El Blog de Smart

 Recomendaciones para la planificación de la demanda,

previsión y optimización de inventario

Quants y colapsos financieros

Dedico gran parte de mi tiempo a desarrollar nuevos métodos cuantitativos para la previsión estadística, la previsión de la demanda y la optimización del inventario. Para mí, esta es una forma atractiva de contribuir a la sociedad. Pero sé que la forma más prudente de desarrollar algoritmos es apartarme un poco y mirar con escepticismo mi propio trabajo.

La necesidad de este escepticismo me fue resaltada recientemente cuando leí el libro de Scott Patterson Los cuantos: cómo una nueva generación de expertos en matemáticas conquistó Wall Street y casi lo destruyó (Publicación de la corona, 2010). Este libro revisó los "quants" cuyos complejos modelos financieros fueron en gran parte responsables del colapso financiero en 2007. Mientras leía y pensaba "¿Qué les pasaba a estos tipos?" Empecé a preguntarme si nosotros, los cuantitativos de la cadena de suministro, éramos culpables de algunos de los mismos pecados.

Modelos versus Instintos

En general, el campo de la cadena de suministro se ha quedado atrás de las finanzas en términos del uso de modelos estadísticos. Mis colegas de la universidad y yo estamos trabajando en eso, pero tenemos un largo camino por recorrer. Algunas cadenas de suministro son bastante sofisticadas técnicamente, pero muchas, quizás más, se manejan esencialmente tanto por instinto como por números. ¿Es más seguro evitar los análisis que confiar en los modelos?

Lo que hace que el instinto visceral sea peligroso es que es muy amorfo. Todos los que trabajan mucho tiempo en un trabajo desarrollan instintos, pero la longevidad no es lo mismo que la sabiduría. Es posible aprender todas las lecciones equivocadas durante una larga carrera. También es posible perder la oportunidad de aprender las lecciones correctas porque es posible que nunca surjan ciertos escenarios informativos en la carrera de una persona. También es posible tener días buenos y días malos; incluso los gurús pueden equivocarse. El instinto visceral también es antiproductivo, ya que todas las decisiones tienen que pasar por ese instinto, lo que se convierte en un cuello de botella empresarial. Y Golden Guts finalmente alcanzan sus años dorados y toman su Golden Watch y se van a un Golden Sunset; en ese momento, cualquier experiencia que haya estado presente ha salido por la puerta.

Por el contrario, los modelos tienen ciertas ventajas. En relación con el instinto visceral, los modelos son:

  • Explícito: La teoría de la operación de la cadena de suministro se expone para que todos la vean.
  • Adaptativo: debido a que la teoría es visible, puede revisarse, criticarse, probarse con datos y evolucionar.
  • Consistentes: los modelos pueden ser más o menos ciertos, pero no están sujetos a la variabilidad de un día a otro.
  • Integral: al menos potencialmente, los modelos pueden acumular una amplia gama de experiencia empírica, incluidos escenarios nunca encontrados durante la carrera de una persona.
  • Instructivo: Los modelos son colecciones de relaciones entre variables. Si se hacen visibles las “tripas” del modelo, los usuarios pueden aprender acerca de esas relaciones.

Error de modelo

Sin embargo, a pesar de todas sus virtudes, los modelos también pueden estar equivocados. De hecho, eso es un hecho. Una forma constructiva de vivir con esto está codificada en el famoso aforismo del Dr. George Box, uno de los mejores modeladores del último medio siglo: “Todos los modelos están equivocados. Algunos son útiles.

Los modelos financieros cuantitativos estaban equivocados al ser demasiado simplificados. Comenzaron con una creencia casi religiosa en la eficiencia de los mercados y desarrollaron modelos estadísticos que hacían ciertas suposiciones que tenían más probabilidades de ser ciertas en el mundo físico que en el mundo financiero. Entre estos estaban las distribuciones normales de los cambios en los precios de los activos y la independencia de los eventos en varios rincones del mercado. También asumieron la racionalidad humana.

Debería ser un poco alarmante que las suposiciones de independencia y distribución normal también sean la base de muchos de los modelos en el software de la cadena de suministro. De hecho, existen modelos alternativos de la dinámica de la cadena de suministro que no requieren estos supuestos simplificadores, por lo que este es un riesgo innecesario que corren muchos, quizás la mayoría, de los usuarios del software de la cadena de suministro.

Pero incluso con suposiciones de modelos más sólidas y realistas, no se puede negar que el error del modelo es un riesgo constante. Entonces, ¿puedes ser víctima de tus modelos? Por supuesto que puede.

Autoprotección: mire los datos

Cada profesional de la cadena de suministro que utiliza modelos, entonces, está sujeto al riesgo de modelo. Pero a diferencia de las decisiones basadas en la intuición, las decisiones basadas en cálculos de modelos pueden exponerse y compararse con los resultados del mundo real. La verificación repetida es la mejor manera de protegerse contra el error del modelo, porque no solo prueba si el modelo es realista, sino que también indica cuándo es el momento de actualizar el modelo.

Como se señaló anteriormente, un modelo es un conjunto de relaciones funcionales entre variables clave. Esas relaciones tienen parámetros que ajustan el modelo al contexto operativo actual. Por ejemplo, los modelos de la cadena de suministro a menudo se basan, en parte, en estimaciones de la volatilidad de la demanda. Los datos históricos de demanda se utilizan para calcular los valores numéricos de estos parámetros. Si cambia la volatilidad de la demanda, el modelo se vuelve obsoleto y es probable que produzca recomendaciones inapropiadas. Por lo tanto, la buena práctica exige actualizaciones frecuentes de los parámetros del modelo.

Incluso cuando los valores de los parámetros son actuales, todavía puede haber problemas debido a relaciones funcionales incorrectas. Por ejemplo, considere la relación entre la media y la desviación estándar de la demanda de repuestos. En términos generales, cuanto mayor sea la demanda promedio, mayor será la volatilidad de la demanda medida por la desviación estándar.

Ahora considere modelos simplificados de la “vieja escuela” que describen la demanda de repuestos como un proceso de Poisson. El proceso de Poisson es muy útil y relativamente simple, por lo que a menudo aparece en las clases de Estadística 101. Debido a su relativa simplicidad, los modelos de Poisson son las ratas blancas del análisis de la cadena de suministro de repuestos, es decir, las personas realizan experimentos informáticos y desarrollan teorías basadas en el comportamiento de los modelos de demanda de Poisson. Para los modelos de Poisson, la desviación estándar de la demanda es igual a la raíz cuadrada de la media. Sin embargo, cuando observamos los datos de demanda real de nuestros clientes, descubrimos que la relación real entre la media y la desviación estándar de la demanda se describe mejor mediante una relación de ley de potencia más general. Por lo tanto, el modelo simple puede usar estimaciones precisas de la media y la desviación estándar, pero aun así no reflejar con precisión su relación. Esto, a su vez, conduce a recomendaciones incorrectas sobre los puntos de pedido de piezas de repuesto. Verificar datos reales es el mejor antídoto contra las suposiciones arrogantes.

 

Qué hacer a continuación

No siento que los modelos actuales de la cadena de suministro estén al borde de crear el tipo de colapso que vimos al comienzo de la Gran Recesión. Pero aquellos de nosotros que somos expertos en la cadena de suministro debemos mostrar más madurez profesional que nuestros colegas financieros. Necesitamos no enamorarnos de nuestros modelos, y debemos alertar a nuestros clientes para corregir la higiene del modelo.

Por lo tanto, usuarios de modelos, lávense las manos con frecuencia a medida que comienza la temporada de gripe, y laven sus modelos minuciosamente a través de datos duros para asegurarse de que los modelos en los que confían estén actualizados y se basen en la realidad. Ambos pasos lo protegerán de ser víctima de sus modelos y le permitirán explotar sus ventajas sobre la administración por intuición.

Apéndice: Consejos técnicos

El análisis de la cadena de suministro proporciona varios tipos de resultados. En el ámbito de la previsión y la planificación de la demanda, la comprobación empírica obvia es comparar las previsiones con los valores reales de la demanda que finalmente se revelan. Este mismo “pronosticar y luego verificar” El enfoque también se puede utilizar en la generación de pronósticos. En el ámbito de la gestión de inventario, los modelos pueden basarse en pronósticos para recomendar opciones de políticas, como puntos de pedido y cantidades de pedidos o valores mínimos y máximos. Existe una forma inteligente de confirmar la precisión de las recomendaciones de puntos de reorden y Min's. ver nuestro blog La métrica de precisión de pronóstico correcta para la planificación de inventario

 

Deja un comentario

Artículos Relacionados

Aprovechando las listas de materiales de Epicor Kinetic Planning con Smart IP&O para pronosticar con precisión

Aprovechando las listas de materiales de Epicor Kinetic Planning con Smart IP&O para pronosticar con precisión

En este blog, exploramos cómo aprovechar las listas de materiales de Epicor Kinetic Planning con Smart IP&O puede transformar su enfoque de pronóstico en un entorno de fabricación altamente configurable. Descubra cómo Smart, una solución de optimización de inventario y planificación de la demanda basada en IA de vanguardia, puede simplificar las complejidades de predecir la demanda de productos terminados, especialmente cuando se trata de componentes intercambiables. Descubra cómo la planificación de listas de materiales y las técnicas avanzadas de previsión permiten a las empresas anticipar las necesidades de los clientes con mayor precisión, garantizando la eficiencia operativa y manteniéndose a la vanguardia en un mercado competitivo.

La próxima frontera en análisis de la cadena de suministro

La próxima frontera en análisis de la cadena de suministro

Creemos que la vanguardia del análisis de la cadena de suministro es el desarrollo de gemelos digitales de sistemas de inventario. Estos gemelos toman la forma de modelos de eventos discretos que utilizan la simulación Monte Carlo para generar y optimizar toda la gama de riesgos operativos. También afirmamos que nosotros y nuestros colegas de Smart Software hemos desempeñado un papel enorme en la creación de esa vanguardia.

Superar la incertidumbre con tecnología de optimización de servicio e inventario

Superar la incertidumbre con tecnología de optimización de servicio e inventario

En este blog, analizaremos el mercado impredecible y de ritmo rápido de hoy y los constantes desafíos que enfrentan las empresas para administrar su inventario y niveles de servicio de manera eficiente. El tema principal de esta discusión, arraigado en el concepto de “Optimización probabilística del inventario”, se centra en cómo se puede aprovechar la tecnología moderna para lograr objetivos óptimos de servicio e inventario en medio de la incertidumbre. Este enfoque no sólo aborda los problemas tradicionales de gestión de inventarios, sino que también ofrece una ventaja estratégica para afrontar las complejidades de las fluctuaciones de la demanda y las interrupciones de la cadena de suministro.

Mensajes recientes

  • Simple Inventory Optimization is Good Except When It Isn’t FHDLo simple es bueno, excepto cuando no lo es
    En este blog, dirigimos la conversación hacia el potencial transformador de la tecnología en la gestión de inventario. La discusión se centra en las limitaciones del pensamiento simple en la gestión de procesos de control de inventario y la necesidad de adoptar soluciones de software sistemáticas. […]
  • Aprovechando las listas de materiales de Epicor Kinetic Planning con Smart IP&O para pronosticar con precisión HDAprovechando las listas de materiales de Epicor Kinetic Planning con Smart IP&O para pronosticar con precisión
    En este blog, exploramos cómo aprovechar las listas de materiales de Epicor Kinetic Planning con Smart IP&O puede transformar su enfoque de pronóstico en un entorno de fabricación altamente configurable. Descubra cómo Smart, una solución de optimización de inventario y planificación de la demanda basada en IA de vanguardia, puede simplificar las complejidades de predecir la demanda de productos terminados, especialmente cuando se trata de componentes intercambiables. Descubra cómo la planificación de listas de materiales y las técnicas avanzadas de previsión permiten a las empresas anticipar las necesidades de los clientes con mayor precisión, garantizando la eficiencia operativa y manteniéndose a la vanguardia en un mercado competitivo. […]
  • Dos redes neuronales de optimización de inventario multiescalón AILa próxima frontera en análisis de la cadena de suministro
    Creemos que la vanguardia del análisis de la cadena de suministro es el desarrollo de gemelos digitales de sistemas de inventario. Estos gemelos toman la forma de modelos de eventos discretos que utilizan la simulación Monte Carlo para generar y optimizar toda la gama de riesgos operativos. También afirmamos que nosotros y nuestros colegas de Smart Software hemos desempeñado un papel enorme en la creación de esa vanguardia. […]
  • INTELIGENTE SE UNE A EPICOREpicor adquiere software inteligente para tecnologías de optimización y planificación de inventario impulsadas por IA
    La adquisición reúne a dos empresas estrechamente alineadas para ayudar a las organizaciones a obtener la información adecuada en el momento adecuado y tomar medidas para maximizar el rendimiento empresarial. . […]
  • Superar la incertidumbre con tecnología de optimización de servicio e inventarioSuperar la incertidumbre con tecnología de optimización de servicio e inventario
    En este blog, analizaremos el mercado impredecible y de ritmo rápido de hoy y los constantes desafíos que enfrentan las empresas para administrar su inventario y niveles de servicio de manera eficiente. El tema principal de esta discusión, arraigado en el concepto de "Optimización probabilística del inventario", se centra en cómo se puede aprovechar la tecnología moderna para lograr objetivos óptimos de servicio e inventario en medio de la incertidumbre. Este enfoque no sólo aborda los problemas tradicionales de gestión de inventario, sino que también ofrece una ventaja estratégica para afrontar las complejidades de las fluctuaciones de la demanda y las interrupciones de la cadena de suministro. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Por qué las empresas de MRO necesitan software complementario de planificación e inventario de piezas de servicioPor qué las empresas de MRO necesitan software complementario de planificación e inventario de piezas de servicio
      Las organizaciones MRO existen en una amplia gama de industrias, incluido el transporte público, los servicios eléctricos, las aguas residuales, la energía hidroeléctrica, la aviación y la minería. Para realizar su trabajo, los profesionales de MRO utilizan sistemas de gestión de activos empresariales (EAM) y planificación de recursos empresariales (ERP). Estos sistemas están diseñados para realizar muchos trabajos. Dadas sus características, costo y amplios requisitos de implementación, se supone que los sistemas EAM y ERP pueden hacerlo todo. En esta publicación, resumimos la necesidad de un software complementario que aborde análisis especializados para la optimización del inventario, la previsión y la planificación de piezas de servicio. […]
    • Previsión-de-la-demanda-de-repuestos-una-perspectiva-diferente-para-la-planificación-de-repuestos-de-servicioEl pronóstico importa, pero tal vez no como usted piensa
      Verdadero o falso: El pronóstico no importa para la gestión del inventario de repuestos. A primera vista, esta afirmación parece evidentemente falsa. Después de todo, las previsiones son cruciales para planificar los niveles de existencias, ¿verdad? Depende de lo que entiendas por “previsión”. Si te refieres a un pronóstico de un solo número de la vieja escuela (“la demanda del artículo CX218b será de 3 unidades la próxima semana y de 6 unidades la semana siguiente”), entonces no. Si se amplía el significado de pronóstico para incluir una distribución de probabilidad que tenga en cuenta las incertidumbres tanto de la demanda como de la oferta, entonces sí. […]
    • Por qué las empresas de MRO deberían preocuparse por el exceso de inventarioPor qué las empresas de MRO deberían preocuparse por el exceso de inventario
      ¿Las empresas de MRO realmente priorizan la reducción del exceso de inventario de repuestos? Desde un punto de vista organizativo, nuestra experiencia sugiere que no necesariamente. Las discusiones en las salas de juntas generalmente giran en torno a la expansión de flotas, la adquisición de nuevos clientes, el cumplimiento de acuerdos de nivel de servicio (SLA), la modernización de la infraestructura y la maximización del tiempo de actividad. En industrias donde los activos respaldados por repuestos cuestan cientos de millones o generan ingresos significativos (por ejemplo, minería o petróleo y gas), el valor del inventario simplemente no sorprende y las organizaciones tienden a pasar por alto cantidades masivas de inventario excesivo. […]
    • Principales diferencias entre la planificación de inventario para productos terminados y para MRO y repuestosPrincipales diferencias entre la planificación de inventario para productos terminados y para MRO y repuestos
      En el competitivo panorama empresarial actual, las empresas buscan constantemente formas de mejorar su eficiencia operativa y generar mayores ingresos. La optimización de la gestión de repuestos es un aspecto que a menudo se pasa por alto y que puede tener un impacto financiero significativo. Las empresas pueden mejorar la eficiencia general y generar importantes rendimientos financieros mediante la gestión eficaz del inventario de piezas de repuesto. Este artículo explorará las implicaciones económicas de la gestión optimizada de repuestos y cómo invertir en software de optimización de inventario y planificación de la demanda puede proporcionar una ventaja competitiva. […]