Breid Microsoft 365 F&SC en AX uit met Smart IP&O

Microsoft Dynamics 365 F&SC en AX kunnen aanvulling beheren door te suggereren wat te bestellen en wanneer via op bestelpunten gebaseerd voorraadbeleid. Een uitdaging waarmee klanten worden geconfronteerd, is dat inspanningen om deze niveaus te handhaven zeer gedetailleerd zijn georiënteerd en dat het ERP-systeem vereist dat de gebruiker deze bestelpunten en/of prognoses handmatig specificeert. Als alternatief genereren veel organisaties handmatig voorraadbeleid met behulp van Excel-spreadsheets of andere ad-hocbenaderingen.

Deze methoden zijn tijdrovend en beide resulteren waarschijnlijk in een zekere mate van onnauwkeurigheid. Als gevolg hiervan zal de organisatie eindigen met overtollige voorraad, onnodige tekorten en een algemeen wantrouwen in hun softwaresystemen. In dit artikel zullen we de functionaliteit voor het bestellen van voorraad in AX / D365 F&SC bekijken, de beperkingen ervan uitleggen en samenvatten hoe slimme voorraadplanning en -optimalisatie kan helpen de kaspositie van een bedrijf te verbeteren. Dit wordt bereikt door verminderde voorraad, geminimaliseerde en gecontroleerde stockouts. Gebruik van Smart Software levert voorspellende functionaliteit die ontbreekt in Dynamics 365.

Microsoft Dynamics 365 F&SC en AX-aanvullingsbeleid

In de voorraadbeheermodule van AX en F&SC kunnen gebruikers voor elk voorraadartikel handmatig planningsparameters invoeren. Deze parameters omvatten bestelpunten, doorlooptijden veiligheidsvoorraad, hoeveelheden veiligheidsvoorraad, bestelcycli en bestelmodificatoren zoals door de leverancier opgelegde minimale en maximale bestelhoeveelheden en veelvouden van bestellingen. Eenmaal ingevoerd, zal het ERP-systeem de inkomende voorraad, de actuele voorraad, de uitgaande vraag en de door de gebruiker gedefinieerde prognoses en voorraadbeleid afstemmen om het leveringsplan of orderschema (dwz wat te bestellen en wanneer) te berekenen.

Er zijn 4 keuzes voor het aanvullingsbeleid in F&SC en AX: vaste bestelhoeveelheid, maximale hoeveelheid, lot-voor-lot en klantordergestuurd.

  • Vaste bestelhoeveelheid en Max zijn op bestelpunten gebaseerde aanvullingsmethoden. Beide suggereren bestellingen wanneer de beschikbare voorraad het bestelpunt bereikt. Bij een vaste ROQ is de ordergrootte gespecificeerd en zal deze niet variëren totdat deze wordt gewijzigd. Bij Max variëren de bestelgroottes op basis van de voorraadpositie op het moment van bestelling, waarbij bestellingen tot aan de Max worden geplaatst.
  • Lot-voor-lot is een op prognoses gebaseerde aanvullingsmethode die de totale voorspelde vraag bundelt over een door de gebruiker gedefinieerd tijdsbestek (de "lotaccumulatieperiode") en een bestelsuggestie genereert voor de totale voorspelde hoeveelheid. Dus als uw totale voorspelde vraag 100 eenheden per maand is en de accumulatieperiode van de partij 3 maanden is, dan is uw bestelsuggestie gelijk aan 300 eenheden.
  • Orde gedreven is een op bestelling gebaseerde aanvullingsmethode. Het maakt geen gebruik van bestelpunten of prognoses. Zie het als een "sell one, buy one"-logica die alleen bestellingen plaatst nadat de vraag is ingevoerd.

 

Beperkingen

Alle F&SC / AX-aanvulinstellingen moeten handmatig worden ingevoerd of geïmporteerd via aangepaste uploads die door klanten zijn gemaakt. Er is gewoon geen manier voor gebruikers om native invoer te genereren (vooral niet optimale). Het gebrek aan geloofwaardige functionaliteit voor prognoses op eenheidsniveau en voorraadoptimalisatie binnen het ERP-systeem is de reden waarom zoveel AX- en F&SC-gebruikers gedwongen zijn te vertrouwen op spreadsheets voor planning en vervolgens handmatig de parameters in te stellen die het ERP nodig heeft. In werkelijkheid stellen de meeste planners handmatig vraagprognoses in en herbestellen.

En wanneer ze spreadsheets kunnen gebruiken, vertrouwen ze vaak op brede vuistregelmethoden die resulteren in het gebruik van vereenvoudigde statistische modellen. Eenmaal berekend in de spreadsheet moeten deze in F&SC/AX worden geladen. Ze worden vaak geladen via omslachtige bestandsimporten of handmatig ingevoerd. Vanwege de tijd en moeite die het kost om deze op te bouwen, werken bedrijven deze cijfers niet vaak bij.

Als deze eenmaal zijn ingevoerd, hebben organisaties de neiging om een reactieve benadering van veranderingen te gebruiken. De enige keer dat een koper/planner het voorraadbeleid beoordeelt, is jaarlijks of op het moment van aankopen of productie. Sommige bedrijven zullen ook reageren nadat ze problemen hebben ondervonden met te lage (of te hoge) voorraden. Om dit in AX en F&AS te beheren, is handmatige ondervraging vereist om de geschiedenis te bekijken, prognoses te berekenen, bufferposities te beoordelen en opnieuw te kalibreren.

Microsoft erkent deze beperkingen in hun kern-ERP's en begrijpt de aanzienlijke uitdagingen voor klanten. Als reactie hierop heeft Microsoft prognoses gepositioneerd onder hun AI Azure-stack. Deze methode valt buiten de kern-ERP's. Het wordt aangeboden als een toolset voor datawetenschappers om te gebruiken bij het definiëren van aangepaste complexe statistieken en berekeningen zoals een bedrijf wenst. Dit komt bovenop enkele eenvoudige basisberekeningen, aangezien het uitgangspunt zich momenteel in de opstartfase van ontwikkeling bevindt. Hoewel dit op de lange termijn winst kan opleveren, betekent deze methode momenteel dat klanten helemaal opnieuw beginnen en definiëren wat Microsoft momenteel 'experimenten' noemt om de vraagplanning te meten.

Het komt erop neer dat klanten voor grote uitdagingen staan om de Dynamics-stack zelf te krijgen om deze problemen op te lossen. Het resultaat is dat CFO's minder geld beschikbaar hebben voor wat ze nodig hebben en dat Sales Execs verkoopkansen onvervuld hebben en mogelijk omzet mislopen omdat het bedrijf de goederen die de klant wil niet kan verzenden.

 

Word slimmer

Zou het niet beter zijn om gewoon een best-of-breed add-on te gebruiken voor vraagplanning; en een best-of-breed oplossing voor voorraadoptimalisatie om kosten en uitvoeringsniveaus te beheren en in evenwicht te houden? Zou het niet beter zijn om dit dagelijks of wekelijks te kunnen doen om uw beslissingen zo dicht mogelijk bij de behoefte te kunnen nemen, geld te besparen en tegelijkertijd aan de verkoopvraag te voldoen?

Stel je voor dat je een bidirectionele integratie hebt met AX en F&AS, zodat dit allemaal gemakkelijk en snel werkt. Een waar:

  • u kunt beleid automatisch opnieuw kalibreren in frequente planningscycli met behulp van in de praktijk bewezen, geavanceerde statistische modellen,
  • u zou vraagprognoses kunnen berekenen die rekening houden met seizoens-, trend- en cyclische patronen,
  • U zou automatisch optimalisatiemethoden gebruiken die het meest winstgevende voorraadbeleid en serviceniveaus voorschrijven die rekening houden met de werkelijke kosten van voorraadbeheer en voorraadonderbrekingen, waardoor u een volledig economisch beeld krijgt,
  • U kunt contant geld vrijmaken voor gebruik binnen het bedrijf en uw voorraadniveaus beheren om de orderafhandeling te verbeteren terwijl u dit geld vrijmaakt.
  • u zou veiligheidsvoorraden en voorraadniveaus hebben die rekening houden met de variabiliteit van vraag en aanbod, zakelijke omstandigheden en prioriteiten,
  • u zou specifieke serviceniveaus kunnen targeten op productgroepen, klanten, magazijnen of een andere dimensie die u hebt geselecteerd,
  • u verhoogt de algehele bedrijfswinst en balansgezondheid.

 

Breid Microsoft 365 F&SC en AX uit met Smart IP&O

Registreer u hier om een opname te zien van het Microsoft Dynamics Communities-webinar over Smart IP&O:

https://smartcorp.com/inventory-planning-with-microsoft-365-fsc-and-ax/

 

 

 

 

Hoe om te gaan met statistische prognoses van nul

Een statistische voorspelling van nul kan voor veel verwarring zorgen bij voorspellers, vooral wanneer de historische vraag niet nul is. Natuurlijk, het is duidelijk dat de vraag naar beneden neigt, maar moet deze naar nul evolueren? Wanneer de oudere vraag veel groter is dan de meer recente vraag en de meer recente vraag een zeer laag volume is (dwz 1,2,3 gevraagde eenheden), is het antwoord, statistisch gezien, ja. Dit komt echter mogelijk niet overeen met de zakelijke kennis van de planner en het verwachte minimale vraagniveau. Dus, wat moet een voorspeller doen om dit te corrigeren? Hier zijn drie suggesties:

 

  1. Beperk de historische gegevens die aan het model worden ingevoerd. In een neerwaartse trendsituatie zijn de oudere gegevens dat vaak veel groter dan de recente gegevens. Wanneer de oudere, veel hogere volumevraag wordt genegeerd, zal de neerwaartse trend lang niet zo significant zijn. U voorspelt nog steeds een neerwaartse trend, maar de resultaten zullen eerder in lijn zijn met de zakelijke verwachtingen.
  1. Probeer trenddemping. Smart Demand Planner heeft een functie genaamd "trendhedging" waarmee gebruikers kunnen definiëren hoe een trend in de loop van de tijd moet verdwijnen. Hoe hoger het percentage trendhedge (0-100%), hoe sterker de trenddemping. Dit betekent dat een voorspelde trend zich niet gedurende de hele prognosehorizon zal voortzetten. Dit betekent dat de vraagprognose begint af te vlakken voordat deze nul bereikt bij een neerwaartse trend.
  1. Wijzig het prognosemodel. Schakel over van een trendingmethode zoals Double Exponential Smoothing of Linear Moving Average naar een niet-trendingmethode zoals Single Exponential Smoothing of Simple Moving Average. U voorspelt geen neerwaartse trend, maar uw voorspelling zal in ieder geval niet nul zijn en dus waarschijnlijker door het bedrijf worden geaccepteerd.

 

 

 

Voorbij de prognose - Samenwerking en consensusplanning

5 Stappen naar Consensus Vraagplanning

Het hele punt van vraagvoorspelling is het vaststellen van de best mogelijke zicht op de toekomstige vraag. Dit vereist dat we gebruikmaken van de beste gegevens en input die we kunnen krijgen, maak gebruik van statistieken om onderliggende patronen vast te leggen, de koppen bij elkaar te steken om overrides toe te passen op basis van zakelijke kennis, en overeenstemming te bereiken over een consensusvraagplan dat als hoeksteen dient voor het algemene vraagplan van het bedrijf.

Stap 1: Ontwikkel een nauwkeurig vraagsignaal.   Wat is vraag? Overweeg hoe uw organisatie de vraag definieert – bijvoorbeeld bevestigde verkooporders exclusief annuleringen of verzendgegevens die zijn aangepast om de impact van historische stockouts weg te nemen – en gebruik dit consequent. Dit is uw maatstaf voor wat de markt u vraagt te leveren. Verwar dit niet met uw vermogen om te leveren - dat moet worden weerspiegeld in het inkomstenplan.

Stap 2: Genereer een statistische prognose. Plan voor duizenden artikelen met behulp van een beproefde prognosetoepassing die automatisch uw gegevens binnenhaalt en op betrouwbare wijze nauwkeurige prognoses produceert voor allemaal van uw artikelen. Bekijk de eerste passage van uw prognose en breng vervolgens aanpassingen aan. Een staking of treinwrak kan de scheepvaart vorige maand hebben onderbroken - laat dat uw voorspelling niet beïnvloeden. Pas hiervoor aan en maak een nieuwe voorspelling. Doe je best en nodig dan anderen uit om mee te wegen.

Stap 3: Schakel de experts in. Productlijnmanagers, verkoopleiders, belangrijke distributiepartners kennen hun markten.  Deel uw voorspelling met hen. Smart gebruikt het concept van een "Snapshot" om een facsimile van uw voorspelling - op elk niveau, voor elke productlijn - te delen met mensen die misschien beter weten. Er kan een enorme order zijn die niet in de pijplijn zit, of een channel partner staat op het punt hun jaarlijkse promotie te houden. Geef ze een gemakkelijke manier om hun deel van de prognose te nemen en te wijzigen. Sleep deze maand omhoog, die omlaag…

Stap 4: Meet nauwkeurigheid en voorspelde toegevoegde waarde. Sommige van uw bijdragers hebben misschien gelijk met het geld, andere hebben de neiging hoog of laag bevooroordeeld te zijn. Gebruik prognose versus actuals-rapportage en meet prognosewaardetoevoegende analyse om prognosefouten te meten en of wijzigingen in de prognose pijn doen of helpen. Door het proces met deze informatie te informeren, verbetert uw bedrijf het vermogen om nauwkeuriger prognoses te maken.

Stap 5: ga akkoord met de consensusprognose.  U kunt deze productlijn of geografie per keer doen, of bedrijf per bedrijf. Roep het team bijeen, stapel hun invoer grafisch op elkaar, bekijk eerdere nauwkeurigheidsprestaties, bespreek hun redenen voor het verhogen of verlagen van de prognose en spreek af wiens input moet worden gebruikt. Dit wordt uw consensusplan. Voltooi het plan en verzend het - upload prognoses naar MRP, stuur het naar financiën en productie.  U bent net begonnen met uw verkoop-, voorraad- en operationele planningsproces.

Je kan dit doen. En wij kunnen helpen.  Als u vragen heeft over gezamenlijke vraagplanning, kunt u deze blog beantwoorden, dan nemen we contact met u op.

 

 

 

Het artikel van Smart Software heeft de 1e plaats gewonnen in de categorie 2022 Supply Chain Brief MVP Awards Forecasting!

Belmont, Massachusetts, december 2022 – Smart Software is verheugd aan te kondigen dat mede-oprichter Dr. Thomas R. Willemain's artikel "Managing Inventory amid Regime Change" de 1e plaats heeft gewonnen in de categorie Forecasting van de 2022 Supply Chain Brief MVP Awards.

"Regimeverandering" is een statistische term die een grote verandering in de aard van de vraag naar een voorraadartikel betekent. De vraaggeschiedenis van een item is de brandstof die de prognosemachines van vraagplanners aandrijft. Over het algemeen geldt: hoe meer brandstof, hoe beter, waardoor we een beter beeld hebben van het gemiddelde niveau, de vorm van elk seizoenspatroon en de grootte en richting van elke trend. Maar er is één grote uitzondering op de regel dat 'meer gegevens betere gegevens zijn'. Als er een grote verschuiving in uw bedrijf plaatsvindt en de nieuwe vraag niet lijkt op de oude vraag, dan worden oude gegevens gevaarlijk.

Lees hier het artikel over de winnaar van de MVP Award  https://smartcorp.com/inventory-optimization/managing-inventory-amid-regime-change/

Toeleveringsketen in het kort brengt de beste inhoud samen van honderden opinieleiders uit de branche. Deze MVP Award erkent de Meest waardevolle post zoals beoordeeld door het publiek, de prijscommissie en sociale media van Supply Chain Brief. Van Smart Software wordt erkend dat het de hoogste waarde biedt aan professionals uit de industrie en nuttige informatie van strategische aard biedt. https://www.supplychainbrief.com/mvp-awards/2022-SCB-MVP-AWARDS/forecasting

Dr.Thomas R.Willemain is mede-oprichter en Senior VP for Research bij Smart Software. Hij was professor aan het MIT en de Harvard Kennedy School of Government en is nu emeritus hoogleraar Industrial and Systems Engineering aan het Rensselaer Polytechnic Institute. Tom was een Distinguished Visiting Professor aan de FAA en ondersteunde de Intelligence Community als Expert Statistical Consultant (GS15) in de Mathematics Research Group van NSA en later bij IDA's Center for Computing Sciences. Hij heeft diploma's van Princeton University (BSE, summa cum laude) en Massachusetts Institute of Technology (MS en PhD), allemaal in Electrical Engineering.

Over Smart Software, Inc.
Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Disney, Arizona Public Service en Ameren. Smart Inventory Planning & Optimization geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts, en is online te vinden op www.smartcorp.com.

 

 

Waarom dagen van bevoorradingsdoelen niet werken bij het berekenen van veiligheidsvoorraden

Waarom dagen van bevoorradingsdoelen niet werken bij het berekenen van veiligheidsvoorraden

CFO's vertellen ons dat ze minder aan voorraad moeten uitgeven zonder de verkoop te beïnvloeden. Een manier om dat te doen is om af te stappen van het gebruik van een gerichte leveringsdag om bestelpunten en veiligheidsvoorraadbuffers te bepalen. Hier is hoe een bevoorradingsdagenmodel werkt:

  1. Bereken de gemiddelde vraag per dag en vermenigvuldig de vraag per dag met de doorlooptijd van de leverancier in dagen om de doorlooptijdvraag te krijgen
  2. Kies een dagen voorraadbuffer (dwz 15, 30, 45 dagen, enz.). Gebruik grotere buffers voor belangrijkere items en kleinere buffers voor minder belangrijke items.
  3. Voeg de gewenste dagen aan voorraadbuffer toe aan de vraag over de doorlooptijd om het bestelpunt te krijgen. Bestel meer als de voorhanden voorraad onder het bestelpunt daalt

Dit is wat er mis is met deze benadering:

  1. Het gemiddelde houdt geen rekening met seizoensinvloeden en trends – u zult duidelijke patronen missen, tenzij u er veel tijd aan besteedt om deze handmatig aan te passen.
  2. Het gemiddelde houdt geen rekening met hoe voorspelbaar een artikel is - u zult voorspelbare artikelen te veel in voorraad hebben en minder voorspelbare artikelen. Dit komt omdat dezelfde leveringsdagen voor verschillende artikelen een heel ander voorraadrisico opleveren.
  3. Het gemiddelde vertelt een planner niet hoe het voorraadrisico wordt beïnvloed door het voorraadniveau - u hebt geen idee of u ondervoorraad, overbevoorrading of net genoeg hebt. Je plant in wezen met oogkleppen op.

Er zijn veel andere "vuistregel"-benaderingen die even problematisch zijn. Hierin kunt u meer over hen te weten komen na

Een betere manier om de juiste hoeveelheid veiligheidsvoorraad te plannen, is gebruik te maken van waarschijnlijkheidsmodellen die precies aangeven hoeveel voorraad nodig is gezien het risico van voorraad die u bereid bent te accepteren. Hieronder ziet u een screenshot van Smart Inventory Optimization die precies dat doet. Ten eerste beschrijft het de voorspelde serviceniveaus (waarschijnlijkheid van niet bevoorraden) in verband met de huidige dagen van leveringslogica. De planner kan nu de onderdelen zien waar het voorspelde serviceniveau te laag of te duur is. Ze kunnen dan onmiddellijke correcties aanbrengen door zich te richten op de gewenste serviceniveaus en het niveau van voorraadinvesteringen. Zonder deze informatie zal een planner niet weten of de beoogde dagen veiligheidsvoorraad te veel, te weinig of precies goed zijn, wat resulteert in overvoorraden en tekorten die marktaandeel en inkomsten kosten. 

Veiligheidsvoorraden berekenen 2