El cuento de Ricitos de Oro sobre los niveles de inventario

Puede que recuerdes la historia de Goldilocks de tu juventud hace mucho tiempo. A veces la papilla estaba demasiado caliente, a veces demasiado fría, pero solo una vez estaba bien. Ahora que somos adultos, podemos traducir ese cuento de hadas en un principio profesional para la planificación del inventario: puede haber muy poco o demasiado inventario, y hay un nivel de Ricitos de Oro que es “perfecto”. Este blog trata de encontrar ese punto dulce.

Para ilustrar nuestra fábula de la cadena de suministro, considere este ejemplo. Imagine que vende repuestos para mantener los sistemas de sus clientes en funcionamiento. Usted ofrece una parte de servicio en particular que le cuesta $100 pero se vende por un margen de beneficio de 20%. Puede hacer $20 en cada unidad que vende, pero no puede quedarse con el $20 completo debido a los costos operativos de inventario que soporta para poder vender la pieza. Hay costos de mantenimiento para mantener la pieza en buen estado mientras está en stock y costos de pedido para reabastecer las unidades que vende. Finalmente, a veces se pierden ingresos por ventas perdidas debido a desabastecimientos.  

Estos costos operativos pueden estar directamente relacionados con la forma en que administra la pieza en el inventario. Para nuestro ejemplo, suponga que utiliza una política de inventario (Q,R), donde Q es la cantidad del pedido de reposición y R es el punto de pedido. Suponga además que la razón por la que no está fabricando $30 por unidad es que tiene competidores, y los clientes obtendrán la pieza de ellos si no pueden obtenerla de usted.

Tanto sus ingresos como sus costes dependen de formas complejas de sus elecciones de Q y R. Estas determinarán cuánto pide, cuándo y, por tanto, con qué frecuencia pide, con qué frecuencia se agota y, por tanto, cuántas ventas pierde y cuánto dinero en efectivo que atas en el inventario. Es imposible calcular el costo de estas relaciones con conjeturas, pero el software moderno puede hacer que las relaciones sean visibles y calcular las cifras en dólares que necesita para guiar su elección de valores para Q y R. Lo hace ejecutando simulaciones probabilísticas detalladas y basadas en hechos. que predicen los costes y el rendimiento promediando un gran número de escenarios de demanda realistas.  

Con estos resultados en la mano, puede calcular el margen asociado con los valores (Q,R) usando la fórmula simple

Margen = (Demanda - Ventas perdidas) x Beneficio por unidad vendida - Costos de pedido - Costos de mantenimiento.

En esta fórmula, las ventas perdidas, los costos de pedido y los costos de mantenimiento dependen del punto de pedido R y la cantidad de pedido Q.

La Figura 1 muestra el resultado de las simulaciones que fijaron Q en 25 unidades y variaron R de 10 a 30 en pasos de 5. Si bien la curva es bastante plana en la parte superior, ganaría más dinero manteniendo un inventario disponible de alrededor de 25 unidades ( que corresponde al ajuste R = 20). Más inventario, a pesar de un mayor nivel de servicio y menos ventas perdidas, generaría un poco menos de dinero (y vincularía mucho más efectivo), y menos inventario generaría mucho menos.

 

Márgenes vs Nivel de Inventario Negocio

Figura 1: Mostrando que puede haber muy poco o demasiado inventario disponible

 

Sin confiar en el software de simulación de inventario, no podríamos descubrir

  • a) que es posible llevar muy poco y demasiado inventario
  • b) cuál es el mejor nivel de inventario
  • c) cómo llegar allí mediante las elecciones adecuadas del punto de pedido R y la cantidad de pedido Q.

 

Sin una comprensión explícita de lo anterior, las empresas tomarán decisiones de inventario diarias basándose en la intuición y los métodos de regla empírica basados en promedios. Las compensaciones descritas aquí no están expuestas y la combinación resultante de inventario produce un retorno mucho menor, perdiendo cientos de miles a millones por año en ganancias perdidas. Así que sé como Ricitos de Oro. Con los sistemas y las herramientas de software correctos, ¡usted también puede hacerlo bien!    

 

 

Deja un comentario
Artículos Relacionados
Superar la incertidumbre con tecnología de optimización de servicio e inventario

Superar la incertidumbre con tecnología de optimización de servicio e inventario

En este blog, analizaremos el mercado impredecible y de ritmo rápido de hoy y los constantes desafíos que enfrentan las empresas para administrar su inventario y niveles de servicio de manera eficiente. El tema principal de esta discusión, arraigado en el concepto de “Optimización probabilística del inventario”, se centra en cómo se puede aprovechar la tecnología moderna para lograr objetivos óptimos de servicio e inventario en medio de la incertidumbre. Este enfoque no sólo aborda los problemas tradicionales de gestión de inventarios, sino que también ofrece una ventaja estratégica para afrontar las complejidades de las fluctuaciones de la demanda y las interrupciones de la cadena de suministro.

Escenarios de demanda diaria

Escenarios de demanda diaria

En este Videoblog explicaremos cómo la previsión de series temporales se ha convertido en una herramienta fundamental, especialmente a nivel diario, en la que Smart Software ha sido pionero desde sus inicios hace más de cuarenta años. La evolución de las prácticas comerciales de incrementos temporales anuales a incrementos temporales más refinados, como el análisis de datos mensual y ahora diario, ilustra un cambio significativo en las estrategias operativas.

El costo de la planificación con hojas de cálculo

El costo de la planificación con hojas de cálculo

Las empresas que dependen de hojas de cálculo para la planificación de la demanda, la previsión y la gestión de inventario a menudo se ven limitadas por las limitaciones inherentes de las hojas de cálculo. Esta publicación examina los inconvenientes de los enfoques tradicionales de gestión de inventario causados por las hojas de cálculo y sus costos asociados, comparándolos con los importantes beneficios que se obtienen al adoptar tecnologías de planificación de última generación.

Realidad y fantasía en la optimización de Inventarios multi-escalón

Para la mayoría de los pequeños y medianos fabricantes y distribuidores, la optimización del inventario de un solo nivel o de un solo escalón está a la vanguardia de la práctica logística. La optimización de inventario de niveles múltiples ("MEIO") implica jugar el juego a un nivel aún más alto y, por lo tanto, es mucho menos común. Este blog es el primero de dos. Su objetivo es explicar qué es MEIO, por qué fallan las teorías estándar de MEIO y cómo el modelado probabilístico a través de la simulación de escenarios puede restaurar la realidad del proceso MEIO. El segundo blog mostrará un ejemplo particular.

 

Definición de optimización de inventario

Un sistema de inventario se basa en un conjunto de opciones de diseño.

La primera opción es la política para responder a los desabastecimientos: ¿simplemente pierde la venta ante un competidor o puede convencer al cliente para que acepte un pedido pendiente? Lo primero es más común con los distribuidores que con los fabricantes, pero esto puede no ser una gran elección ya que los clientes pueden dictar la respuesta.

La segunda opción es la política de inventario. Estas se dividen en políticas de “revisión continua” y “revisión periódica”, con varias opciones dentro de cada tipo. Puede enlazar a un video tutorial que describe varias políticas de inventario comunes aquí. Quizás el más eficiente sea conocido por los profesionales como "Min/Max" y por los académicos como (s, s) o “pequeña S, gran S”. Utilizamos esta política en las siguientes simulaciones de escenarios. Funciona de la siguiente manera: cuando el inventario disponible cae por debajo del mínimo (s), se realiza un pedido de reposición. El tamaño del pedido es la brecha entre el inventario disponible y el Max (S), por lo que si Min es 10, Max es 25 y disponible es 8, es hora de hacer un pedido de 25-8 = 17 unidades.

La tercera opción es decidir sobre los mejores valores de los "parámetros" de la política de inventario, por ejemplo, los valores que se utilizarán para Min y Max. Antes de asignar números a Min y Max, necesita claridad sobre lo que significa "mejor" para usted. Por lo general, lo mejor significa opciones que minimizan los costos operativos de inventario sujetos a un piso en la disponibilidad del artículo, expresado como Nivel de servicio o Tasa de llenado. En términos matemáticos, este es un "problema de optimización de enteros con restricciones bidimensional". "Bidimensional" porque tienes que elegir dos números: Min y Max. "Entero" porque Min y Max tienen que ser números enteros. "Restringido" porque debe elegir valores mínimos y máximos que brinden un nivel lo suficientemente alto de disponibilidad de artículos, como niveles de servicio y tasas de llenado. “Optimización” porque desea llegar allí con el costo operativo más bajo (el costo operativo combina los costos de mantenimiento, pedido y escasez).

 

Sistemas de inventario de varios niveles

El problema de optimización se vuelve más difícil en sistemas de múltiples escalones. En un sistema de un solo escalón, cada elemento del inventario se puede analizar de forma aislada: un par de valores Mín./Máx. por SKU. Debido a que hay más partes en un sistema de varios niveles, existe un problema computacional mayor.

La Figura 1 muestra un sistema simple de dos niveles para administrar un solo SKU. En el nivel inferior, las demandas llegan a varios almacenes. Cuando están en peligro de agotarse, se reabastecen desde un centro de distribución (DC). Cuando el propio DC está en peligro de agotarse, lo suministra una fuente externa, como el fabricante del artículo.

El problema de diseño aquí es multidimensional: necesitamos valores mínimos y máximos para 4 almacenes y para el CD, por lo que la optimización ocurre en 4×2+1×2=10 dimensiones. El análisis debe tener en cuenta una multitud de factores contextuales:

  • El nivel promedio y la volatilidad de la demanda que ingresa a cada almacén.
  • El promedio y la variabilidad de los plazos de reabastecimiento del centro de distribución.
  • El promedio y la variabilidad de los plazos de reabastecimiento desde la fuente.
  • El nivel de servicio mínimo exigido en los almacenes.
  • El nivel de servicio mínimo requerido en el CD.
  • Los costos de mantenimiento, pedido y escasez en cada almacén.
  • Los costos de mantenimiento, pedido y escasez en el centro de distribución.

Como era de esperar, las conjeturas en el asiento de los pantalones no funcionarán bien en esta situación. Tampoco intentar simplificar el problema analizando cada escalón por separado. Por ejemplo, los desabastecimientos en el centro de distribución aumentan el riesgo de desabastecimiento a nivel de almacén y viceversa.

Obviamente, este problema es demasiado complicado para tratar de resolverlo sin la ayuda de algún tipo de modelo informático.

 

Por qué la teoría del inventario estándar es mala matemática

Con un poco de búsqueda, puede encontrar modelos, artículos de revistas y libros sobre MEIO. Estas son fuentes valiosas de información y conocimiento, incluso números. Pero la mayoría de ellos confían en el recurso de simplificar demasiado el problema para que sea posible escribir y resolver ecuaciones. Esta es la “Fantasía” a la que se refiere el título.

Hacerlo es una maniobra clásica de modelado y no es necesariamente una mala idea. Cuando era estudiante de posgrado en el MIT, me enseñaron el valor de tener dos modelos: un modelo pequeño y aproximado para servir como una especie de visor y un modelo más grande y preciso para producir números confiables. El modelo más pequeño está basado en ecuaciones y teorías; el modelo más grande está basado en procedimientos y datos, es decir, una simulación detallada del sistema. Los modelos basados en teorías y ecuaciones simples pueden producir malas estimaciones numéricas e incluso pasar por alto fenómenos completos. Por el contrario, los modelos basados en procedimientos (p. ej., "pedir hasta el máximo cuando supere el mínimo") y hechos (p. ej., los últimos 3 años de demanda diaria de artículos) requerirán mucha más computación pero darán respuestas más realistas. Afortunadamente, gracias a la nube, tenemos mucha potencia informática al alcance de la mano.

Quizás el mayor "pecado" de modelado en la literatura de MEIO es la suposición de que las demandas en todos los escalones se pueden modelar como procesos de Poisson puramente aleatorios. Incluso si fuera cierto a nivel de almacén, estaría lejos de ser cierto a nivel de CD. El proceso de Poisson es la "rata blanca del modelado de demanda" porque es simple y permite una mayor manipulación de ecuaciones con lápiz y papel. Dado que no todas las demandas tienen forma de Poisson, esto da como resultado recomendaciones poco realistas.

 

Optimización de simulación basada en escenarios

Para obtener realismo, debemos profundizar en los detalles de cómo funcionan los sistemas de inventario en cada escalón. Con pocos límites, excepto los impuestos por el hardware, como el tamaño de la memoria, los programas de computadora pueden mantener cualquier nivel de complejidad. Por ejemplo, no hay necesidad de suponer que cada uno de los almacenes enfrenta flujos de demanda idénticos o tiene los mismos costos que todos los demás.

Una simulación por computadora funciona de la siguiente manera.

  1. El historial de demanda del mundo real y el historial de tiempo de entrega se recopilan para cada SKU en cada ubicación.
  2. Los valores de los parámetros de inventario (p. ej., Min y Max) se seleccionan para la prueba.
  3. Los historiales de demanda y reposición se utilizan para crear escenarios que representan las entradas al programa de computadora que codifica las reglas de operación del sistema.
  4. Las entradas se utilizan para impulsar la operación de un modelo informático del sistema con los valores de los parámetros elegidos durante un largo período, digamos un año.
  5. Los indicadores clave de rendimiento (KPI) se calculan para el año simulado.
  6. Los pasos 2 a 5 se repiten muchas veces y los resultados se promedian para vincular las opciones de parámetros con el rendimiento del sistema.
  7.  

La optimización del inventario agrega otro "bucle externo" a los cálculos mediante la búsqueda sistemática de los posibles valores de Min y Max. Entre esos pares de parámetros que satisfacen la restricción de disponibilidad de artículos, la búsqueda adicional identifica los valores Mín. y Máx. que dan como resultado el costo operativo más bajo.

Realidad y fantasía en la optimización de Inventarios multi-escalón

Figura 1: Estructura general de un tipo de sistema de inventario de dos niveles

 

Estén atentos a nuestro próximo blog

PRÓXIMAMENTE, EN BREVE, PRONTO. Para ver un ejemplo de una simulación del sistema en la Figura 1, lea el segundo blog sobre este tema

 

 

Deja un comentario
Artículos Relacionados
Superar la incertidumbre con tecnología de optimización de servicio e inventario

Superar la incertidumbre con tecnología de optimización de servicio e inventario

En este blog, analizaremos el mercado impredecible y de ritmo rápido de hoy y los constantes desafíos que enfrentan las empresas para administrar su inventario y niveles de servicio de manera eficiente. El tema principal de esta discusión, arraigado en el concepto de “Optimización probabilística del inventario”, se centra en cómo se puede aprovechar la tecnología moderna para lograr objetivos óptimos de servicio e inventario en medio de la incertidumbre. Este enfoque no sólo aborda los problemas tradicionales de gestión de inventarios, sino que también ofrece una ventaja estratégica para afrontar las complejidades de las fluctuaciones de la demanda y las interrupciones de la cadena de suministro.

Escenarios de demanda diaria

Escenarios de demanda diaria

En este Videoblog explicaremos cómo la previsión de series temporales se ha convertido en una herramienta fundamental, especialmente a nivel diario, en la que Smart Software ha sido pionero desde sus inicios hace más de cuarenta años. La evolución de las prácticas comerciales de incrementos temporales anuales a incrementos temporales más refinados, como el análisis de datos mensual y ahora diario, ilustra un cambio significativo en las estrategias operativas.

El costo de la planificación con hojas de cálculo

El costo de la planificación con hojas de cálculo

Las empresas que dependen de hojas de cálculo para la planificación de la demanda, la previsión y la gestión de inventario a menudo se ven limitadas por las limitaciones inherentes de las hojas de cálculo. Esta publicación examina los inconvenientes de los enfoques tradicionales de gestión de inventario causados por las hojas de cálculo y sus costos asociados, comparándolos con los importantes beneficios que se obtienen al adoptar tecnologías de planificación de última generación.

La planificación del inventario se vuelve más interesante

El Blog de Smart

 Recomendaciones para la planificación de la demanda,

previsión y optimización de inventario

A Taiichi Ohno de Toyota se le atribuye la invención de la fabricación Just-In-Time (JIT) en la década de 1950. JIT garantiza que un fabricante produzca solo lo que se necesita, solo cuando se requiere y solo en la cantidad necesaria. Desde entonces, esa innovación ha tenido grandes impactos, algunos buenos, otros menos.

Un artículo reciente del New York Times “Cómo el mundo se quedó sin todo” describe algunos de los impactos "menos". Por ejemplo, JIT ha mantenido los costos de inventario muy bajos mejorando el rendimiento de los activos. Esto, a su vez, es recompensado por Wall Street, por lo que muchas empresas han pasado las últimas décadas reduciendo drásticamente sus inventarios. Centradas como estaban en las finanzas, muchas empresas ignoraron los riesgos inherentes a la reducción de inventarios hasta el punto de que "esbelta" comenzó a bordear la "demacrada". Combinado con una mayor globalización y nuevos riesgos de interrupción del suministro, han abundado los desabastecimientos.

Algunas industrias han ido demasiado lejos, dejándolas expuestas a la disrupción. En una competencia por llegar al costo más bajo, las empresas sin darse cuenta han concentrado su riesgo, se han visto interrumpidas por escasez de materias primas o componentes y, en ocasiones, obligadas a detener las líneas de montaje. Wall Street no ve con buenos ojos las paradas de producción.

Todos sabemos que los eventos aleatorios se han sumado al problema. El primero de ellos ha sido la pandemia de Covid. A medida que la pandemia obstaculizó las operaciones de las fábricas y extendió el desorden en el envío global, muchas economías en todo el mundo se vieron atormentadas por la escasez de una inmensa variedad de productos, desde chips de computadora hasta madera y ropa.

El daño se agrava cuando cosas más inesperadas salen mal. El Bloqueo del Canal de Suez es un excelente ejemplo, obstruyendo la principal ruta comercial entre Europa y Asia. Recientemente, los ataques cibernéticos han agregado otra capa de interrupción.

La reacción crea sus propios problemas, al igual que el ataque cibernético en el Oleoducto Colonial creó escasez de gas a través de compras de pánico. Los proveedores comienzan a cumplir con los pedidos más lentamente de lo habitual. Los fabricantes y distribuidores invierten el rumbo y aumentan los inventarios y diversifican sus proveedores para evitar futuros desabastecimientos. La simple expansión de los almacenes puede no brindar la solución, y la necesidad de determinar cuánto inventario mantener es cada día más urgente.Gerente en almacén con software de gestión de inventario

Entonces, ¿cómo puede ejecutar un plan del mundo real para el inventario JIT en medio de todo este riesgo e incertidumbre? La base de su respuesta son sus datos corporativos. La incertidumbre tiene dos fuentes: la oferta y la demanda. Necesitas los hechos para ambos.

Por el lado de la oferta, aproveche los datos que tiene sobre los plazos de entrega recientes de los proveedores, que reflejan la turbulencia actual. No use valores promedio cuando pueda usar distribuciones de probabilidad que reflejen el rango completo de contingencias. Considere esta comparación. El proveedor A ahora está completando pedidos de manera confiable en exactamente 10 días. El proveedor B también promedia 10 días, pero lo hace con una combinación de 78%/22% de 7 y 21 días. Tanto A como B tienen un retraso de reposición promedio de 10 días, pero los resultados operativos que brinden serán muy diferentes. Solo puede reconocer esto si utiliza modelos de probabilidad del rendimiento del inventario.

Por el lado de la demanda, se aplican consideraciones similares. Primero, reconozca que puede haber habido un cambio importante en el carácter de la demanda de artículos (los estadísticos llaman a esto un "cambio de régimen"), por lo tanto, elimine de su análisis cualquier dato que represente los "buenos viejos tiempos". Entonces, de nuevo, deja de pensar en términos de promedios. Si bien la demanda promedio es importante, no es una descripción suficiente del problema al que se enfrenta. Igualmente importante es la volatilidad de la demanda. La volatilidad es la razón por la que mantiene el inventario en primer lugar. Si la demanda fuera completamente predecible, no tendría faltantes ni exceso de inventario. Así como necesita estimar la distribución de probabilidad completa de los plazos de reabastecimiento, necesita la distribución completa de los valores de demanda.

Una vez que comprenda el rango de variabilidad tanto en la oferta como en la demanda, el pronóstico probabilístico le permitirá tener en cuenta las interrupciones y los eventos inusuales. El software convertirá sus datos bajo demanda y los plazos de entrega en una gran cantidad de escenarios que representan cómo podría desarrollarse su próximo período de planificación. Dados esos escenarios, el software puede determinar la mejor manera de cumplir sus objetivos para métricas como costos de inventario y tasas de desabastecimiento. Al utilizar soluciones como la Optimización de inventario inteligente, planificará con confianza en función de su riesgo de desabastecimiento objetivo con un costo mínimo de mantenimiento de inventario. También puede considerar dejar que la solución prescriba objetivos de nivel de servicio óptimos mediante la evaluación de los costos de inventario adicional frente al costo de falta de existencias.

En la planificación de inventarios, como en la ciencia, no podemos escapar de la realidad de la incertidumbre y el impacto de eventos inusuales. Debemos planificar en consecuencia: el uso de software de optimización de inventario lo ayuda a identificar el nivel de servicio de menor costo. Esto crea un esfuerzo coherente en toda la empresa que combina la visibilidad de las operaciones actuales con evaluaciones matemáticamente correctas de los riesgos y condiciones futuras.

La planificación del inventario se ha vuelto más “interesante” y requiere un mayor grado de conciencia del riesgo y agilidad. El software adecuado puede ayudar.

 

Deja un comentario

Artículos Relacionados

Escenarios de demanda diaria

Escenarios de demanda diaria

En este Videoblog explicaremos cómo la previsión de series temporales se ha convertido en una herramienta fundamental, especialmente a nivel diario, en la que Smart Software ha sido pionero desde sus inicios hace más de cuarenta años. La evolución de las prácticas comerciales de incrementos temporales anuales a incrementos temporales más refinados, como el análisis de datos mensual y ahora diario, ilustra un cambio significativo en las estrategias operativas.

Juego constructivo con gemelos digitales

Juego constructivo con gemelos digitales

Aquellos de ustedes que siguen temas candentes estarán familiarizados con el término "gemelo digital". Aquellos que han estado demasiado ocupados con el trabajo tal vez quieran seguir leyendo y ponerse al día. Si bien existen varias definiciones de gemelo digital, aquí hay una que funciona bien: un gemelo digital es una copia virtual dinámica de un activo físico, proceso, sistema o entorno que se parece y se comporta de manera idéntica a su contraparte del mundo real. Un gemelo digital ingiere datos y replica procesos para que pueda predecir posibles resultados de rendimiento y problemas que podría experimentar el producto del mundo real.

Directo al cerebro del jefe: análisis e informes de inventario

Directo al cerebro del jefe: análisis e informes de inventario

En este blog, la atención se centra en el software que crea informes para la gestión, el héroe silencioso que traduce la belleza de los cálculos furiosos en informes procesables. Observe cómo los cálculos, intrincadamente guiados por los planificadores que utilizan nuestro software, convergen sin problemas en informes de Smart Operational Analytics (SOA), dividiendo cinco áreas clave: análisis de inventario, rendimiento del inventario, tendencias del inventario, rendimiento de los proveedores y anomalías de la demanda.

Mensajes recientes

  • Superar la incertidumbre con tecnología de optimización de servicio e inventarioSuperar la incertidumbre con tecnología de optimización de servicio e inventario
    En este blog, analizaremos el mercado impredecible y de ritmo rápido de hoy y los constantes desafíos que enfrentan las empresas para administrar su inventario y niveles de servicio de manera eficiente. El tema principal de esta discusión, arraigado en el concepto de "Optimización probabilística del inventario", se centra en cómo se puede aprovechar la tecnología moderna para lograr objetivos óptimos de servicio e inventario en medio de la incertidumbre. Este enfoque no sólo aborda los problemas tradicionales de gestión de inventario, sino que también ofrece una ventaja estratégica para afrontar las complejidades de las fluctuaciones de la demanda y las interrupciones de la cadena de suministro. […]
  • Escenarios de demanda diaria Smart 2Escenarios de demanda diaria
    En este Videoblog explicaremos cómo la previsión de series temporales se ha convertido en una herramienta fundamental, especialmente a nivel diario, en la que Smart Software ha sido pionero desde sus inicios hace más de cuarenta años. La evolución de las prácticas comerciales de incrementos temporales anuales a incrementos temporales más refinados, como el análisis de datos mensual y ahora diario, ilustra un cambio significativo en las estrategias operativas. […]
  • El costo de no hacer nada con sus sistemas de planificación de inventarioEl costo de la planificación con hojas de cálculo
    Las empresas que dependen de hojas de cálculo para la planificación de la demanda, la previsión y la gestión de inventario a menudo se ven limitadas por las limitaciones inherentes de las hojas de cálculo. Esta publicación examina los inconvenientes de los enfoques tradicionales de gestión de inventario causados por las hojas de cálculo y sus costos asociados, comparándolos con los importantes beneficios que se obtienen al adoptar tecnologías de planificación de última generación. […]
  • Aprendiendo de la IA del software de modelos de inventarioAprender de los modelos de inventario
    En este video blog, la atención se centra en un aspecto crítico de la gestión de inventario: el análisis y la interpretación de los datos del inventario. La atención se centra específicamente en un conjunto de datos de una agencia de transporte público que detalla piezas de repuesto para autobuses. […]
  • Los métodos de software de pronóstico.Los métodos de previsión
    El software de planificación de la demanda y pronóstico estadístico desempeña un papel fundamental en la gestión empresarial eficaz al incorporar funciones que mejoran significativamente la precisión de los pronósticos. Un aspecto clave implica la utilización de modelos extrapolativos o basados en suavizado, que permiten a las empresas hacer predicciones rápidamente basadas únicamente en datos históricos. Esta base basada en el desempeño pasado es crucial para comprender tendencias y patrones, especialmente en variables como las ventas o la demanda de productos. El software de pronóstico va más allá del mero análisis de datos al permitir combinar el juicio profesional con pronósticos estadísticos, reconociendo que el pronóstico no es un proceso único para todos. Esta flexibilidad permite a las empresas incorporar conocimientos humanos y de la industria en el modelo de pronóstico, lo que garantiza una predicción más matizada y precisa. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Por qué las empresas de MRO necesitan software complementario de planificación e inventario de piezas de servicioPor qué las empresas de MRO necesitan software complementario de planificación e inventario de piezas de servicio
      Las organizaciones MRO existen en una amplia gama de industrias, incluido el transporte público, los servicios eléctricos, las aguas residuales, la energía hidroeléctrica, la aviación y la minería. Para realizar su trabajo, los profesionales de MRO utilizan sistemas de gestión de activos empresariales (EAM) y planificación de recursos empresariales (ERP). Estos sistemas están diseñados para realizar muchos trabajos. Dadas sus características, costo y amplios requisitos de implementación, se supone que los sistemas EAM y ERP pueden hacerlo todo. En esta publicación, resumimos la necesidad de un software complementario que aborde análisis especializados para la optimización del inventario, la previsión y la planificación de piezas de servicio. […]
    • Previsión-de-la-demanda-de-repuestos-una-perspectiva-diferente-para-la-planificación-de-repuestos-de-servicioEl pronóstico importa, pero tal vez no como usted piensa
      Verdadero o falso: El pronóstico no importa para la gestión del inventario de repuestos. A primera vista, esta afirmación parece evidentemente falsa. Después de todo, las previsiones son cruciales para planificar los niveles de existencias, ¿verdad? Depende de lo que entiendas por “previsión”. Si te refieres a un pronóstico de un solo número de la vieja escuela (“la demanda del artículo CX218b será de 3 unidades la próxima semana y de 6 unidades la semana siguiente”), entonces no. Si se amplía el significado de pronóstico para incluir una distribución de probabilidad que tenga en cuenta las incertidumbres tanto de la demanda como de la oferta, entonces sí. […]
    • Por qué las empresas de MRO deberían preocuparse por el exceso de inventarioPor qué las empresas de MRO deberían preocuparse por el exceso de inventario
      ¿Las empresas de MRO realmente priorizan la reducción del exceso de inventario de repuestos? Desde un punto de vista organizativo, nuestra experiencia sugiere que no necesariamente. Las discusiones en las salas de juntas generalmente giran en torno a la expansión de flotas, la adquisición de nuevos clientes, el cumplimiento de acuerdos de nivel de servicio (SLA), la modernización de la infraestructura y la maximización del tiempo de actividad. En industrias donde los activos respaldados por repuestos cuestan cientos de millones o generan ingresos significativos (por ejemplo, minería o petróleo y gas), el valor del inventario simplemente no sorprende y las organizaciones tienden a pasar por alto cantidades masivas de inventario excesivo. […]
    • Principales diferencias entre la planificación de inventario para productos terminados y para MRO y repuestosPrincipales diferencias entre la planificación de inventario para productos terminados y para MRO y repuestos
      En el competitivo panorama empresarial actual, las empresas buscan constantemente formas de mejorar su eficiencia operativa y generar mayores ingresos. La optimización de la gestión de repuestos es un aspecto que a menudo se pasa por alto y que puede tener un impacto financiero significativo. Las empresas pueden mejorar la eficiencia general y generar importantes rendimientos financieros mediante la gestión eficaz del inventario de piezas de repuesto. Este artículo explorará las implicaciones económicas de la gestión optimizada de repuestos y cómo invertir en software de optimización de inventario y planificación de la demanda puede proporcionar una ventaja competitiva. […]

      Planificación de orden probabilística vs. determinista

      El Blog de Smart

      Hombre con una computadora en las mejores prácticas de un almacén en la planificación de la demanda, la previsión y la optimización del inventario

      Considere el problema de reponer el inventario. Para ser específicos, suponga que el artículo de inventario en cuestión es una pieza de repuesto. Tanto usted como su proveedor querrán saber cuánto ordenarán y cuándo. Y su sistema ERP puede estar insistiendo en que también le diga el secreto.

      Modelo determinista de reabastecimiento

      La forma más sencilla de obtener una respuesta decente a esta pregunta es asumir que el mundo es, bueno, simple. En este caso, simple significa "no aleatorio" o, en lenguaje geek, "determinista". En particular, pretende que el tamaño aleatorio y el tiempo de la demanda es realmente un goteo continuo de un tamaño fijo que viene en un intervalo fijo, por ejemplo, 2, 2, 2, 2, 2, 2... Si esto parece poco realista , es. La demanda real podría parecerse más a esto: 0, 1, 10, 0, 1, 0, 0, 0 con muchos ceros, picos ocasionales pero aleatorios.

      Pero la sencillez tiene sus virtudes. Si pretende que la demanda promedio ocurre todos los días como un reloj, es fácil calcular cuándo deberá realizar su próximo pedido y cuántas unidades necesitará. Por ejemplo, suponga que su política de inventario es del tipo (Q,R), donde Q es una cantidad de pedido fija y R es un punto de pedido fijo. Cuando las existencias caen hasta el punto de reorden R o por debajo de este, pide Q unidades más. Para redondear la fantasía, suponga que el tiempo de reabastecimiento también es fijo: después de L días, esas Q nuevas unidades estarán en el estante listas para satisfacer la demanda.

      Todo lo que necesita ahora para responder a sus preguntas es la demanda promedio por día D para el artículo. La lógica es así:

      1. Comienza cada ciclo de reabastecimiento con Q unidades disponibles.
      2. Usted agota ese stock en D unidades por día.
      3. Por lo tanto, alcanza el punto de pedido R después de (QR)/D días.
      4. Entonces, usted ordena cada (QR)/D días.
      5. Cada ciclo de reabastecimiento dura (QR)/D + L días, por lo que realiza un total de 365D/(Q-R+LD) pedidos por año.
      6. Siempre que el tiempo de entrega L < R/D, nunca se agotará y su inventario será lo más pequeño posible.

      La figura 1 muestra el gráfico del inventario disponible frente al tiempo para el modelo determinista. En torno al software inteligente, nos referimos a este gráfico como el "diente de sierra determinista". El stock comienza en el nivel de la última cantidad de pedido Q. Después de disminuir constantemente durante el tiempo de caída (QR)/D, el nivel llega al punto de pedido R y activa un pedido de otras Q unidades. Durante el tiempo de entrega L, las existencias caen exactamente a cero, luego llega mágicamente el nuevo pedido y comienza el siguiente ciclo.

      Figura 1 Modelo determinista de inventario disponible

      Figura 1: Modelo determinista de inventario disponible

       

      Este modelo tiene dos cosas a su favor. No requiere más que álgebra de secundaria y combina (casi) todos los factores relevantes para responder las dos preguntas relacionadas: ¿Cuándo tendremos que hacer el próximo pedido? ¿Cuántos pedidos haremos en un año?

      Modelo Probabilístico de Reposición

      No es sorprendente que si eliminamos parte de la fantasía del modelo determinista, obtengamos información más útil. El modelo probabilístico incorpora toda la desordenada aleatoriedad del problema del mundo real: la incertidumbre tanto en el momento como en el tamaño de la demanda, la variación en el tiempo de reabastecimiento y las consecuencias de esos dos factores: la posibilidad de que las existencias disponibles no alcancen el reabastecimiento. punto, la probabilidad de que haya un desabastecimiento, la variabilidad en el tiempo hasta el próximo pedido y el número variable de pedidos ejecutados en un año.

      El modelo probabilístico funciona simulando las consecuencias de una demanda incierta y un tiempo de entrega variable. Mediante el análisis de los patrones históricos de demanda del artículo (y la exclusión de cualquier observación registrada durante un período en el que la demanda pudo haber sido fundamentalmente diferente), los métodos estadísticos avanzados crean una cantidad ilimitada de escenarios de demanda realistas. Se aplica un análisis similar a los registros de los plazos de entrega de los proveedores. La combinación de estos escenarios de oferta y demanda con las reglas operativas de cualquier política de control de inventario produce escenarios de la cantidad de piezas disponibles. De estos escenarios, podemos extraer resúmenes de los diferentes intervalos entre órdenes.

      La Figura 2 muestra un ejemplo de un escenario probabilístico; la demanda es aleatoria y el artículo se administra utilizando el punto de pedido R = 10 y la cantidad de pedido Q = 20. Atrás quedó el diente de sierra determinista; en su lugar hay algo más complejo y realista (la Escalera Probabilística). Durante los 90 días simulados de operación, se realizaron 9 pedidos y el tiempo entre pedidos varió claramente.

      Usando el modelo probabilístico, las respuestas a las dos preguntas (cuánto tiempo entre pedidos y cuántos en un año) se expresan como distribuciones de probabilidad que reflejan las probabilidades relativas de varios escenarios. La figura 3 muestra la distribución del número de días entre pedidos después de diez años de funcionamiento simulado. Si bien el promedio es de aproximadamente 8 días, el número real varía ampliamente, de 2 a 17.

      En lugar de decirle a su proveedor que realizará X pedidos el próximo año, ahora puede proyectar X ± Y pedidos, y su proveedor conoce mejor sus riesgos al alza y a la baja. Mejor aún, podría proporcionar la distribución completa como la respuesta más rica posible.

      Figura 2 Un escenario probabilístico de inventario disponible

      Figura 2 Un escenario probabilístico de inventario disponible

       

      Figura 3 Distribución de días entre pedidos

      Figura 3: Distribución de días entre pedidos

       

      Subiendo la escalera aleatoria hacia una mayor eficiencia

      Ir más allá del modelo determinista de inventario abre nuevas posibilidades para optimizar las operaciones. En primer lugar, el modelo probabilístico permite una evaluación realista del riesgo de desabastecimiento. El modelo simple en la Figura 1 implica que nunca hay un desabastecimiento, mientras que los escenarios probabilísticos permiten la posibilidad (aunque en la Figura 2 solo hubo una llamada cercana alrededor del día 70). Una vez que se conoce el riesgo, el software puede optimizar buscando en el "espacio de diseño" (es decir, todos los valores posibles de R y Q) para encontrar un diseño que cumpla con un nivel objetivo de riesgo de desabastecimiento a un costo mínimo. El valor del modelo determinista en este análisis más realista es que proporciona un buen punto de partida para la búsqueda a través del espacio de diseño.

      Resumen

      El software moderno proporciona respuestas a preguntas operativas con varios grados de detalle. Utilizando el ejemplo del tiempo entre pedidos de reabastecimiento, hemos demostrado que la respuesta se puede calcular de manera aproximada pero rápida mediante un modelo determinista simple. Pero también se puede proporcionar con mucho más detalle con toda la variabilidad expuesta por un modelo probabilístico. Pensamos en estas alternativas como complementarias. El modelo determinista agrupa todas las variables clave en un formato fácil de entender. El modelo probabilístico proporciona el realismo adicional que los profesionales esperan y respalda la búsqueda efectiva de opciones óptimas de punto de pedido y cantidad de pedido.

       

      Deja un comentario
      Artículos Relacionados
      Superar la incertidumbre con tecnología de optimización de servicio e inventario

      Superar la incertidumbre con tecnología de optimización de servicio e inventario

      En este blog, analizaremos el mercado impredecible y de ritmo rápido de hoy y los constantes desafíos que enfrentan las empresas para administrar su inventario y niveles de servicio de manera eficiente. El tema principal de esta discusión, arraigado en el concepto de “Optimización probabilística del inventario”, se centra en cómo se puede aprovechar la tecnología moderna para lograr objetivos óptimos de servicio e inventario en medio de la incertidumbre. Este enfoque no sólo aborda los problemas tradicionales de gestión de inventarios, sino que también ofrece una ventaja estratégica para afrontar las complejidades de las fluctuaciones de la demanda y las interrupciones de la cadena de suministro.

      Escenarios de demanda diaria

      Escenarios de demanda diaria

      En este Videoblog explicaremos cómo la previsión de series temporales se ha convertido en una herramienta fundamental, especialmente a nivel diario, en la que Smart Software ha sido pionero desde sus inicios hace más de cuarenta años. La evolución de las prácticas comerciales de incrementos temporales anuales a incrementos temporales más refinados, como el análisis de datos mensual y ahora diario, ilustra un cambio significativo en las estrategias operativas.

      El costo de la planificación con hojas de cálculo

      El costo de la planificación con hojas de cálculo

      Las empresas que dependen de hojas de cálculo para la planificación de la demanda, la previsión y la gestión de inventario a menudo se ven limitadas por las limitaciones inherentes de las hojas de cálculo. Esta publicación examina los inconvenientes de los enfoques tradicionales de gestión de inventario causados por las hojas de cálculo y sus costos asociados, comparándolos con los importantes beneficios que se obtienen al adoptar tecnologías de planificación de última generación.

      Aumento de los ingresos mediante el aumento de la disponibilidad de piezas de repuesto

      El Blog de Smart

       Recomendaciones para la planificación de la demanda,

      previsión y optimización de inventario

      Comencemos reconociendo que el aumento de los ingresos es bueno para usted y que aumentar la disponibilidad de las piezas de repuesto que proporciona es bueno para sus clientes.

      Pero también reconozcamos que aumentar la disponibilidad de artículos no necesariamente conducirá a mayores ingresos. Si planifica incorrectamente y termina teniendo un exceso de inventario, el efecto neto puede ser bueno para sus clientes, pero definitivamente será malo para usted. Debe haber alguna forma correcta de hacer que esto sea beneficioso para todos, si tan solo se puede reconocer.

      Para tomar la decisión correcta aquí, debe pensar sistemáticamente sobre el problema. Eso requiere que utilice modelos probabilísticos del proceso de control de inventario.

       

      un escenario

      Consideremos un escenario específico y realista. Muchos factores influyen en los resultados:

      • El artículo: Una pieza de repuesto específica de bajo volumen.
      • Demanda media: promedio de 0,1 unidades por día (por lo tanto, altamente "intermitente")
      • Desviación estándar de la demanda: 0,35 unidades por día (por lo tanto, muy variable o “sobredispersada”).
      • Plazo medio de entrega del proveedor: 5 días.
      • Costo unitario: $100.
      • Costo de mantenimiento por año como % del costo unitario: 10%.
      • Costo de pedido por corte de orden de compra: $25.
      • Consecuencias del desabastecimiento: pérdida de ventas (por lo tanto, un mercado competitivo, sin pedidos pendientes).
      • Costo de escasez por venta perdida: $100.
      • Objetivo de nivel de servicio: 85% (por lo tanto, 15% de probabilidad de desabastecimiento en cualquier ciclo de reabastecimiento).
      • Política de control de inventario: revisión periódica/pedido hasta (también llamada política en (T,S))

       

      Política de control de inventario

      Una palabra sobre la política de control de inventario. La política (T,S) es una de varias que son comunes en la práctica. Aunque existen otras políticas más eficientes (p. ej., no esperan a que pasen T días para hacer el ajuste de stock), (T,S) es una de las más sencillas y, por lo tanto, bastante popular. Funciona de esta manera: cada T días, verifica cuántas unidades tiene en stock, digamos X unidades. Luego, solicita unidades SX, que aparecen después del tiempo de entrega del proveedor (en este caso, 5 días). La T en (T,S) es el “intervalo de pedido”, el número de días entre pedidos; la S es el "pedido hasta el nivel", la cantidad de unidades que desea tener disponibles al comienzo de cada ciclo de reposición.

      Para aprovechar al máximo esta política, debe elegir sabiamente los valores de T y S. Elegir sabiamente significa que no puede ganar adivinando o usando guías simples de reglas generales como "Mantenga un promedio de 3 veces la demanda promedio disponible". Las malas elecciones de T y S perjudican tanto a sus clientes como a sus resultados. Y quedarse demasiado tiempo con opciones que alguna vez fueron buenas puede resultar en un rendimiento deficiente si alguno de los factores anteriores cambia significativamente, por lo que los valores de T y S deben recalcularse de vez en cuando.

      La forma inteligente de elegir los valores correctos de T y S es usar modelos probabilísticos codificados en software avanzado. El uso de software es esencial cuando tiene que escalar y elegir valores de T y S que sean correctos no para un artículo sino para cientos o miles.

       

      Análisis de Escenario

      Pensemos en cómo ganar dinero en este escenario. ¿Cuál es el lado positivo? Si no hubiera gastos, este rubro podría generar un promedio de $3.650 por año: 0,1 unidades/día x 365 días x $100/unidad. Se restarán de eso los costos operativos, compuestos por costos de mantenimiento, pedidos y faltantes. Cada uno de ellos dependerá de sus elecciones de T y S.

      El software proporciona números específicos: la configuración de T = 321 días y S = 40 unidades dará como resultado costos operativos anuales promedio de $604, dando un margen esperado de $3,650 – $604 = $3,046. Ver Tabla 1, columna izquierda. Este uso de software se denomina "análisis predictivo" porque traduce las entradas del diseño del sistema en estimaciones de un indicador clave de rendimiento, el margen.

      Ahora piensa si puedes hacerlo mejor. El objetivo de nivel de servicio en este escenario es 85%, que es un estándar algo relajado que no llamará la atención. ¿Qué pasaría si pudiera ofrecer a sus clientes un nivel de servicio 99%? Eso suena como una clara ventaja competitiva, pero ¿reduciría su margen? No si ajusta correctamente los valores de T y S.

      Establecer T = 216 días y S = 35 unidades reducirá los costos operativos anuales promedio a $551 y aumentará el margen esperado a $3,650 – $551 = $3,099. Ver Tabla 1, columna derecha. Aquí está el ganar-ganar que queríamos: mayor satisfacción del cliente y aproximadamente 2% más de ingresos. Este uso del software se denomina "análisis de sensibilidad" porque muestra cuán sensible es el margen a la elección del objetivo de nivel de servicio.

      El software también puede ayudarlo a visualizar la dinámica compleja y aleatoria de los movimientos de inventario. Un subproducto del análisis que llenó la Tabla 1 son los gráficos que muestran las rutas aleatorias tomadas por las existencias a medida que disminuyen durante un ciclo de reabastecimiento. La figura 1 muestra una selección de 100 escenarios aleatorios para el escenario en el que el nivel de servicio objetivo es 99%. En la figura, solo 1 de los 100 escenarios resultó en un desabastecimiento, lo que confirma la precisión de la elección del pedido hasta el nivel.

       

      Resumen

      La gestión de los inventarios de piezas de repuesto a menudo se realiza al azar utilizando el instinto, el hábito o la regla empírica obsoleta. Volarlo de esta manera no es un camino confiable y reproducible hacia un mayor margen o una mayor satisfacción del cliente. La teoría de la probabilidad, destilada en modelos de probabilidad y luego codificada en software avanzado, es la base para una guía coherente y eficiente sobre cómo administrar las piezas de repuesto en función de los hechos: características de la demanda, plazos de entrega, objetivos de nivel de servicio, costos y otros factores. Los escenarios analizados aquí ilustran que es posible lograr niveles de servicio más altos y un margen más alto. Una multitud de escenarios que no se muestran aquí ofrecen formas de lograr niveles de servicio más altos pero pierden margen. Usa el programa.

      Escenarios con diferentes objetivos de nivel de servicio

      Stock disponible durante un ciclo de reposición

       

       

      Deja un comentario

      Artículos Relacionados

      Escenarios de demanda diaria

      Escenarios de demanda diaria

      En este Videoblog explicaremos cómo la previsión de series temporales se ha convertido en una herramienta fundamental, especialmente a nivel diario, en la que Smart Software ha sido pionero desde sus inicios hace más de cuarenta años. La evolución de las prácticas comerciales de incrementos temporales anuales a incrementos temporales más refinados, como el análisis de datos mensual y ahora diario, ilustra un cambio significativo en las estrategias operativas.

      Juego constructivo con gemelos digitales

      Juego constructivo con gemelos digitales

      Aquellos de ustedes que siguen temas candentes estarán familiarizados con el término "gemelo digital". Aquellos que han estado demasiado ocupados con el trabajo tal vez quieran seguir leyendo y ponerse al día. Si bien existen varias definiciones de gemelo digital, aquí hay una que funciona bien: un gemelo digital es una copia virtual dinámica de un activo físico, proceso, sistema o entorno que se parece y se comporta de manera idéntica a su contraparte del mundo real. Un gemelo digital ingiere datos y replica procesos para que pueda predecir posibles resultados de rendimiento y problemas que podría experimentar el producto del mundo real.

      Directo al cerebro del jefe: análisis e informes de inventario

      Directo al cerebro del jefe: análisis e informes de inventario

      En este blog, la atención se centra en el software que crea informes para la gestión, el héroe silencioso que traduce la belleza de los cálculos furiosos en informes procesables. Observe cómo los cálculos, intrincadamente guiados por los planificadores que utilizan nuestro software, convergen sin problemas en informes de Smart Operational Analytics (SOA), dividiendo cinco áreas clave: análisis de inventario, rendimiento del inventario, tendencias del inventario, rendimiento de los proveedores y anomalías de la demanda.

      Mensajes recientes

      • Superar la incertidumbre con tecnología de optimización de servicio e inventarioSuperar la incertidumbre con tecnología de optimización de servicio e inventario
        En este blog, analizaremos el mercado impredecible y de ritmo rápido de hoy y los constantes desafíos que enfrentan las empresas para administrar su inventario y niveles de servicio de manera eficiente. El tema principal de esta discusión, arraigado en el concepto de "Optimización probabilística del inventario", se centra en cómo se puede aprovechar la tecnología moderna para lograr objetivos óptimos de servicio e inventario en medio de la incertidumbre. Este enfoque no sólo aborda los problemas tradicionales de gestión de inventario, sino que también ofrece una ventaja estratégica para afrontar las complejidades de las fluctuaciones de la demanda y las interrupciones de la cadena de suministro. […]
      • Escenarios de demanda diaria Smart 2Escenarios de demanda diaria
        En este Videoblog explicaremos cómo la previsión de series temporales se ha convertido en una herramienta fundamental, especialmente a nivel diario, en la que Smart Software ha sido pionero desde sus inicios hace más de cuarenta años. La evolución de las prácticas comerciales de incrementos temporales anuales a incrementos temporales más refinados, como el análisis de datos mensual y ahora diario, ilustra un cambio significativo en las estrategias operativas. […]
      • El costo de no hacer nada con sus sistemas de planificación de inventarioEl costo de la planificación con hojas de cálculo
        Las empresas que dependen de hojas de cálculo para la planificación de la demanda, la previsión y la gestión de inventario a menudo se ven limitadas por las limitaciones inherentes de las hojas de cálculo. Esta publicación examina los inconvenientes de los enfoques tradicionales de gestión de inventario causados por las hojas de cálculo y sus costos asociados, comparándolos con los importantes beneficios que se obtienen al adoptar tecnologías de planificación de última generación. […]
      • Aprendiendo de la IA del software de modelos de inventarioAprender de los modelos de inventario
        En este video blog, la atención se centra en un aspecto crítico de la gestión de inventario: el análisis y la interpretación de los datos del inventario. La atención se centra específicamente en un conjunto de datos de una agencia de transporte público que detalla piezas de repuesto para autobuses. […]
      • Los métodos de software de pronóstico.Los métodos de previsión
        El software de planificación de la demanda y pronóstico estadístico desempeña un papel fundamental en la gestión empresarial eficaz al incorporar funciones que mejoran significativamente la precisión de los pronósticos. Un aspecto clave implica la utilización de modelos extrapolativos o basados en suavizado, que permiten a las empresas hacer predicciones rápidamente basadas únicamente en datos históricos. Esta base basada en el desempeño pasado es crucial para comprender tendencias y patrones, especialmente en variables como las ventas o la demanda de productos. El software de pronóstico va más allá del mero análisis de datos al permitir combinar el juicio profesional con pronósticos estadísticos, reconociendo que el pronóstico no es un proceso único para todos. Esta flexibilidad permite a las empresas incorporar conocimientos humanos y de la industria en el modelo de pronóstico, lo que garantiza una predicción más matizada y precisa. […]

        Optimización de inventario para fabricantes, distribuidores y MRO

        • Por qué las empresas de MRO necesitan software complementario de planificación e inventario de piezas de servicioPor qué las empresas de MRO necesitan software complementario de planificación e inventario de piezas de servicio
          Las organizaciones MRO existen en una amplia gama de industrias, incluido el transporte público, los servicios eléctricos, las aguas residuales, la energía hidroeléctrica, la aviación y la minería. Para realizar su trabajo, los profesionales de MRO utilizan sistemas de gestión de activos empresariales (EAM) y planificación de recursos empresariales (ERP). Estos sistemas están diseñados para realizar muchos trabajos. Dadas sus características, costo y amplios requisitos de implementación, se supone que los sistemas EAM y ERP pueden hacerlo todo. En esta publicación, resumimos la necesidad de un software complementario que aborde análisis especializados para la optimización del inventario, la previsión y la planificación de piezas de servicio. […]
        • Previsión-de-la-demanda-de-repuestos-una-perspectiva-diferente-para-la-planificación-de-repuestos-de-servicioEl pronóstico importa, pero tal vez no como usted piensa
          Verdadero o falso: El pronóstico no importa para la gestión del inventario de repuestos. A primera vista, esta afirmación parece evidentemente falsa. Después de todo, las previsiones son cruciales para planificar los niveles de existencias, ¿verdad? Depende de lo que entiendas por “previsión”. Si te refieres a un pronóstico de un solo número de la vieja escuela (“la demanda del artículo CX218b será de 3 unidades la próxima semana y de 6 unidades la semana siguiente”), entonces no. Si se amplía el significado de pronóstico para incluir una distribución de probabilidad que tenga en cuenta las incertidumbres tanto de la demanda como de la oferta, entonces sí. […]
        • Por qué las empresas de MRO deberían preocuparse por el exceso de inventarioPor qué las empresas de MRO deberían preocuparse por el exceso de inventario
          ¿Las empresas de MRO realmente priorizan la reducción del exceso de inventario de repuestos? Desde un punto de vista organizativo, nuestra experiencia sugiere que no necesariamente. Las discusiones en las salas de juntas generalmente giran en torno a la expansión de flotas, la adquisición de nuevos clientes, el cumplimiento de acuerdos de nivel de servicio (SLA), la modernización de la infraestructura y la maximización del tiempo de actividad. En industrias donde los activos respaldados por repuestos cuestan cientos de millones o generan ingresos significativos (por ejemplo, minería o petróleo y gas), el valor del inventario simplemente no sorprende y las organizaciones tienden a pasar por alto cantidades masivas de inventario excesivo. […]
        • Principales diferencias entre la planificación de inventario para productos terminados y para MRO y repuestosPrincipales diferencias entre la planificación de inventario para productos terminados y para MRO y repuestos
          En el competitivo panorama empresarial actual, las empresas buscan constantemente formas de mejorar su eficiencia operativa y generar mayores ingresos. La optimización de la gestión de repuestos es un aspecto que a menudo se pasa por alto y que puede tener un impacto financiero significativo. Las empresas pueden mejorar la eficiencia general y generar importantes rendimientos financieros mediante la gestión eficaz del inventario de piezas de repuesto. Este artículo explorará las implicaciones económicas de la gestión optimizada de repuestos y cómo invertir en software de optimización de inventario y planificación de la demanda puede proporcionar una ventaja competitiva. […]