Slimme software presenteert op P21WWUG CONNECT 2020

Smart Software leidt P21WWUG CONNECT 2020 educatieve videosessies over voorraadbeleid.

Belmont, Massachusetts, augustus 2020 – Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagvoorspelling, voorraadplanning en voorraadoptimalisatie, heeft vandaag aangekondigd dat Dr. Thomas Willemain, medeoprichter en SVP Research, de videosessie "Top Inventory Policies Explained" zal presenteren op P21WWUG CONNECT 2020 van 14 augustus tot en met 11 september 2020.

In deze video definieert en vergelijkt Dr. Thomas Willemain, mede-oprichter en SVP Research, veelgebruikt beleid voor voorraadbeheer. Na een korte inleiding over Smart Software, bespreekt Dr. Willemain vraaggestuurd beleid zoals Min/Max en Reorder Point. Dit wordt gevolgd door een beschrijving van Forecast Driven-beleid. Een beter begrip van dit beleid en hun voor- en nadelen stelt u in staat P21 zo te configureren dat het uw planningsvereisten beter ondersteunt. De sessie wordt afgesloten met een korte demo van Smart Inventory Optimization. De demo laat zien hoe u optimale planningsparameters kunt genereren waarmee u uw beoogde serviceniveaus tegen de laagste kosten kunt bereiken en hoe u het geoptimaliseerde beleid in slechts een paar muisklikken kunt terugsturen naar P21.

De videosessie is toegankelijk van 14 augustus tot en met 11 september. Smart Software zal ook aanwezig zijn op de virtuele conferentie over Smart Inventory Planning & Optimization.

 

Summit Group Amerika slimme software

 

Over Smart Software, Inc.

Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Mitsubishi, Siemens, Disney, FedEx, MARS en The Home Depot. Smart Inventory Planning & Optimization geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts en is te vinden op het World Wide Web op www.smartcorp.com.

SmartForecasts en Smart IP&O zijn gedeponeerde handelsmerken van Smart Software, Inc. Alle andere handelsmerken zijn eigendom van hun respectieve eigenaren.


Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com

 

 

 

 

 

 

 

 

 

Otis

 

5 Tips voor vraagplanning voor het berekenen van prognoseonzekerheid

De slimme voorspeller

 Het nastreven van best practices op het gebied van vraagplanning,

prognoses en voorraadoptimalisatie

Degenen die prognoses maken, zijn het verschuldigd aan degenen die prognoses consumeren, en aan zichzelf, om zich bewust te zijn van de onzekerheid in hun prognoses. Deze notitie gaat over het schatten van prognoseonzekerheid en het gebruik van de schattingen in uw vraagplanningsproces. We richten ons op prognoses die zijn gemaakt ter ondersteuning van vraagplanning en op prognoses die inherent zijn aan voorraad optimaliseren beleid met betrekking tot bestelpunten, veiligheidsvoorraden en min/max-niveaus.

Als je dit leest, leer je over:

- Criteria voor het beoordelen van prognoses
-Bronnen van voorspellingsfout
- Berekening van de voorspellingsfout
-Voorspellingsfout omzetten in voorspellingsintervallen
-De relatie tussen vraagvoorspelling en voorraadoptimalisatie.
-Acties die u kunt ondernemen om deze concepten te gebruiken om de processen van uw bedrijf te verbeteren.

Criteria voor het beoordelen van prognoses

Voorspellingsfouten alleen zijn geen reden genoeg om prognoses als managementtool af te wijzen. Om een beroemd aforisme van George Box te verdraaien: "Alle voorspellingen zijn verkeerd, maar sommige zijn nuttig." Natuurlijk zullen zakelijke professionals altijd zoeken naar manieren om prognoses nuttiger te maken. Dit omvat meestal werk om prognosefouten te verminderen. Maar hoewel de nauwkeurigheid van prognoses het meest voor de hand liggende criterium is om prognoses te beoordelen, is het niet het enige. Hier is een lijst met criteria voor het evalueren van prognoses:

Nauwkeurigheid: Voorspellingen van toekomstige waarden zouden, achteraf bezien, heel dicht bij de werkelijke waarden moeten liggen die zich uiteindelijk zullen openbaren. Maar er kan een afnemend rendement zijn om nog een half procent nauwkeurigheid uit prognoses te persen die anders goed genoeg zijn om te gebruiken bij het nemen van beslissingen.

Tijdigheid: Gevechtspiloten verwijzen naar de OODA-lus (observeren, oriënteren, beslissen en handelen) en de "noodzaak om in de OODA-lus van de vijand te komen" zodat ze als eerste kunnen schieten. Ook bedrijven hebben beslissingscycli. Het leveren van een perfect nauwkeurige voorspelling de dag nadat het nodig was, is niet nuttig. Beter is een goede voorspelling die op tijd aankomt om bruikbaar te zijn.

Kosten: Het voorspellen van data, modellen, processen en mensen kosten allemaal geld. Een goedkopere prognose kan worden gevoed door gegevens die direct beschikbaar zijn; duurder zou een prognose zijn die draait op gegevens die moeten worden verzameld in een speciaal proces buiten de reikwijdte van de informatie-infrastructuur van een bedrijf. Een klassieke, kant-en-klare prognosetechniek zal minder duur zijn om aan te schaffen, te voeden en te exploiteren dan een complexe, op maat gemaakte, door een adviseur geleverde methode. Prognoses kunnen massaal worden geproduceerd door software onder supervisie van een enkele analist, of ze kunnen voortkomen uit een samenwerkingsproces dat tijd en inspanning vereist van grote groepen mensen, zoals districtsverkoopmanagers, productieteams en anderen. Technisch geavanceerde voorspellingstechnieken vereisen vaak het inhuren van personeel met gespecialiseerde technische expertise, zoals een masterdiploma in statistiek, dat doorgaans meer kost dan personeel met een minder geavanceerde opleiding.

Geloofwaardigheid: Uiteindelijk moet een leidinggevende elke prognose accepteren en ernaar handelen. Leidinggevenden hebben de neiging aanbevelingen te wantrouwen of te negeren die ze niet kunnen begrijpen of uitleggen aan de volgende persoon boven hen in de hiërarchie. Voor velen is geloven in een "zwarte doos" een te zware geloofsbeproeving, en zij verwerpen de voorspellingen van de zwarte doos ten gunste van iets transparanters.

Dat gezegd hebbende, zullen we ons nu concentreren op de voorspellingsnauwkeurigheid en de kwaadaardige tweeling, voorspellingsfout.

Bronnen van prognosefouten

Degenen die fouten willen verminderen, kunnen op drie plaatsen zoeken naar problemen:
1. De gegevens die in een prognosemodel gaan
2. Het model zelf
3. De context van de prognoseoefening

Er zijn verschillende manieren waarop gegevensproblemen kunnen leiden tot prognosefouten.

Grove fouten: Verkeerde data leveren verkeerde voorspellingen op. We hebben een geval gezien waarin computergegevens van de vraag naar producten een factor twee verkeerd waren! De betrokkenen zagen dat probleem meteen, maar een minder ernstige situatie kan er gemakkelijk doorheen glippen om het prognoseproces te vergiftigen. Sterker nog, het organiseren, verwerven en controleren van data is vaak de grootste bron van vertraging bij de implementatie van forecasting software. Veel gegevensproblemen lijken voort te komen uit het feit dat de gegevens onbelangrijk waren totdat een prognoseproject ze belangrijk maakte.

Afwijkingen: Zelfs met perfect samengestelde prognosedatabases, zijn er vaak gegevensproblemen van het type "naald in een hooiberg". In deze gevallen zijn het niet de gegevensfouten, maar vraagafwijkingen die bijdragen aan de voorspellingsfout. In een set van bijvoorbeeld 50.000 producten is het waarschijnlijk dat een bepaald aantal artikelen vreemde details heeft die prognoses kunnen vertekenen.

Holdout-analyse is een eenvoudige maar krachtige analysemethode. Om te zien hoe goed een methode voorspelt, gebruikt u deze met oudere bekende gegevens om nieuwere gegevens te voorspellen en ziet u vervolgens hoe het zou zijn uitgekomen! Stel dat u 36 maanden aan vraaggegevens heeft en 3 maanden vooruit moet voorspellen. U kunt het prognoseproces simuleren door de meest recente 3 maanden aan gegevens achter te houden (dwz te verbergen), prognoses te maken met alleen gegevens van maand 1 tot 33 en vervolgens de prognoses voor maanden 34-36 te vergelijken met de werkelijke waarden in maanden 34-36 . Glijdende simulatie herhaalt alleen de holdout-analyse en glijdt langs de vraaggeschiedenis. In het bovenstaande voorbeeld werden de gegevens van de eerste 33 maanden gebruikt om 3 schattingen van de voorspellingsfout te krijgen. Stel dat we het proces starten door de eerste 12 maanden te gebruiken om de volgende 3 te voorspellen. Dan schuiven we vooruit en gebruiken de eerste 13 maanden om de volgende 3 te voorspellen. We gaan door totdat we uiteindelijk de eerste 35 maanden gebruiken om de laatste maand te voorspellen, wat geeft ons nog een schatting van de fout die we maken bij het voorspellen van een maand vooruit. Een samenvatting van alle 1-stap vooruit, 2-stap vooruit en 3 stap vooruit voorspellingsfouten biedt een manier om voorspellingsintervallen te berekenen.

Voorspellingsintervallen berekenen

De laatste stap bij het berekenen van voorspellingsintervallen is het omzetten van de schattingen van de gemiddelde absolute fout in de boven- en ondergrenzen van het voorspellingsinterval. Het voorspellingsinterval op een willekeurig tijdstip in de toekomst wordt berekend als

Voorspellingsinterval = Voorspelling ± Vermenigvuldiger x Gemiddelde absolute fout.

De laatste stap is de keuze van de vermenigvuldiger. De typische benadering is om een kansverdeling van fouten rond de voorspelling voor te stellen en vervolgens de uiteinden van het voorspellingsinterval te schatten met behulp van de juiste percentielen van die verdeling. Gewoonlijk is de veronderstelde foutverdeling de normale verdeling, ook wel de Gaussische verdeling of de "klokvormige curve" genoemd.

Gebruik van voorspellingsintervallen
Het meest directe, informele gebruik van voorspellingsintervallen is om een idee te geven van hoe "squishy" een voorspelling is. Voorspellingsintervallen die breed zijn in vergelijking met de omvang van de prognoses wijzen op een grote onzekerheid.

Er zijn twee meer formele toepassingen bij vraagprognoses: het afdekken van uw weddenschappen over de toekomstige vraag en het begeleiden van prognoseaanpassingen.

Uw weddenschappen afdekken: De prognosewaarden zelf benaderen de meest waarschijnlijke waarden van de toekomstige vraag. Een meer onheilspellende manier om hetzelfde te zeggen is dat er een kans van ongeveer 50% is dat de werkelijke waarde boven (of onder) de voorspelling zal liggen. Als de prognose wordt gebruikt om toekomstige productie te plannen (of de aankoop of aanwerving van grondstoffen), wilt u misschien een buffer inbouwen om te voorkomen dat u tekort komt als de vraag piekt (ervan uitgaande dat onderbouw erger is dan overbouw). Als de prognose wordt geconverteerd van eenheden naar dollars voor omzetprognoses, wilt u misschien een waarde onder de prognose gebruiken om conservatief te zijn bij het projecteren van de cashflow. In beide gevallen moet u eerst de dekking van het voorspellingsinterval kiezen. Een 90%-voorspellingsinterval is een bereik van waarden dat 90% van de mogelijkheden dekt. Dit impliceert dat er een kans van 5% is dat een waarde boven de bovengrens van het 90%-voorspellingsinterval valt. Met andere woorden, de bovengrens van een 90%-voorspellingsinterval markeert het 95e percentiel van de verdeling van de voorspelde vraag in die periode. Evenzo is er een kans van 5% om onder de ondergrens te vallen, wat het 5e percentiel van de vraagverdeling markeert.

Begeleidende voorspellingsaanpassing: Het komt vrij vaak voor dat statistische prognoses worden herzien door een of ander samenwerkingsproces. Deze aanpassingen zijn gebaseerd op informatie die niet is vastgelegd in de vraaggeschiedenis van een item, zoals informatie over acties van concurrenten. Soms zijn ze gebaseerd op een meer vluchtige bron, zoals het optimisme van het verkoopteam. Wanneer de aanpassingen op het scherm worden aangebracht zodat iedereen ze kan zien, bieden de voorspellingsintervallen een nuttige referentie: als iemand de voorspellingen buiten de voorspellingsintervallen wil verplaatsen, overschrijden ze een op feiten gebaseerde grens en moeten ze een goed verhaal hebben om hun argument dat de dingen in de toekomst echt anders zullen zijn.

Voorspellingsintervallen en voorraadoptimalisatie

Ten slotte speelt het concept achter voorspellingsintervallen een essentiële rol in een probleem met betrekking tot vraagvoorspelling: Voorraad optimalisatie.
De belangrijkste analytische taak bij het instellen van bestelpunten (ook wel Mins genoemd) is het voorspellen van de totale vraag over een doorlooptijd voor aanvulling. Dit totaal wordt de doorlooptijdvraag genoemd. Wanneer de voorhanden voorraad daalt tot of onder het bestelpunt, wordt een aanvullingsorder geactiveerd. Als het bestelpunt hoog genoeg is, is er een acceptabel klein risico op voorraaduitval, dat wil zeggen dat de doorlooptijdvraag de voorraad onder nul brengt en leidt tot verloren verkopen of nabestellingen.

SDP_Screenshot nieuwe statistische methoden planning

Nieuwe statistische methoden, en we kunnen effectiever gaan plannen.

De prognosetaak is het bepalen van alle mogelijke waarden van de cumulatieve vraag over de doorlooptijd en hun bijbehorende kansen van optreden. Met andere woorden, de basistaak is het bepalen van een voorspellingsinterval voor een toekomstige willekeurige variabele. Stel dat u een 90%-voorspellingsinterval hebt berekend voor de doorlooptijdvraag. Dan vertegenwoordigt de bovenkant van het interval het 95e percentiel van de verdeling. Door het bestelpunt op dit niveau in te stellen, is er plaats voor 95% van de mogelijke vraagwaarden voor de doorlooptijd, wat betekent dat er slechts een kans van 5% is dat de voorraad is uitgeput voordat de voorraad wordt aangevuld om de schappen opnieuw te bevoorraden. Er is dus een nauw verband tussen voorspellingsintervallen bij vraagprognoses en de berekening van bestelpunten bij voorraadoptimalisatie.

 

5 aanbevelingen voor de praktijk

1. Stel verwachtingen over fouten: Soms hebben managers onredelijke verwachtingen over het terugbrengen van prognosefouten tot nul. U kunt erop wijzen dat fouten slechts één van de dimensies is waarop een prognoseproces moet worden beoordeeld; het kan goed gaan met zowel tijdigheid als kosten. Wijs er ook op dat nul fouten evenmin een realistischer doel is dan 100% conversie van prospects naar klanten, perfecte leveranciersprestaties of nul volatiliteit van aandelenkoersen.

2. Spoor bronnen van fouten op: controleer de nauwkeurigheid van vraaggeschiedenissen. Gebruik statistische methoden om uitschieters in vraaggeschiedenissen te identificeren en gepast te reageren, geverifieerde anomalieën te vervangen door meer typische waarden en gegevens weg te laten van vóór grote veranderingen in de aard van de vraag. Als u een gezamenlijk prognoseproces gebruikt, vergelijkt u de nauwkeurigheid ervan met een puur statistische benadering om items te identificeren waarvoor samenwerking de fouten niet vermindert.

3. Evalueer de fout van alternatieve statistische methoden: er kunnen kant-en-klare technieken zijn die het beter doen dan uw huidige methoden, of het beter doen voor sommige subsets van uw items. De sleutel is om empirisch te zijn, gebruikmakend van het idee van holdout-analyse. Verzamel uw gegevens en doe een "bake off" tussen verschillende methoden om te zien welke voor u beter werken. Als u nog geen statistische prognosemethoden gebruikt, vergelijk ze dan met de "gouden buik" van uw huidige standaard. Gebruik de naïeve voorspelling als maatstaf in de vergelijkingen.

4. Onderzoek het gebruik van nieuwe gegevensbronnen: Vooral als u items heeft die veel gepromoot worden, test u statistische methoden die promotionele gegevens opnemen in het prognoseproces. Ga ook na of er misbruik kan worden gemaakt van informatie van buiten uw bedrijf; kijk bijvoorbeeld of macro-economische indicatoren voor uw sector kunnen worden gecombineerd met bedrijfsgegevens om de nauwkeurigheid van prognoses te verbeteren (dit wordt meestal gedaan met behulp van een methode die meervoudige regressieanalyse wordt genoemd).

5. Gebruik voorspellingsintervallen: Plots van voorspellingsintervallen kunnen uw gevoel voor de onzekerheid in uw prognoses verbeteren, waardoor u items kunt selecteren voor extra onderzoek. Hoewel het waar is dat wat je niet weet je pijn kan doen, is het ook waar dat weten wat je niet weet je kan helpen.

Laat een reactie achter

gerelateerde berichten

Speel jij het voorraadraadspel?

Speel jij het voorraadraadspel?

Sommige bedrijven investeren in software om hen te helpen hun voorraad te beheren, of het nu gaat om reserveonderdelen of eindproducten. Maar een verrassend aantal anderen speelt elke dag het Inventory Guessing Game, vertrouwend op een ingebeelde “Golden Gut” of op gewoon geluk om hun inventariscontroleparameters in te stellen. Maar wat voor resultaten verwacht je met die aanpak?

Vind uw plek op de afwegingscurve

Vind uw plek op de afwegingscurve

Bij voorraadbeheer gaat het, net als bij alles, om het balanceren van concurrerende prioriteiten. Wilt u een lean inventaris? Ja! Wil jij kunnen zeggen “Het is op voorraad” als een klant iets wil kopen? Ja!
Maar kun je het op beide manieren hebben? Slechts tot op zekere hoogte. Als u uw voorraad te agressief aanpast, riskeert u voorraadtekorten. Als je voorraadtekorten uitroeit, creëer je een opgeblazen voorraad. U wordt gedwongen een bevredigend evenwicht te vinden tussen de twee concurrerende doelen: een beperkte voorraad en een hoge beschikbaarheid van artikelen.

Rechtstreeks naar het brein van de baas – voorraadanalyse en rapportage

Rechtstreeks naar het brein van de baas – voorraadanalyse en rapportage

In deze blog wordt de software in de schijnwerpers gezet die rapporten voor het management maakt, de stille held die de schoonheid van furieuze berekeningen vertaalt naar bruikbare rapporten. Kijk hoe de berekeningen, op ingewikkelde wijze begeleid door planners die onze software gebruiken, naadloos samenkomen in Smart Operational Analytics (SOA)-rapporten, waarbij vijf belangrijke gebieden worden verdeeld: voorraadanalyse, voorraadprestaties, voorraadtrends, leveranciersprestaties en vraagafwijkingen.

recente berichten

  • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

      Cloud computing-bedrijven met unieke server- en hardwareonderdelen, e-commerce, online retailers, leveranciers van thuis- en kantoorbenodigdheden, meubilair op locatie, energiebedrijven, intensief onderhoud van bedrijfsmiddelen of opslag voor watervoorzieningsbedrijven hebben hun activiteit tijdens de pandemie opgevoerd. Garages die auto-onderdelen en vrachtwagenonderdelen verkopen, farmaceutische producten, producenten van gezondheidszorg of medische benodigdheden en leveranciers van veiligheidsproducten hebben te maken met een toenemende vraag. Bezorgservicebedrijven, schoonmaakdiensten, slijterijen en magazijnen voor conserven of potten, woonwinkels, tuinleveranciers, tuinonderhoudsbedrijven, hardware-, keuken- en bakbenodigdhedenwinkels, leveranciers van woonmeubelen met een grote vraag worden geconfronteerd met voorraadtekorten, lange doorlooptijden, voorraad tekortkosten, hogere bedrijfskosten en bestelkosten.

      Supply and Demand Chain Executive: optimalisatie van het onderdelenbeheer bij BC Transit.
      Belmont, Massachusetts, 14 mei 2020 – Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie, heeft vandaag aangekondigd dat Supply and Demand Chain Executive 2020 Online Magazine een artikel bevat over voorraadoptimalisatie bij BC Transit, getiteld “Optimizing Parts Management at BC Doorvoer." Eric Nelson, Director Supply Services bij BC Transit legt uit hoe Smart IP&O ervoor heeft gezorgd dat ze het juiste onderdeel op het juiste moment op de juiste plaats hebben om hun volledige servicenetwerk uit te rusten met 35 reparatielocaties. "Slimme IP&O heeft ons in staat gesteld om het serviceniveau als een drijvende KPI te gebruiken", zegt Nelson, "in wezen riskeren we onze voorraad aan te passen om het kritieke punt van het niet opraken aan te pakken en om te gaan met de netelige uitdagingen van seizoensgebonden en intermitterende vraag. Het helpt ons om onze bussen op de weg te houden, zodat we de beste transportoplossing kunnen zijn voor onze partners in British Columbia.” Ga naar om het hele artikel te lezen en om meer te weten te komen over het optimaliseren van onderdelenplanning https://www.sdcexec.com/warehousing/article/21130834/optimizing-parts-management-at-bc-transit Over Smart Software, Inc. Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Disney, FedEx, MARS en The Home Depot. Smart Inventory Planning & Optimization geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts en is te vinden op het World Wide Web op www.smartcorp.com.
      Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478. Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com  
      Smart Software is uitgeroepen tot Epicor platina partner, de hoogste onderscheiding in het ISV Partner Program

      Smart Software uitgeroepen tot Epicor platinum partner, de hoogste onderscheiding in het ISV Partner Program

      Belmont, Massachusetts, januari 2020 – Smart Software is verheugd aan te kondigen dat het is uitgeroepen tot platinapartner van Epicor als toonaangevende leverancier van oplossingen voor vraagplanning en voorraadoptimalisatie. Epicor ERP-klanten maken gebruik van Smart's web-native platform voor voorraadplanning en -optimalisatie (Smart IP&O) om consensusprognoses te ontwikkelen, de vraag te beheren en het voorraadbeleid te optimaliseren.

      “Smart Software helpt Epicor ERP-klanten door bedrijfsanalyses te leveren voor voorraadmodellering en prognoses. Het hebben van te veel of te weinig voorraad is een kostbaar probleem dat doorgaans veel handmatige planning en kosten vereist. Met behulp van Smart IP&O kunnen onze klanten handmatige planningsprocessen automatiseren, de vraag nauwkeuriger voorspellen en de voorraadstrategie vormgeven om deze af te stemmen op de bedrijfsdoelstellingen.” merkt Jennifer Schulze, VP Productmarketing, Epicor op

      De gecertificeerde bidirectionele integratie van Smart Software met Epicor ERP maakt alle transactiegegevens in Epicor, zoals zendingen, verkooporders, leveranciersbonnen, beschikbare voorraad en meer, beschikbaar in het datamodel van Smart IP&O voor analyse. Smart IP&O maakt gebruik van in de praktijk bewezen analyses, probabilistische modellering en de nieuwste ontwikkelingen op het gebied van prognosetechnologie om de toekomstige vraag te voorspellen, een optimaal voorraadbeleid voor te schrijven en mogelijkheden voor operationele verbetering te identificeren. Gebruikers kunnen prognoseresultaten, bestelhoeveelheden en voorraadbeleid met een paar muisklikken overbrengen naar Epicor ERP.

      Greg Hartunian, CEO van Smart Software verklaarde: “In de huidige toeleveringsketen volstaan traditionele prognosemodellering, benaderingen voor voorraadplanning met vuistregels en Excel-spreadsheets niet meer. Het is niet langer voldoende om alleen uw voorraad te beheren.  Klanten die gebruikmaken van Smart IP&O zijn beter in staat om inventarismiddelen effectief te gebruiken, hun activiteiten te verbeteren, kosten te verlagen, klantenservice te verbeteren en beter te presteren dan de concurrentie. We kijken ernaar uit om nauw met Epicor te blijven samenwerken om onze gezamenlijke klanten te helpen deze belangrijke voordelen te behalen.”

      Epicor-Alliance-ISV-Partner-Platinum-RGB-Logo-0518

      Over Smart Software, Inc.
      Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Mitsubishi, Siemens, Disney, FedEx, MARS en The Home Depot. Smart Inventory Planning & Optimization geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts en is te vinden op het World Wide Web op www.smartcorp.com.


      Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
      Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com

       

       

       

       

       

       

       

      Otis

       

       

      Smart Software Senior VP/Research presenteert op Military Operations Research Society (MORS) Emerging Techniques Forum

      Smart Software heeft vandaag aangekondigd dat mede-oprichter en Senior VP of Research, Dr. Thomas Willemain, is geselecteerd om te presenteren op het prestigieuze MORS Emerging Techniques Forum van 4 tot 5 december 2019 in Alexandria, VA.

      MORS is de Military Operations Research Society, gefinancierd door de marine, het leger, de luchtmacht, het marinekorps, het bureau van de minister van Defensie en het ministerie van Binnenlandse Veiligheid. Haar missie is het verbeteren van de kwaliteit van de analyse die de nationale en binnenlandse veiligheidsbeslissingen informeert.

      Het Emerging Techniques Forum biedt de defensieanalytische gemeenschap uitgebreide inhoud over opkomende analytische onderwerpen en technieken. Willemain zal een van de weinige experts zijn die spreken in de track Computational Advances in Analytics. Deze track behandelt nieuwe tools en technieken die gebruikmaken van meer rekenkracht en beschikbaarheid van gegevens.

      Het onderwerp van Willemain is "Het valideren van vraagscenariogeneratoren voor voorraadoptimalisatie". Dit onderzoek maakt deel uit van het voortdurende werk van Smart Software om de stand van de techniek te verbeteren in het beheer van vloten van reserveonderdelen en moeilijk te voorspellen items. Deze verbeteringen zullen worden opgenomen in Smart IP&O, het multi-tenant webgebaseerde platform van het bedrijf voor prognoses, voorraadplanning en optimalisatie. Het onderzoek begon met de promovendi van dr. Willemain aan het Rensselaer Polytechnic Institute, waar hij actief blijft als emeritus hoogleraar Industrial and Systems Engineering.

       

      Over Smart Software, Inc.

      Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Mitsubishi, Siemens, Disney, FedEx, MARS en The Home Depot. Smart Inventory Planning & Optimization geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts en is te vinden op het World Wide Web op www.smartcorp.com.

      SmartForecasts en Smart IP&O zijn gedeponeerde handelsmerken van Smart Software, Inc. Alle andere handelsmerken zijn eigendom van hun respectieve eigenaren.


      Neem voor meer informatie contact op met Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
      Telefoon: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; E-mail: info@smartcorp.com