El Blog de Smart

 Recomendaciones para la planificación de la demanda,

previsión y optimización de inventario

"Billones de registros de millones de personas... Encontrar la información útil y correcta, comprender su calidad y producir datos analizados confiables de manera oportuna y rentable son cuestiones críticas".

El vicepresidente sénior de investigación de Smart Software, Tom Willemain, tuvo recientemente la oportunidad de hablar con el Dr. Mohsen Hamoudia, presidente de la Instituto Internacional de Pronosticadores (IIF), para discutir problemas actuales y oportunidades para el análisis de big data. El IIF informa a los profesionales sobre tendencias y desarrollos de investigación en pronósticos a través de publicaciones impresas y en línea y la celebración de conferencias profesionales.

El Dr. Hamoudia comienza, a modo de introducción:

En todas las industrias, la disponibilidad de datos se está disparando en volumen, variedad y velocidad. El análisis de big data está jugando un papel importante en la identificación de los datos que son más importantes para el negocio.

Permítanme tomar el ejemplo del sector de las Tecnologías de la Información y la Comunicación (TIC). Estamos viendo un crecimiento literalmente exponencial en la cantidad de datos disponibles para las telecomunicaciones, los distribuidores de contenido independientes Over-the-top (OTT), el gobierno, los reguladores y otras organizaciones.

En todo el mundo, somos testigos de petabytes de datos: billones de registros de millones de personas, todos provenientes de múltiples fuentes. Entre estas fuentes: conexiones a Internet, ventas, centros de atención al cliente, redes sociales, datos de teléfonos fijos y móviles. Encontrar la información útil y correcta, comprender su calidad y producir datos analizados confiables de manera oportuna y rentable son cuestiones críticas. Las empresas de TIC buscan cada vez más información procesable en sus datos. ¿Cómo pueden aumentar su base de clientes y sus programas de fidelización? ¿Cómo pueden mejorar la calidad del servicio (QoS) y reducir la rotación de clientes? Con las plataformas de análisis de big data adecuadas, pueden ser más competitivos y eficientes, mejorando las operaciones, el servicio al cliente y la gestión de riesgos. Pronosticar y predecir las tendencias y direcciones de los clientes es clave para las telecomunicaciones.

Las habilidades de pronóstico, incluidas las matemáticas, las estadísticas y la econometría, forman uno de los "bloques" más importantes de habilidades requeridas en la gestión de Big Data. Algunas actividades de pronóstico forman naturalmente parte del debate de los grandes datos.

En las industrias minoristas, las direcciones de previsión diarias pedir a través de miles de productos. La previsión financiera, ya sea considerando el comportamiento del cliente o series de datos financieros, genera conjuntos masivos de datos en línea. Como señaló Robert Fildes, profesor distinguido de la Universidad de Lancaster, hasta el momento la comunidad académica de pronósticos no está completamente involucrada, con solo unas pocas excepciones. Hal Varian de Google analizó parte del trabajo que David Hendry y Jennifer Castle, en la Universidad de Oxford, han realizado en la búsqueda de grandes conjuntos de datos para modelos significativos congruentes con los datos. Stock y Watson también han desarrollado sus propios enfoques para grandes conjuntos de macrodatos. Pero a pesar del intento, en el simposio del año pasado sobre pronóstico en Seúl, de explorar el tema de los grandes datos y sus aplicaciones de pronóstico, quedan pocas aplicaciones convincentes del uso de datos en línea en problemas reales de pronóstico.

P. En la actualidad, se habla mucho de "análisis predictivo", pero la frase rara vez se relaciona con la previsión. ¿Está de acuerdo en que la previsión se encuentra en el corazón del análisis predictivo? ¿Tiene alguna explicación de por qué se ha roto el enlace? ¿Tiene ideas sobre cómo reinyectar pronósticos en la conversación?

Los resultados de la previsión (el “qué”) quizás ahora se perciban como menos importantes que el “cómo”. En consecuencia, la confianza que los usuarios otorgan a la previsión tradicional ha disminuido. ¿Quién de hecho cuestiona la precisión o la relevancia de los pronósticos al comparar, a posteriori, la realidad con el pronóstico, defendiendo la efectividad de los metododiges y, por lo tanto, generando credibilidad?

Con la percepción actual de "análisis predictivo", probablemente haya más espacio en la imaginación del público asignado al lado "cómo" de las cosas y, por lo tanto, una historia más creíble para contar a los socios, inversores o clientes.

P. Parece que casi no hay vínculo entre el pronóstico tradicional y la tecnología móvil (teléfonos inteligentes, tabletas). ¿Es esto cierto o algunas empresas están migrando la previsión a dispositivos móviles? ¿Ve un camino a seguir en el que los algoritmos de pronóstico tradicionales residirían de forma rutinaria en los dispositivos móviles?

En primer lugar, estoy realmente encantado de invitar a sus lectores a echar un vistazo a nuestro último número de Foresight. Un excelente artículo sobre el tema, "Pronósticos en el bolsillo: los dispositivos móviles pueden mejorar la colaboración", explica que "la creciente popularidad de las PDA, los teléfonos inteligentes, las tabletas y otros dispositivos móviles abre nuevas oportunidades para la comunicación y la colaboración en los pronósticos comerciales". Los autores nos dicen que "las aplicaciones móviles de pronóstico (m-forecasting) pueden simplificar los enfoques de colaboración entre minoristas y proveedores, contribuyendo así al suministro e intercambio de información sobre productos, especialmente porque los pronósticos están fuertemente vinculados al conocimiento del contexto local".

Por ejemplo, en el lado de las TIC y OTT, una gran cantidad de proyectos predictivos, como los de Google+ y Facebook, están sucediendo gracias a la inclusión de los datos de "ubicación del usuario" en los sistemas de TI de OTT. En mi opinión, y lo que veo en algunos sectores como retail y logística, es que la previsión tradicional y la previsión móvil (m-forecasting) son complementarias. Este último podría verse como un enfoque de pronóstico de abajo hacia arriba que confirmará o no los resultados del pronóstico de arriba hacia abajo.

P. Algunas personas argumentan que los macrodatos facilitarán el reemplazo de los pronósticos por sistemas de “detectar y reaccionar”. Hablando en términos prácticos, ¿cómo explicaría "sentir y reaccionar"? ¿Hay áreas de aplicación en las que cree que es probable que se afiance o no?

Me parece que “sentir y reaccionar” está completamente orientado a la perspectiva de corto plazo. El pronóstico amplía esto al abordar las necesidades para un horizonte variable: corto y mediano plazo.

Como efecto colateral de ATAWAD (Anytime, Anywhere, Any Device), los criterios de toma de decisiones son, más que nunca, “a corto plazo”. Big data es un sistema de detección de "señales débiles", que permite la detección casi en tiempo real de oportunidades comerciales que pasarían desapercibidas con los sistemas de TI tradicionales. Realmente no hay aplicaciones preferidas o no prioritarias para esto, la pregunta está más en el lado de "cuándo".

Big data es relevante cuando se mira debajo de la superficie en tiempos económicos difíciles, pero no estoy tan seguro de si vale la pena el esfuerzo en un período económico "normal". Para concluir sobre este punto: me complacerá ver un ejemplo de cuán precisos son los pronósticos que se basan en "sentir y reaccionar" frente a los pronósticos basados en modelos tradicionales.

P. Estoy haciendo algunas preguntas importantes. ¿Hasta qué punto ve que la comunidad de IIF da forma a estas discusiones y resultados? ¿Cómo pueden los lectores unirse al diálogo?

Esperamos una mayor disponibilidad y un mayor uso de una gran cantidad de datos en muchas industrias, como la energía, el transporte, la atención médica, las finanzas, las telecomunicaciones y el turismo.

Muchos de los miembros del IIF están involucrados en diferentes aspectos del “movimiento” de big data. El IIF está trabajando en las actividades de pronóstico que, naturalmente, forman parte del debate sobre los grandes datos. En términos más generales, el IIF está participando activamente y brindando un foro para la discusión de pronósticos en el resto del mundo.

El tema de nuestro último Simposio Internacional sobre Pronósticos (ISF) celebrado en Seúl fue "Pronósticos con Big Data" y algunas presentaciones estuvieron relacionadas con la atención médica y las telecomunicaciones. El Banco Central Europeo (BCE) acaba de organizar un taller relevante. Si estos modelos se capitalizan, tienen el potencial de impactar la política económica de Europa con bastante rapidez.

Los lectores pueden unirse al diálogo contribuyendo con artículos para las publicaciones del IIF (The International Journal of Forecasting, Foresight and El oráculo). La previsión, por su parte, es una voz invaluable para reunir a académicos y profesionales en una discusión en curso.

Los lectores también pueden presentar trabajos en la conferencia anual (la mencionada ISF). También pueden sugerir y organizar talleres específicos para aplicaciones específicas de big data, como el que acaba de organizar el BCE en Frankfurt. Otra oportunidad es invitar a los miembros de IIF a asistir a cualquier reunión relacionada con el pronóstico con big data. Todas estas oportunidades forman buenas plataformas para establecer contactos y trabajar juntos.

Mohsen Hamoudia, PhD, es el presidente del Instituto Internacional de Pronosticadores. También se desempeña como Jefe de Estrategia para Grandes Proyectos (París) para Orange Business Services (la antigua France Telecom).

Thomas Willemain, PhD, cofundó Smart Software y actualmente se desempeña como vicepresidente sénior de investigación. El Dr. Willemain también se desempeña como Profesor Emérito de Ingeniería Industrial y de Sistemas en el Instituto Politécnico Rensselear, y como miembro del personal de investigación en el Centro de Ciencias de la Computación, Instituto de Análisis de Defensa.

Deja un comentario

Artículos Relacionados

Mastering Automatic Forecasting for Time Series Data

Dominar el pronóstico automático para datos de series temporales

En este blog, exploraremos el pronóstico automático para proyecciones de demanda de series temporales. Existen múltiples métodos para predecir la demanda futura de un artículo, y esto se vuelve complejo cuando se trata de miles de artículos, cada uno de los cuales requiere una técnica de pronóstico diferente debido a sus patrones de demanda únicos.

Forecast-Based Inventory Management for Better Planning

Gestión de inventario basada en pronósticos para una mejor planificación

La gestión de inventario basada en pronósticos, o lógica MRP (planificación de requisitos de materiales), es un método de planificación anticipada que ayuda a las empresas a satisfacer la demanda sin exceso o falta de existencias. Al anticipar la demanda y ajustar los niveles de inventario, mantiene un equilibrio entre satisfacer las necesidades de los clientes y minimizar los costos excesivos de inventario. Este enfoque optimiza las operaciones, reduce el desperdicio y mejora la satisfacción del cliente.

Future-Proofing Utilities: Advanced Analytics for Supply Chain Optimization

Utilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro

Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental.

Mensajes recientes

  • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
    En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
  • 5 Ways to Improve Supply Chain Decision Speed5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro
    La promesa de una cadena de suministro digital ha transformado la forma en que operan las empresas. En esencia, permite tomar decisiones rápidas basadas en datos y, al mismo tiempo, garantizar la calidad y la eficiencia en todas las operaciones. Sin embargo, no se trata solo de tener acceso a más datos. Las organizaciones necesitan las herramientas y plataformas adecuadas para convertir esos datos en información procesable. Aquí es donde la toma de decisiones se vuelve fundamental, especialmente en un panorama en el que las nuevas soluciones de cadena de suministro digital y las plataformas impulsadas por IA pueden ayudarlo a agilizar muchos procesos dentro de la matriz de decisiones. […]
  • Two employees checking inventory in temporary storage in a distribution warehouse.12 causas del exceso de stock y soluciones prácticas
    Gestionar el inventario de manera eficaz es fundamental para mantener un balance saludable y garantizar que los recursos se asignen de manera óptima. A continuación, se analizan en profundidad las principales causas del exceso de existencias, sus implicaciones y posibles soluciones. […]
  • FAQ Mastering Smart IP&O for Better Inventory ManagementPreguntas frecuentes: Cómo dominar la IP&O inteligente para una mejor gestión del inventario.
    Una gestión eficaz de la cadena de suministro y del inventario es esencial para lograr la eficiencia operativa y la satisfacción del cliente. Este blog ofrece respuestas claras y concisas a algunas preguntas básicas y otras preguntas comunes de nuestros clientes de Smart IP&O, ofreciendo información práctica para superar los desafíos típicos y mejorar sus prácticas de gestión de inventario. Centrándonos en estas áreas clave, lo ayudamos a transformar problemas complejos de inventario en acciones estratégicas y manejables que reducen los costos y mejoran el rendimiento general con Smart IP&O. […]
  • 7 Key Demand Planning Trends Shaping the Future7 tendencias clave en planificación de la demanda que están dando forma al futuro
    La planificación de la demanda va más allá de la simple previsión de las necesidades de productos; se trata de garantizar que su empresa satisfaga las demandas de los clientes con precisión, eficiencia y rentabilidad. La última tecnología de planificación de la demanda aborda desafíos clave como la precisión de las previsiones, la gestión de inventarios y la capacidad de respuesta al mercado. En este blog, presentaremos tendencias críticas de planificación de la demanda, que incluyen información basada en datos, previsión probabilística, planificación por consenso, análisis predictivo, modelado de escenarios, visibilidad en tiempo real y previsión multinivel. Estas tendencias le ayudarán a mantenerse a la vanguardia, optimizar su cadena de suministro, reducir costes y mejorar la satisfacción del cliente, posicionando a su empresa para el éxito a largo plazo. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
      En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
    • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovando en el mercado de repuestos OEM con optimización de inventario impulsada por IA
      El sector de posventa ofrece a los fabricantes de equipos originales una ventaja decisiva al ofrecer un flujo de ingresos constante y fomentar la lealtad del cliente mediante la entrega confiable y oportuna de piezas de repuesto. Sin embargo, la gestión del inventario y la previsión de la demanda en el mercado de posventa está plagada de desafíos, incluidos patrones de demanda impredecibles, amplias gamas de productos y la necesidad de entregas rápidas. Los métodos tradicionales a menudo no son suficientes debido a la complejidad y variabilidad de la demanda en el mercado de posventa. Las últimas tecnologías pueden analizar grandes conjuntos de datos para predecir la demanda futura con mayor precisión y optimizar los niveles de inventario, lo que conduce a un mejor servicio y menores costos. […]
    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationUtilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro
      Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental. […]
    • Centering Act Spare Parts Timing Pricing and ReliabilityLey de centrado: sincronización, precio y confiabilidad de los repuestos
      En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]