementaron en su sistema EAM, impulsando reabastecimientos óptimos de sus repuestos. El resultado: una importante reducción de inventario de $9 millones que liberó efectivo y valioso espacio de almacén al mismo tiempo que mantuvo los niveles de servicio objetivo de 99%+.

Gestión de la precisión del pronóstico: El error de pronóstico es una parte inevitable de la gestión de inventario, pero la mayoría de las empresas no lo rastrean. Como dijo Peter Drucker: "No se puede mejorar lo que no se mide". Una empresa mundial de fabricación de alta tecnología que utilizaba un proceso de pronóstico basado en hojas de cálculo tuvo que crear manualmente sus pronósticos de referencia y sus informes de precisión de los pronósticos. Dada la carga de trabajo de los planificadores y los procesos aislados, simplemente no actualizaban sus informes con mucha frecuencia y, cuando lo hacían, los resultados tenían que distribuirse manualmente. La empresa no tenía forma de saber cuán preciso era un pronóstico determinado y no podía citar sus errores reales por grupo de piezas con confianza. Tampoco sabían si sus pronósticos estaban superando a un método de control. Después de que Smart IP&O entró en funcionamiento, el módulo de planificación de la demanda lo automatizó. Smart Demand Planner ahora vuelve a pronosticar automáticamente su demanda en cada ciclo de planificación utilizando métodos de aprendizaje automático y guarda informes de precisión para cada pieza x ubicación. Cualquier anulación que se aplique a los pronósticos ahora se puede comparar automáticamente con la línea de base para medir el valor agregado del pronóstico, es decir, si el esfuerzo adicional para realizar esos cambios mejoró la precisión. Ahora que existe la capacidad de automatizar el pronóstico estadístico de referencia y producir informes de precisión, esta empresa tiene una base sólida desde la cual mejorar su proceso de pronóstico y la precisión del pronóstico resultante.

Hágalo bien y manténgalo bien:  Otro cliente del negocio de repuestos ha utilizado las soluciones de previsión de Smart desde 2005: ¡casi 20 años! Se enfrentaron a desafíos al pronosticar piezas con demanda intermitente vendidas para respaldar su negocio de posventa de automóviles. Al reemplazar su enfoque basado en hojas de cálculo y cargas manuales a SAP con pronósticos estadísticos de demanda y stock de seguridad de SmartForecasts, pudieron reducir significativamente los pedidos pendientes y las ventas perdidas, con tasas de cumplimiento que mejoraron de 93% a 96% en solo tres meses. La clave de su éxito fue aprovechar el método patentado de Smart para pronosticar la demanda intermitente: el método de arranque "Smart-Willemain" generó estimaciones precisas de la demanda acumulada durante el tiempo de entrega que ayudó a garantizar una mejor visibilidad de las posibles demandas.

Conexión de pronósticos al plan de inventario: Los sistemas de planificación avanzados respaldan la gestión de inventario basada en pronósticos, que es un enfoque proactivo que se basa en pronósticos y simulaciones de demanda para predecir posibles resultados y sus probabilidades asociadas. Estos datos se utilizan para determinar los niveles óptimos de inventario. La previsión basada en escenarios o probabilística contrasta con la naturaleza más reactiva de los métodos basados en hojas de cálculo. Un cliente desde hace mucho tiempo en el negocio de las telas, anteriormente tuvo que lidiar con excesos y desabastecimientos debido a la demanda intermitente de miles de SKU. No tenían forma de saber cuáles eran sus riesgos de desabastecimiento y, por lo tanto, no podían modificar proactivamente las políticas para mitigar el riesgo más que hacer suposiciones muy generales que tendían a generar un exceso de existencias. Adoptaron el software de planificación de inventario y demanda de Smart Software para generar simulaciones de demanda que identificaron valores mínimos disponibles y cantidades de pedido óptimos, manteniendo la disponibilidad del producto para envío inmediato, destacando las ventajas de un enfoque de gestión de inventario basado en pronósticos.

Mejor colaboración:  Compartir previsiones con proveedores clave ayuda a garantizar el suministro. Kratos Space, parte de Kratos Defense & Security Solutions, Inc., aprovechó los pronósticos inteligentes para brindar a sus fabricantes por contrato mejores conocimientos sobre la demanda futura. Utilizaron los pronósticos para asumir compromisos sobre compras futuras que permitieron al CM reducir los costos de materiales y los plazos de entrega de los sistemas diseñados bajo pedido. Esta colaboración demuestra cómo las técnicas avanzadas de pronóstico pueden conducir a una colaboración significativa en la cadena de suministro que genera eficiencias y ahorros de costos para ambas partes.

 

Aprender de los modelos de inventario

En este video blog, exploramos el papel integral que desempeñan los modelos de inventario en la configuración de los procesos de toma de decisiones de los profesionales de diversas industrias. Estos modelos, ya sean simulaciones informáticas tangibles o construcciones mentales intangibles, sirven como herramientas fundamentales para gestionar las complejidades de los entornos empresariales modernos. La discusión comienza con una descripción general de cómo se utilizan estos modelos para predecir resultados y optimizar las operaciones, enfatizando su relevancia en un panorama de mercado en constante evolución.

​La discusión explora más a fondo cómo varios modelos influyen claramente en los procesos de toma de decisiones estratégicas. Por ejemplo, los modelos mentales que los profesionales desarrollan a través de la experiencia a menudo guían las respuestas iniciales a los desafíos operativos. Estos modelos son subjetivos y se construyen a partir de conocimientos personales y encuentros pasados ​​con situaciones similares, lo que permite una toma de decisiones rápida e intuitiva. Por otro lado, los modelos basados ​​en computadora proporcionan un marco más objetivo. Utilizan datos históricos y cálculos algorítmicos para pronosticar escenarios futuros, ofreciendo una base cuantitativa para decisiones que deben considerar múltiples variables y resultados potenciales. Esta sección destaca ejemplos específicos, como el impacto del ajuste de las cantidades de los pedidos en los costos de inventario y la frecuencia de los pedidos o los efectos de los tiempos de entrega fluctuantes en los niveles de servicio y la satisfacción del cliente.

En conclusión, mientras que los modelos mentales proporcionan un marco basado en la experiencia y la intuición, los modelos informáticos ofrecen una perspectiva más detallada y basada en números. La combinación de ambos tipos de modelos permite un proceso de toma de decisiones más sólido, equilibrando el conocimiento teórico con la experiencia práctica. Este enfoque mejora la comprensión de la dinámica del inventario y equipa a los profesionales con las herramientas para adaptarse a los cambios de manera efectiva, garantizando la sostenibilidad y la competitividad en sus respectivos campos.

 

 

Los métodos de previsión

​El software de planificación de la demanda y pronóstico estadístico desempeña un papel fundamental en la gestión empresarial eficaz al incorporar funciones que mejoran significativamente la precisión de los pronósticos. Un aspecto clave implica la utilización de modelos extrapolativos o basados ​​en suavizado, que permiten a las empresas hacer predicciones rápidamente basadas únicamente en datos históricos. Esta base basada en el desempeño pasado es crucial para comprender tendencias y patrones, especialmente en variables como las ventas o la demanda de productos. El software de pronóstico va más allá del mero análisis de datos al permitir combinar el juicio profesional con pronósticos estadísticos, reconociendo que el pronóstico no es un proceso único para todos. Esta flexibilidad permite a las empresas incorporar conocimientos humanos y de la industria en el modelo de pronóstico, lo que garantiza una predicción más matizada y precisa.

Funciones como pronosticar múltiples artículos como grupo, considerar la demanda impulsada por la promoción y manejar patrones de demanda intermitentes son capacidades esenciales para las empresas que manejan carteras de productos diversas y condiciones de mercado dinámicas. La implementación adecuada de estas aplicaciones brinda a las empresas herramientas de pronóstico versátiles, lo que contribuye significativamente a la toma de decisiones informadas y la eficiencia operativa.

Modelos extrapolativos

Nuestras soluciones de pronóstico de la demanda admiten una variedad de enfoques de pronóstico, incluidos modelos de pronóstico extrapolativos o basados en suavizamiento, como el suavizado exponencial y los promedios móviles. La filosofía detrás de estos modelos es simple: intentan detectar, cuantificar y proyectar hacia el futuro cualquier patrón repetitivo en los datos históricos.

  Hay dos tipos de patrones que se pueden encontrar en los datos históricos:

  • Tendencia
  • Estacionalidad

Estos patrones se ilustran en la siguiente figura junto con datos aleatorios.

Los métodos de previsión

 

Ilustración de datos de series de tiempo aleatorias, estacionales y de tendencia

Si el patrón es una tendencia, entonces los modelos extrapolativos, como el suavizado exponencial doble y el promedio móvil lineal, estiman la tasa de aumento o disminución en el nivel de la variable y proyectan esa tasa en el futuro.

Si el patrón es estacionalidad, entonces modelos como Winters y el suavizamiento exponencial triple estiman multiplicadores estacionales o factores de suma estacionales y luego los aplican a las proyecciones de la porción no estacional de los datos.

Muy a menudo, especialmente en el caso de los datos de ventas minoristas, intervienen patrones tanto de tendencia como estacionales. Si estos patrones son estables, se pueden aprovechar para dar pronósticos muy precisos.

A veces, sin embargo, no hay patrones obvios, de modo que los gráficos de los datos parecen ruido aleatorio. A veces los patrones son claramente visibles, pero cambian con el tiempo y no se puede confiar en que se repitan. En estos casos, los modelos extrapolativos no intentan cuantificar ni proyectar patrones. En cambio, intentan promediar el ruido y hacer buenas estimaciones del punto medio de la distribución de los valores de los datos. Estos valores típicos se convierten entonces en pronósticos. A veces, cuando los usuarios ven una trama histórica con muchos altibajos, se preocupan cuando el pronóstico no replica esos altibajos. Normalmente, esto no debería ser motivo de preocupación. Esto ocurre cuando los patrones históricos no son lo suficientemente fuertes como para justificar el uso de un método de pronóstico que replique el patrón. Quiere asegurarse de que sus pronósticos no sufran el "efecto de movimiento" que se describe en este entrada en el blog.

El pasado como predictor del futuro.

El supuesto clave implícito en los modelos extrapolativos es que el pasado es una buena guía para el futuro. Esta suposición, sin embargo, puede fracasar. Algunos de los datos históricos pueden estar obsoletos. Por ejemplo, los datos podrían describir un entorno empresarial que ya no existe. O bien, el mundo que representa el modelo puede estar listo para cambiar pronto, dejando todos los datos obsoletos. Debido a factores tan complicados, los riesgos del pronóstico extrapolativo son menores cuando se pronostica sólo a corto plazo en el futuro.

Los modelos extrapolativos tienen la ventaja práctica de ser baratos y fáciles de construir, mantener y utilizar. Sólo requieren registros precisos de los valores pasados de las variables que necesita pronosticar. A medida que pasa el tiempo, simplemente agrega los últimos puntos de datos a la serie temporal y vuelve a pronosticar. Por el contrario, los modelos causales que se describen a continuación requieren más pensamiento y más datos. La simplicidad de los modelos extrapolativos se aprecia más cuando se tiene un problema de pronóstico masivo, como hacer pronósticos de la demanda de un día para otro para los 30.000 artículos en el inventario de un almacén.

Ajustes de juicio

Los modelos extrapolativos se pueden ejecutar en modo completamente automático con Demand Planner sin necesidad de intervención. Los modelos causales requieren un juicio sustancial para una selección inteligente de variables independientes. Sin embargo, ambos tipos de modelos estadísticos pueden mejorarse mediante ajustes de juicio. Ambos pueden beneficiarse de sus conocimientos.

Tanto el modelo causal como el extrapolativo se basan en datos históricos. Sin embargo, es posible que tenga información adicional que no se refleja en los números que se encuentran en el registro histórico. Por ejemplo, es posible que sepa que las condiciones competitivas pronto cambiarán, tal vez debido a descuentos de precios, tendencias de la industria, la aparición de nuevos competidores o el anuncio de una nueva generación de sus propios productos. Si estos eventos ocurren durante el período para el cual usted está pronosticando, pueden arruinar la precisión de los pronósticos puramente estadísticos. La función de ajuste gráfico de Smart Demand Planner le permite incluir estos factores adicionales en sus pronósticos a través del proceso de ajuste gráfico en pantalla.

Tenga en cuenta que aplicar ajustes del usuario al pronóstico es un arma de doble filo. Si se utiliza adecuadamente, puede mejorar la precisión de los pronósticos al explotar un conjunto más rico de información. Si se utiliza de forma promiscua, puede añadir ruido adicional al proceso y reducir la precisión. Le recomendamos que utilice ajustes de juicio con moderación, pero que nunca acepte ciegamente las predicciones de un método de pronóstico puramente estadístico. También es muy importante medir el valor añadido previsto. Es decir, el valor agregado al proceso de pronóstico por cada paso incremental. Por ejemplo, si aplica anulaciones basadas en conocimientos comerciales, es importante medir si esos ajustes agregan valor al mejorar la precisión del pronóstico. Smart Demand Planner admite la medición del valor agregado del pronóstico mediante el seguimiento de cada pronóstico considerado y la automatización de los informes de precisión del pronóstico. Puede seleccionar pronósticos estadísticos, medir sus errores y compararlos con los anulados. Al hacerlo, informa el proceso de previsión para que se puedan tomar mejores decisiones en el futuro. 

Pronósticos de múltiples niveles

Otra situación común implica la previsión de múltiples niveles, donde se pronostican varios elementos como un grupo o incluso puede haber varios grupos, y cada grupo contiene varios elementos. Generalmente llamaremos a este tipo de pronóstico Pronóstico multinivel. El mejor ejemplo es el pronóstico de líneas de productos, donde cada artículo es miembro de una familia de artículos y el total de todos los artículos de la familia es una cantidad significativa.

Por ejemplo, como en la siguiente figura, es posible que tenga una línea de tractores y desee pronósticos de ventas para cada tipo de tractor y para toda la línea de tractores.

Los métodos de previsión 2

Ilustración de pronósticos de productos de múltiples niveles

 Smart Demand Planner proporciona pronósticos acumulativos y descendentes. Esta función es crucial para obtener pronósticos completos de todos los artículos de productos y el total de su grupo. El método Roll Down/Roll Up dentro de esta función ofrece dos opciones para obtener estos pronósticos:

Acumular (de abajo hacia arriba): esta opción inicialmente pronostica cada artículo individualmente y luego agrega los pronósticos a nivel de artículo para generar un pronóstico a nivel de familia.

Desplazar hacia abajo (de arriba hacia abajo): alternativamente, la opción de desplazamiento hacia abajo comienza formando el total histórico a nivel de familia, lo pronostica y luego asigna proporcionalmente el total al nivel de artículo.

Al utilizar Roll Down/Roll Up, tiene acceso a la gama completa de métodos de pronóstico proporcionados por Smart Demand Planner tanto a nivel de artículo como de familia. Esto garantiza flexibilidad y precisión en la previsión, atendiendo a las necesidades específicas de su negocio en diferentes niveles jerárquicos.

La investigación sobre pronósticos no ha establecido condiciones claras que favorezcan el enfoque de pronóstico de arriba hacia abajo o de abajo hacia arriba. Sin embargo, el enfoque ascendente parece preferible cuando los historiales de los artículos son estables y el énfasis está en las tendencias y patrones estacionales de los artículos individuales. La estrategia descendente suele ser una mejor opción si algunos elementos tienen un historial muy ruidoso o si el énfasis está en la previsión a nivel de grupo. Dado que Smart Demand Planner hace que sea rápido y fácil probar un enfoque tanto ascendente como descendente, debe probar ambos métodos y comparar los resultados. Puede utilizar la función "Retener lo actual" de Smart Demand Planner en "Pronóstico versus real" para probar ambos enfoques con sus propios datos y ver cuál produce un pronóstico más preciso para su negocio. 

 

Buscando problemas en los datos de su inventario

En este video blog, la atención se centra en un aspecto crítico de la gestión de inventario: el análisis y la interpretación de los datos del inventario. La atención se centra específicamente en un conjunto de datos de una agencia de transporte público que detalla piezas de repuesto para autobuses. Con más de 13.700 piezas registradas, los datos presentan una excelente oportunidad para profundizar en las complejidades de las operaciones de inventario e identificar áreas de mejora.

Comprender y abordar las anomalías en los datos del inventario es importante por varias razones. No solo garantiza el funcionamiento eficiente de los sistemas de inventario, sino que también minimiza los costos y mejora la calidad del servicio. Este videoblog explora cuatro reglas fundamentales de la gestión de inventario y demuestra, a través de datos del mundo real, cómo las desviaciones de estas reglas pueden indicar problemas subyacentes. Al examinar aspectos como el costo de los artículos, los plazos de entrega, las unidades disponibles y en pedido, y los parámetros que guían las políticas de reabastecimiento, el video proporciona una descripción general completa de los posibles desafíos e ineficiencias que acechan en los datos de inventario. 

Destacamos la importancia del análisis regular de los datos de inventario y cómo dicho análisis puede servir como una herramienta poderosa para los administradores de inventario, permitiéndoles detectar y rectificar problemas antes de que se agraven. Depender de enfoques anticuados puede generar imprecisiones, lo que resulta en un exceso de inventario o expectativas incumplidas de los clientes, lo que a su vez podría causar considerables repercusiones financieras e ineficiencias en las operaciones.

A través de un examen detallado del conjunto de datos de la agencia de transporte público, el videoblog transmite un mensaje claro: la revisión proactiva de los datos del inventario es esencial para mantener operaciones de inventario óptimas, garantizar que las piezas estén disponibles cuando se necesiten y evitar gastos innecesarios.

Aprovechar las herramientas avanzadas de análisis predictivo, como la optimización y planificación inteligente del inventario, le ayudará a controlar los datos de su inventario. Smart IP&O le mostrará información decisiva sobre la demanda y el inventario sobre los patrones de demanda de repuestos en evolución en cada momento, brindando a su organización la información necesaria para la toma de decisiones estratégicas.