Hoe gaat uw ERP-systeem om met veiligheidsvoorraad?

Wordt veiligheidsvoorraad beschouwd als noodreserve of als dagelijkse buffer tegen pieken in de vraag? Het verschil kennen en uw ERP correct configureren, zal een groot verschil maken voor uw bedrijfsresultaten.

De Safety Stock veld in je ERP systeem kan heel verschillende dingen betekenen, afhankelijk van de configuratie. Het niet begrijpen van deze verschillen en hoe ze uw winst beïnvloeden, is een veelvoorkomend probleem dat we hebben gezien bij implementaties van onze software.

Het implementeren van software voor voorraadoptimalisatie begint met nieuwe klanten die de technische implementatie voltooien om de gegevensstroom op gang te brengen. Vervolgens krijgen ze gebruikerstraining en besteden ze weken aan het zorgvuldig configureren van hun initiële veiligheidsvoorraden, bestelniveaus en consensusvraagprognoses met Smart IP&O. Het team raakt vertrouwd met Smart's Key Performance Forecasts (KPP's) voor serviceniveaus, bestelkosten en beschikbare voorraad, die allemaal worden voorspeld met behulp van het nieuwe voorraadbeleid.

Maar wanneer ze het beleid en de prognoses opslaan in hun ERP-testsysteem, zijn de voorgestelde bestellingen soms veel groter en komen ze vaker voor dan ze hadden verwacht, wat de verwachte voorraadkosten opdrijft.

Wanneer dit gebeurt, is de primaire boosdoener de manier waarop het ERP is geconfigureerd om veiligheidsvoorraad te behandelen. Door op de hoogte te zijn van deze configuratie-instellingen kunnen planningsteams de verwachtingen beter stellen en de verwachte resultaten bereiken met minder inspanning (en reden tot ongerustheid!).

Dit zijn de drie veelvoorkomende voorbeelden van configuraties van ERP-veiligheidsvoorraden:

Configuratie 1. Veiligheidsvoorraad wordt behandeld als noodvoorraad dat kan niet geconsumeerd worden. Als een inbreuk op de veiligheidsvoorraad wordt voorspeld, dwingt het ERP-systeem een spoedprocedure af, ongeacht de kosten, zodat de aanwezige voorraad nooit onder de veiligheidsvoorraad komt, zelfs als een geplande ontvangst al in bestelling is en binnenkort zal aankomen.

Configuratie 2. Veiligheidsvoorraad wordt behandeld als Buffervoorraad die is ontworpen om te worden geconsumeerd. Het ERP-systeem zal een bestelling plaatsen wanneer een inbreuk op de veiligheidsvoorraad wordt voorspeld, maar de voorhanden voorraad mag onder de veiligheidsvoorraad dalen. De buffervoorraad beschermt tegen stockout tijdens de bevoorradingsperiode (dwz de doorlooptijd).

Configuratie 3. Veiligheidsvoorraad wordt door het systeem genegeerd en behandeld als een visuele weergave planningshulp of vuistregel. Het wordt genegeerd door de berekeningen van de leveringsplanning, maar wordt door de planner gebruikt om handmatige beoordelingen te maken van wanneer er besteld moet worden.

Opmerking: we raden nooit aan om het veiligheidsvoorraadveld te gebruiken zoals beschreven in Configuratie 3. In de meeste gevallen waren deze configuraties niet bedoeld, maar het resultaat van jarenlange improvisatie die ertoe hebben geleid dat het ERP op een niet-standaard manier werd gebruikt. Over het algemeen zijn deze velden ontworpen om de aanvullingsberekeningen programmatisch te beïnvloeden. De focus van ons gesprek zal dus liggen op configuraties 1 en 2. 

Systemen voor prognoses en inventarisoptimalisatie zijn ontworpen om prognoses te berekenen die anticiperen op voorraadafname en vervolgens veiligheidsvoorraden te berekenen die voldoende zijn om bescherming te bieden tegen variabiliteit in vraag en aanbod. Dit betekent dat de veiligheidsvoorraad bedoeld is om te worden gebruikt als een beschermende buffer (configuratie 2) en niet als noodsituatie schaars (configuratie 3). Het is ook belangrijk om te begrijpen dat, door het ontwerp, de veiligheidsvoorraad zal worden geconsumeerd ongeveer 50% van die tijd.

Waarom 50%? Omdat werkelijke bestellingen de helft van de tijd een onbevooroordeelde prognose zullen overschrijden. Zie onderstaande afbeelding om dit te illustreren. Een "goede" prognose zou de waarde moeten opleveren die het dichtst bij de werkelijke vraag komt, zodat de werkelijke vraag hoger of lager zal zijn zonder vooringenomenheid in beide richtingen.

 

Hoe gaat uw ERP-systeem om met veiligheidsvoorraad 1

 

Als u uw ERP-systeem zo heeft geconfigureerd dat het verbruik van veiligheidsvoorraad correct is toegestaan, dan kan de voorhanden voorraad er uitzien zoals in de onderstaande grafiek. Houd er rekening mee dat een deel van de veiligheidsvoorraad is verbruikt, maar een stockout is vermeden. Het serviceniveau dat u nastreeft bij het berekenen van de veiligheidsvoorraad, bepaalt hoe vaak u uw voorraad moet aanvullen voordat de aanvullingsorder arriveert. De gemiddelde voorraad is in dit scenario ongeveer 60 eenheden over de tijdshorizon.

 

Hoe gaat uw ERP-systeem om met veiligheidsvoorraad 2

 

Als uw ERP-systeem is geconfigureerd om niet het verbruik van de veiligheidsvoorraad toestaat en de ingevoerde hoeveelheid in het veld voor de veiligheidsvoorraad meer behandelt als noodreserves, dan heb je een enorme overvoorraad! Uw beschikbare voorraad ziet er uit als in de onderstaande grafiek, waarbij bestellingen worden versneld zodra een inbreuk op de veiligheidsvoorraad wordt verwacht. De gemiddelde voorraad is ongeveer 90 eenheden, een toename van 50% in vergelijking met toen u toestond dat veiligheidsvoorraad werd verbruikt.

 

Hoe gaat uw ERP-systeem om met veiligheidsvoorraad 3

 

Top 4 bewegingen wanneer u vermoedt dat software de voorraad opdrijft

Er wordt ons vaak gevraagd: "Waarom drijft de software de voorraad op?" Het antwoord is dat Smart het in geen van beide richtingen stuurt - de inputs sturen het aan en die inputs worden beheerd door de gebruikers (of beheerders). Hier zijn vier dingen die u kunt doen om de resultaten te krijgen die u verwacht.

1. Bevestig dat uw serviceniveaudoelen in overeenstemming zijn met wat u wilt voor dat artikel of die groep artikelen. Het instellen van zeer hoge doelen (95% of meer) zal waarschijnlijk de inventaris verhogen als je op een lager niveau hebt rondgereden en het goed vindt om daar te zijn. Het is mogelijk dat u het nieuwe, hogere serviceniveau nog nooit heeft bereikt, maar klanten hebben niet geklaagd. Zoek uit welk serviceniveau heeft gewerkt door historische prestatierapporten te evalueren en stel uw doelen dienovereenkomstig vast. Houd er echter rekening mee dat concurrenten u kunnen verslaan op het gebied van artikelbeschikbaarheid als u de serviceniveaudoelstellingen van uw vader blijft gebruiken.

2. Zorg ervoor dat uw begrip van "serviceniveau" overeenkomt met de definitie van het softwaresysteem. Mogelijk meet u de prestaties op basis van hoe vaak u verzendt binnen een week na ontvangst van de bestelling van de klant, terwijl de software zich richt op bestelpunten op basis van uw vermogen om meteen te verzenden, niet binnen een week. Het is duidelijk dat de laatste meer inventaris nodig heeft om hetzelfde "serviceniveau" te bereiken. Een 75%-serviceniveau voor dezelfde dag kan bijvoorbeeld overeenkomen met een 90%-serviceniveau voor dezelfde week. In dit geval ben je echt appels met peren aan het vergelijken. Als dit de reden is voor de overtollige voorraad, bepaal dan welk serviceniveau "dezelfde dag" nodig is om u op het door u gewenste serviceniveau "dezelfde week" te krijgen en voer dat in de software in. Het gebruik van het minder strikte doel voor dezelfde dag zal de inventaris doen dalen, soms zeer aanzienlijk.

3. Evalueer de invoer van de doorlooptijd. We hebben gevallen gezien waarin doorlooptijden waren opgeblazen om oude software te misleiden om de gewenste resultaten te produceren. Moderne software houdt de prestaties van leveranciers bij door hun werkelijke doorlooptijden over meerdere bestellingen vast te leggen, en houdt vervolgens rekening met de doorlooptijdvariabiliteit in simulaties van dagelijkse activiteiten. Pas op als uw doorlooptijden zijn vastgesteld op een waarde die in het verre verleden is bepaald en niet actueel is.

4. Controleer uw vraagsignaal. U heeft veel historische transacties in uw ERP-systeem die op veel manieren kunnen worden gebruikt om de vraaghistorie te bepalen. Als u signalen gebruikt zoals overboekingen, of als u retouren niet uitsluit, overdrijft u mogelijk de vraag. Besteed wat tijd aan het definiëren van "vraag" op de manier die het meest logisch is voor uw situatie.

Bereid uw reserveonderdelenplanning voor op onverwachte schokken

Wist je dat het Benjamin Franklin was die de bliksemafleider uitvond om gebouwen te beschermen tegen blikseminslag? Nu hoeven we ons niet elke dag zorgen te maken over blikseminslagen, maar in het onvoorspelbare zakenklimaat van vandaag moeten we ons wel zorgen maken over verstoringen in de toeleveringsketen, lange doorlooptijden, stijgende rentetarieven en een volatiele vraag. Met al deze uitdagingen is het voor organisaties nog nooit zo belangrijk geweest om het gebruik van onderdelen en voorraadniveaus nauwkeurig te voorspellen en het bevoorradingsbeleid, zoals bestelpunten, veiligheidsvoorraden en bestelhoeveelheden, te optimaliseren. In deze blog onderzoeken we hoe bedrijven gebruik kunnen maken van innovatieve oplossingen, zoals voorraadoptimalisatie en software voor het voorspellen van onderdelen die gebruikmaken van machine learning-algoritmen, probabilistische prognoses en analyses om voorop te blijven lopen en hun toeleveringsketens te beschermen tegen onverwachte schokken.

Planningsoplossingen voor reserveonderdelen
Optimalisatie van reserveonderdelen is een belangrijk aspect van supply chain management voor veel industrieën. Het omvat het beheer van de inventaris van reserveonderdelen om ervoor te zorgen dat ze beschikbaar zijn wanneer dat nodig is, zonder overtollige voorraad die kapitaal en ruimte in beslag kan nemen. Het optimaliseren van de inventaris van reserveonderdelen is een complex proces dat een grondige kennis van gebruikspatronen, doorlooptijden van leveranciers en de kritieke waarde van elk onderdeel voor het bedrijf vereist.

In deze blog zal onze primaire nadruk liggen op het cruciale aspect van voorraadoptimalisatie en vraagvoorspelling. Andere hieronder beschreven benaderingen voor het optimaliseren van reserveonderdelen, zoals voorspellend onderhoud en 3D-printen, Master Data Management en gezamenlijke planning, moeten echter worden onderzocht en waar nodig worden toegepast.

  1. Voorspellend onderhoud: Voorspellende analyses gebruiken om te anticiperen wanneer een onderdeel waarschijnlijk defect raakt en het proactief te vervangen, in plaats van te wachten tot het kapot gaat. Deze aanpak kan bedrijven helpen downtime en onderhoudskosten te verminderen en de algehele effectiviteit van apparatuur te verbeteren.
  2. 3d printen: Dankzij de vooruitgang in de 3D-printtechnologie kunnen bedrijven reserveonderdelen op aanvraag produceren, waardoor er minder voorraad nodig is. Dit bespaart niet alleen ruimte en kosten, maar zorgt er ook voor dat onderdelen beschikbaar zijn wanneer dat nodig is.
  3. Beheer van stamgegevens: Gegevensbeheerplatforms zorgen ervoor dat onderdeelgegevens correct worden geïdentificeerd, gecatalogiseerd, opgeschoond en georganiseerd. Maar al te vaak hebben MRO-organisaties hetzelfde onderdeelnummer onder verschillende SKU's. Deze dubbele onderdelen dienen hetzelfde doel, maar hebben verschillende SKU-nummers nodig om naleving van de regelgeving of veiligheid te garanderen. Een onderdeel dat wordt gebruikt ter ondersteuning van een overheidscontract, kan bijvoorbeeld nodig zijn van een Amerikaanse fabrikant om te blijven voldoen aan de "Buy America"-regelgeving. Het is van cruciaal belang dat deze onderdeelnummers worden geïdentificeerd en, indien mogelijk, worden geconsolideerd in één SKU om voorraadinvesteringen binnen de perken te houden.
  4. Gezamenlijke planning: Door samen te werken met leveranciers en klanten om gegevens, prognoses en vraagplanning te delen, kunnen bedrijven doorlooptijden verkorten, de nauwkeurigheid verbeteren en voorraadniveaus verlagen. Prognoses spelen een essentiële rol in samenwerking, aangezien het delen van inzichten over aankopen, vraag en koopgedrag ervoor zorgt dat leveranciers over de informatie beschikken die ze nodig hebben om ervoor te zorgen dat de voorraad voor klanten beschikbaar is.

Inventory Optimization
Abraham Lincoln werd ooit als volgt geciteerd: "Geef me zes uur om een boom om te hakken, en ik zal de eerste vier uur besteden aan het slijpen van de bijl"? Lincoln wist dat voorbereiding en optimalisatie de sleutel tot succes waren, net zoals organisaties over de juiste tools moeten beschikken, zoals software voor voorraadoptimalisatie, om hun toeleveringsketen te optimaliseren en voorop te blijven lopen in de markt. Met software voor voorraadoptimalisatie kunnen organisaties hun prognosenauwkeurigheid verbeteren, voorraadkosten verlagen, serviceniveaus verbeteren en doorlooptijden verkorten. Lincoln wist dat het slijpen van de bijl nodig was om de klus effectief te klaren zonder overmatige inspanning. Voorraadoptimalisatie zorgt ervoor dat voorraaddollars effectief worden toegewezen aan duizenden onderdelen, waardoor serviceniveaus worden gegarandeerd en overtollige voorraad wordt geminimaliseerd.

Reserveonderdelen spelen een doorslaggevende rol bij het handhaven van de operationele efficiëntie, en het ontbreken van kritieke onderdelen kan leiden tot uitvaltijd en verminderde productiviteit. Door de sporadische aard van de vraag naar reserveonderdelen is het moeilijk te voorspellen wanneer een specifiek onderdeel nodig zal zijn, wat resulteert in het risico van over- of onderbevoorrading, die beide kosten kunnen opleveren voor de organisatie. Bovendien brengt het beheren van doorlooptijden voor reserveonderdelen zijn eigen uitdagingen met zich mee. Sommige onderdelen kunnen lange levertijden hebben, waardoor het nodig is om voldoende voorraad aan te houden om tekorten te voorkomen. Het meenemen van overtollige voorraad kan echter kostbaar zijn en kapitaal en opslagruimte in beslag nemen.

Gezien de talloze uitdagingen waarmee materiaalbeheerafdelingen en planners van reserveonderdelen worden geconfronteerd, is het plannen van de vraag, voorraadniveaus en aanvulling van reserveonderdelen zonder een effectieve oplossing voor voorraadoptimalisatie vergelijkbaar met een poging om een boom om te hakken met een zeer botte bijl! Hoe scherper de bijl, hoe beter uw organisatie deze uitdagingen het hoofd kan bieden.

De bijl van Smart Software is de scherpste
Slimme software voor voorraadoptimalisatie en vraagplanning maakt gebruik van een unieke empirische probabilistische prognosebenadering die resulteert in nauwkeurige prognoses van voorraadbehoeften, zelfs wanneer de vraag met tussenpozen is. Aangezien bijna 90% aan reserve- en serviceonderdelen met tussenpozen is, is een nauwkeurige oplossing vereist om aan dit soort vraag te voldoen. De oplossing van Smart werd gepatenteerd in 2001 en aanvullende innovaties werden onlangs gepatenteerd in mei 2023 (aankondigingen volgen binnenkort!). De oplossing werd bekroond als finalist in de APICS Technological Innovation Category voor zijn rol bij het helpen transformeren van de resource management-industrie.

De rol van intermitterende vraag
Intermitterende vraag komt niet overeen met een simpele normale of klokvormige verdeling die het onmogelijk maakt om nauwkeurig te voorspellen met traditionele, op afvlakking gebaseerde prognosemethoden. Onderdelen en items met intermitterende vraag – ook wel bekend als klonterige, volatiele, variabele of onvoorspelbare vraag – hebben veel nul- of laagvolumewaarden afgewisseld met willekeurige pieken in de vraag die vaak vele malen groter zijn dan het gemiddelde. Dit probleem doet zich vooral voor bij bedrijven die grote voorraden van service- en reserveonderdelen beheren in sectoren zoals luchtvaart, ruimtevaart, energie- en watervoorziening en nutsbedrijven, automobielindustrie, beheer van zware activa, hightech, evenals in MRO (Maintenance, Repair, en revisie).

Scenario analyse
De gepatenteerde en bekroonde technologie van Smart genereert snel tienduizenden mogelijke scenario's van toekomstige vraagreeksen en cumulatieve vraagwaarden over de doorlooptijd van een artikel. Deze scenario's zijn statistisch vergelijkbaar met de geobserveerde gegevens van het artikel en ze leggen de relevante details vast van de intermitterende vraag zonder te vertrouwen op de aannames die gewoonlijk worden gedaan over de aard van vraagverdelingen door traditionele prognosemethoden. Het resultaat is een uiterst nauwkeurige voorspelling van de volledige verdeling van de cumulatieve vraag over de doorlooptijd van een artikel. Het komt erop neer dat bedrijven met de informatie die deze vraagdistributies bieden, eenvoudig veiligheidsvoorraad en voorraadvereisten op serviceniveau kunnen plannen voor duizenden periodiek gevraagde artikelen met een nauwkeurigheid van bijna 100%.

Benefits
Door innovatieve oplossingen van Smart Software te implementeren, zoals SmartForecasts voor statistische prognoses, Demand Planner voor consensusplanning van onderdelen en Inventory Optimization voor het ontwikkelen van nauwkeurige aanvullingsfactoren zoals min/max en veiligheidsvoorraadniveaus, krijgen vooruitstrevende leidinggevenden en planners betere controle over hun bedrijfsvoering van de organisatie. Het zal resulteren in de volgende voordelen:

  1. Verbeterde prognosenauwkeurigheid: Nauwkeurige vraagprognoses zijn van fundamenteel belang voor elke organisatie die zich bezighoudt met voorraadbeheer van reserveonderdelen. Voorraadoptimalisatiesoftware maakt gebruik van geavanceerde algoritmen om historische gebruikspatronen te analyseren, trends te identificeren en toekomstige vraag met een hoge mate van nauwkeurigheid te voorspellen. Met dit niveau van precisie bij prognoses kunnen organisaties het risico van over- of onderbevoorrading van hun reserveonderdelenvoorraad vermijden.
  2. Lagere voorraadkosten: Een grote uitdaging waarmee leiders in de toeleveringsketen worden geconfronteerd bij het beheer van de voorraad van reserveonderdelen, zijn de kosten die gepaard gaan met het te allen tijde aanhouden van een optimale voorraad reserveonderdelen. Door voorraadniveaus te optimaliseren met behulp van moderne technologiesystemen zoals kunstmatige intelligentie (AI), machine learning (ML) en voorspellende analyses, kunnen organisaties de transportkosten verlagen en er tegelijkertijd voor zorgen dat ze voldoende voorraden beschikbaar hebben wanneer dat nodig is.
  3. Verbeterde serviceniveaus: Als het gaat om reparatie- en onderhoudsdiensten, is tijd geld! Downtime als gevolg van de onbeschikbaarheid van kritieke reserveonderdelen kan leiden tot verloren productiviteit en inkomsten voor bedrijven in verschillende sectoren, zoals fabrieken, energieopwekkingsfaciliteiten of datacenters die IT-infrastructuurapparatuur beheren. Het optimaliseren van uw reserveonderdelenvoorraad zorgt ervoor dat u altijd de juiste hoeveelheid bij de hand hebt, waardoor de uitvaltijd die wordt veroorzaakt door het wachten op leveringen van leveranciers wordt verminderd.
  4. Kortere doorlooptijden: Een ander voordeel dat voortvloeit uit nauwkeurige vraagprognoses door middel van moderne magazijntechnologieën, is een kortere doorlooptijd bij levering, wat leidt tot een betere klanttevredenheid, aangezien klanten hun bestellingen sneller zullen ontvangen dan voorheen, waardoor de merkloyaliteit wordt verbeterd. Daarom creëert de toepassing van nieuwe strategieën die worden aangestuurd door AI/ML-tools waarde binnen supply chain-operaties, wat leidt tot meer efficiëntie, niet alleen beperkte reductiekosten, maar ook stroomlijning van processen met betrekking tot onder andere productieplanning en logistieke transportplanning

Conclusie
Door gebruik te maken van software voor voorraadoptimalisatie en vraagplanning kunnen organisaties verschillende uitdagingen overwinnen, zoals verstoringen in de toeleveringsketen, stijgende rentetarieven en volatiele vraag. Hierdoor kunnen ze de kosten verlagen die gepaard gaan met overtollige opslagruimte en verouderde inventarisitems. Door gebruik te maken van geavanceerde algoritmen, verbetert software voor voorraadoptimalisatie de nauwkeurigheid van prognoses, waardoor organisaties kunnen voorkomen dat ze te veel of te weinig voorraad hebben in hun voorraad reserveonderdelen. Bovendien helpt het de voorraadkosten te verlagen door niveaus te optimaliseren en technologieën zoals kunstmatige intelligentie (AI), machine learning (ML) en voorspellende analyses te gebruiken. Verbeterde serviceniveaus worden bereikt doordat organisaties de juiste hoeveelheid reserveonderdelen direct beschikbaar hebben, waardoor downtime als gevolg van het wachten op leveringen wordt verminderd. Bovendien leidt nauwkeurige vraagprognose tot kortere doorlooptijden, waardoor de klanttevredenheid toeneemt en merkloyaliteit wordt bevorderd. Het toepassen van dergelijke strategieën, aangestuurd door AI/ML-tools, verlaagt niet alleen de kosten, maar stroomlijnt ook processen, waaronder productieplanning en logistieke transportplanning, waardoor uiteindelijk de efficiëntiewinst binnen de toeleveringsketen toeneemt.

 

Wit papier:

Wat u moet weten over prognoses en planning van serviceonderdelen

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    Hoe u reserveonderdelen kunt voorspellen die weinig worden gebruikt

    Wat doet u wanneer u een periodiek gevraagd artikel, zoals een reserveonderdeel, voorspelt met een gemiddelde vraag van minder dan één eenheid per maand? Meestal is de vraag nul, maar het onderdeel is zakelijk significant; het kan niet worden genegeerd en moet worden voorspeld om er zeker van te zijn dat u voldoende voorraad heeft.

    Uw keuzes zijn meestal gecentreerd rond een paar opties:

    Optie 1: Rond elke maand af naar 1, dus uw jaarprognose is 12.

    Optie 2: Rond elke maand naar beneden af op 0, zodat uw jaarprognose 0 is.

    Optie 3: Prognose "hetzelfde als dezelfde maand vorig jaar", zodat de prognose overeenkomt met de werkelijke waarde van vorig jaar.

    Er zijn duidelijke nadelen aan elke optie en niet veel voordeel aan een van hen. Optie 1 resulteert vaak in een forse overprognose. Optie 2 resulteert vaak in een aanzienlijke ondervoorspelling. Optie 3 resulteert in een prognose die bijna gegarandeerd de werkelijke aanzienlijk zal missen, aangezien het niet waarschijnlijk is dat de vraag in exact dezelfde periode een piek zal bereiken. Als u het item MOET voorspellen, raden we normaal gesproken optie 3 aan, aangezien dit het meest waarschijnlijke antwoord is dat de rest van het bedrijf zal begrijpen. 

    Maar een betere manier is om het helemaal niet te voorspellen in de gebruikelijke zin en in plaats daarvan een "voorspellend bestelpunt" te gebruiken dat is afgestemd op het door u gewenste serviceniveau. Om een voorspellend bestelpunt te berekenen, kunt u het gepatenteerde Markov-bootstrap-algoritme van Smart Software gebruiken om alle mogelijke eisen die tijdens de doorlooptijd kunnen optreden te simuleren en vervolgens het bestelpunt te identificeren dat uw beoogde serviceniveau zal opleveren.

    Vervolgens kunt u uw ERP-systeem configureren om meer te bestellen wanneer de voorhanden voorraad het bestelpunt overschrijdt in plaats van wanneer u naar verwachting nul bereikt (of welke veiligheidsvoorraadbuffer dan ook wordt ingevoerd). 

    Dit zorgt voor meer logische bestellingen zonder de onnodige aannames die nodig zijn om een af en toe gevraagd onderdeel met een laag volume te voorspellen.

     

    Software voor planning van reserveonderdelen

    De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

    Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

     

     

    Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

     

    Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

     

      Ontdek gegevensfeiten en verbeter de voorraadprestaties

      De beste voorraadplanningsprocessen zijn gebaseerd op statistische analyse om relevante feiten over de gegevens te ontdekken. Bijvoorbeeld:

      1. Het bereik van te verwachten vraagwaarden en doorlooptijden van leveranciers.
      2. De meest waarschijnlijke waarden van de vraag naar artikelen en de doorlooptijd van de leverancier.
      3. De volledige kansverdelingen van de artikelvraag en de doorlooptijd van de leverancier.

      Als u het derde niveau bereikt, beschikt u over de feiten die nodig zijn om belangrijke operationele vragen te beantwoorden, aanvullende vragen zoals:

      1. Hoeveel extra voorraad is er precies nodig om het serviceniveau met 5% te verbeteren?
      2. Wat gebeurt er met tijdige levering als de voorraad wordt verminderd met 5%?
      3. Zal een van de bovenstaande wijzigingen een positief financieel rendement opleveren?
      4. Meer in het algemeen, welk serviceniveaudoel en bijbehorend voorraadniveau is het meest winstgevend?

      Wanneer u over de feiten beschikt en uw zakelijke kennis toevoegt, kunt u beter geïnformeerde beslissingen nemen over opslag die een aanzienlijk rendement opleveren. Je schept ook de juiste verwachtingen bij interne en externe belanghebbenden, zodat er minder ongewenste verrassingen zijn.