Door de voorraadniveaus te optimaliseren met behulp van de beste voorspellingen van de toekomstige vraag, kunnen enorme kostenbesparende efficiënties worden bereikt. Bekendheid met de basisprincipes van prognoses is een belangrijk onderdeel van effectief zijn met de softwaretools die zijn ontworpen om deze efficiëntie te benutten. Deze beknopte introductie (de eerste in een korte reeks blogposts) biedt de drukbezette professional een inleiding in de basisideeën die u nodig heeft bij het maken van prognoses. Hoe evalueert u uw prognose-inspanningen en hoe betrouwbaar zijn de resultaten?
Een goede voorspelling is 'onbevooroordeeld'. Het legt de voorspelbare structuur correct vast in de vraaggeschiedenis, waaronder: trend (een regelmatige toename of afname van de vraag); seizoensgebondenheid (cyclische variatie); speciale evenementen (bijv. verkoopacties) die van invloed kunnen zijn op de vraag of een kannibaliserend effect kunnen hebben op andere artikelen; en andere, macro-economische gebeurtenissen.
Met "onbevooroordeeld" bedoelen we dat de geschatte voorspelling niet te hoog of te laag is; het is even waarschijnlijk dat de werkelijke vraag boven of onder de voorspelde vraag ligt. Beschouw de voorspelling als uw beste schatting van wat er in de toekomst zou kunnen gebeuren. Als die voorspelling "onbevooroordeeld" is, zal het algemene beeld laten zien dat metingen van de werkelijke toekomstige vraag de prognoses zullen "brullen" - in evenwicht verdeeld boven en onder voorspellingen door de gelijke kansen.
Je kunt dit zien alsof je een artillerieofficier bent en het jouw taak is om met je kanon een doelwit te vernietigen. Je richt je kanon ("de voorspelling") en schiet dan en ziet hoe de granaten vallen. Als je het kanon correct hebt gericht (een "onbevooroordeelde" voorspelling produceert), zullen die granaten het doelwit "steunen"; sommige granaten vallen vooraan en sommige granaten vallen achterop, maar sommige granaten raken het doelwit. De vallende granaten kunnen worden gezien als de "daadwerkelijke vraag" die in de toekomst zal ontstaan. Als je goed hebt voorspeld (je kanon goed hebt gericht), dan zullen die actuals de prognoses ondersteunen en zowel boven als onder de prognose vallen.
Als je eenmaal een “onbevooroordeelde” voorspelling hebt verkregen (met andere woorden, je hebt je kanon correct gericht), is de vraag: hoe nauwkeurig was je voorspelling? Als we het voorbeeld van de artillerie gebruiken, hoe groot is het bereik rond het doelwit waarin uw granaten vallen? U wilt een zo klein mogelijk bereik hebben. Een goede voorspelling is er een met de minimaal mogelijke "spreiding" rond het doel.
Echter, alleen omdat de werkelijke waarden sterk rond de voorspelling vallen, wil nog niet zeggen dat u een slechte voorspelling hebt. Het kan alleen maar aangeven dat u een zeer "volatiele" vraaggeschiedenis heeft. Nogmaals, als je het artillerievoorbeeld gebruikt, als je begint te schieten in een orkaan, zou je moeten verwachten dat de granaten met een grote fout rond het doelwit vallen.
Uw doel is om een zo nauwkeurig mogelijke voorspelling te verkrijgen met de gegevens waarover u beschikt. Als die gegevens erg vluchtig zijn (je fotografeert in een orkaan), dan zou je een grote fout moeten verwachten. Als uw gegevens stabiel zijn, kunt u een kleine fout verwachten en zullen uw werkelijke waarden dicht bij de voorspelling liggen: u fotografeert op een heldere dag!
Om zowel het nut van uw prognoses als de mate van voorzichtigheid bij het toepassen ervan te begrijpen, moet u kunnen beoordelen en meten hoe goed uw prognose presteert. Hoe goed schat het in wat er werkelijk gebeurt? SmartForecasts doet dit automatisch door zijn "glijdende simulatie" door de geschiedenis te laten lopen. Het simuleert "voorspellingen" die zich in het verleden hadden kunnen voordoen. Een ouder deel van de geschiedenis, zonder de meest recente cijfers, wordt geïsoleerd en gebruikt om prognoses op te bouwen. Omdat deze prognoses vervolgens 'voorspellen' wat er in het meer recente verleden zou kunnen gebeuren - een periode waarvoor u al werkelijke vraaggegevens hebt - kunnen de prognoses worden vergeleken met de echte recente geschiedenis.
Op deze manier kan SmartForecasts empirisch de werkelijke voorspellingsfout berekenen - en die fouten zijn nodig om de veiligheidsvoorraad correct in te schatten. Veiligheidsvoorraad is de hoeveelheid extra voorraad die u nodig heeft om rekening te houden met de verwachte fout in uw prognoses. In een volgend essay, zal ik bespreken hoe we onze geschatte prognosefout gebruiken (via de glijdende simulatie van SmartForecasts) om veiligheidsvoorraden correct in te schatten.
Nelson Hartunian, PhD, was medeoprichter van Smart Software, was voorheen President en houdt er momenteel toezicht op als voorzitter van de raad van bestuur. Hij heeft op verschillende momenten leiding gegeven aan softwareontwikkeling, verkoop en klantenservice.
gerelateerde berichten
Supply Chain Math: neem geen mes mee naar een vuurgevecht
Wiskunde en de toeleveringsketen gaan hand in hand. Naarmate toeleveringsketens groeien, zal de toenemende complexiteit bedrijven ertoe aanzetten om manieren te zoeken om grootschalige besluitvorming te beheren. Wiskunde is een feit van het leven voor iedereen in voorraadbeheer en vraagvoorspelling die hoopt concurrerend te blijven in de moderne wereld. Lees ons artikel voor meer informatie.
Op scenario's gebaseerde prognoses versus vergelijkingen
Van oudsher heeft software gediend als een leveringsvehikel voor vergelijkingen. Dit is prima, voor zover het gaat. Maar wij bij Smart Software denken dat u er beter aan doet door uw vergelijkingen in te ruilen voor scenario's. Ontdek waarom op scenario's gebaseerde planning planners helpt om risico's beter te beheren en betere resultaten te behalen.
Top vijf tips voor nieuwe vraagplanners en -voorspellingen
Goede prognoses kunnen een groot verschil maken voor de prestaties van uw bedrijf, of u nu prognoses maakt ter ondersteuning van verkoop, marketing, productie, voorraad of financiën. Deze blog is in de eerste plaats bedoeld voor die gelukkige mensen die op het punt staan om aan dit avontuur te beginnen. Welkom op het veld!










