Ontdek gegevensfeiten en verbeter de voorraadprestaties

De beste voorraadplanningsprocessen zijn gebaseerd op statistische analyse om relevante feiten over de gegevens te ontdekken. Bijvoorbeeld:

  1. Het bereik van te verwachten vraagwaarden en doorlooptijden van leveranciers.
  2. De meest waarschijnlijke waarden van de vraag naar artikelen en de doorlooptijd van de leverancier.
  3. De volledige kansverdelingen van de artikelvraag en de doorlooptijd van de leverancier.

Als u het derde niveau bereikt, beschikt u over de feiten die nodig zijn om belangrijke operationele vragen te beantwoorden, aanvullende vragen zoals:

  1. Hoeveel extra voorraad is er precies nodig om het serviceniveau met 5% te verbeteren?
  2. Wat gebeurt er met tijdige levering als de voorraad wordt verminderd met 5%?
  3. Zal een van de bovenstaande wijzigingen een positief financieel rendement opleveren?
  4. Meer in het algemeen, welk serviceniveaudoel en bijbehorend voorraadniveau is het meest winstgevend?

Wanneer u over de feiten beschikt en uw zakelijke kennis toevoegt, kunt u beter geïnformeerde beslissingen nemen over opslag die een aanzienlijk rendement opleveren. Je schept ook de juiste verwachtingen bij interne en externe belanghebbenden, zodat er minder ongewenste verrassingen zijn.

Wat te doen als een statistische prognose geen steek houdt

Soms slaat een statistische prognose gewoon nergens op. Elke voorspeller is er geweest. Ze kunnen dubbel controleren of de gegevens correct zijn ingevoerd of de modelinstellingen bekijken, maar ze blijven zich afvragen waarom de voorspelling er zo anders uitziet dan de vraaggeschiedenis. Wanneer de incidentele voorspelling nergens op slaat, kan dit het vertrouwen in het hele statistische prognoseproces aantasten.

Deze blog zal een leek helpen begrijpen wat de slimme statistische modellen zijn en hoe ze automatisch worden gekozen. Er wordt ingegaan op hoe die keuze soms mislukt, hoe u kunt weten of dat zo is en wat u kunt doen om ervoor te zorgen dat de prognoses altijd gerechtvaardigd kunnen worden. Het is belangrijk om te weten wat u kunt verwachten en hoe u de uitzonderingen kunt opvangen, zodat u kunt vertrouwen op uw prognosesysteem.

 

Hoe methoden automatisch worden gekozen

De criteria om automatisch één statistische methode uit een set te kiezen, zijn gebaseerd op welke methode het dichtst bij het correct voorspellen van de achtergehouden geschiedenis kwam. De eerdere geschiedenis wordt aan elke methode doorgegeven en het resultaat wordt vergeleken met de werkelijke waarden om de methode te vinden die er het dichtst bij in de buurt kwam. Die automatisch gekozen methode krijgt dan alle geschiedenis om de voorspelling te produceren. Bekijk deze blog voor meer informatie over de modelselectie https://smartcorp.com/uncategorized/statistical-forecasting-how-automatic-method-selection-works/

Voor de meeste tijdreeksen kan dit proces trends, seizoensgebondenheid en gemiddeld volume nauwkeurig vastleggen. Maar soms komt een gekozen methode wiskundig het dichtst in de buurt van het voorspellen van de achtergehouden geschiedenis, maar projecteert deze niet op een logische manier. Dat betekent dat de door het systeem geselecteerde methode niet de beste is en voor sommigen "moeilijk te voorspellen"

 

Moeilijk te voorspellen items

Moeilijk te voorspellen items kunnen grote, onvoorspelbare pieken in de vraag hebben, of meestal geen vraag maar willekeurige onregelmatige pieken, of ongebruikelijke recente activiteit. Ruis in de gegevens dwaalt soms willekeurig omhoog of omlaag, en de geautomatiseerde best-pick-methode kan een op hol geslagen trend of een nulpunt voorspellen. Het zal het slechter doen dan gezond verstand en in een klein percentage van een redelijk gevarieerde groep items. U moet deze gevallen dus identificeren en reageren door de prognose te negeren of de invoer van de prognose te wijzigen.

 

Hoe de uitzonderingen te vinden

De beste werkwijze is om de voorspelde items te filteren of te sorteren om de items te identificeren waarvan de som van de prognose voor het volgende jaar aanzienlijk afwijkt van de overeenkomstige geschiedenis van vorig jaar. De prognosesom kan veel lager zijn dan de historie of andersom. Gebruik de meegeleverde statistieken om deze items te identificeren; vervolgens kunt u ervoor kiezen om overschrijvingen toe te passen op de prognose of de prognose-instellingen te wijzigen.

 

Hoe de uitzonderingen op te lossen

Wanneer de voorspelling vreemd lijkt, zal een middelingsmethode, zoals Single Exponential Smoothing of zelfs een eenvoudig gemiddelde met behulp van Freestyle, vaak een redelijkere voorspelling opleveren. Als de trend mogelijk geldig is, kunt u alleen seizoensmethoden verwijderen om een onjuist seizoensresultaat te voorkomen. Of doe het tegenovergestelde en gebruik alleen seizoensmethoden als seizoensgebondenheid wordt verwacht maar niet was geprojecteerd in de standaardprognose. U kunt de wat-als-functies gebruiken om een onbeperkt aantal prognoses te maken, te evalueren en te vergelijken en de instellingen verder te verfijnen totdat u vertrouwd bent met de prognose.

Het opschonen van de geschiedenis, met of zonder wijziging van de automatische methodeselectie, is ook effectief bij het produceren van redelijke voorspellingen. U kunt prognoseparameters insluiten om de hoeveelheid geschiedenis die wordt gebruikt om die items te voorspellen of het aantal perioden dat aan het algoritme is doorgegeven, te verminderen, zodat eerdere, verouderde geschiedenis niet langer in aanmerking wordt genomen. U kunt pieken of dalen in de vraaggeschiedenis bewerken die bekende afwijkingen zijn, zodat ze de uitkomst niet beïnvloeden. U kunt ook samenwerken met het Smart-team om automatische detectie en verwijdering van uitschieters te implementeren, zodat gegevens voordat ze worden voorspeld al zijn opgeschoond van deze afwijkingen.

Als de vraag echt intermitterend is, wordt het bijna onmogelijk om "nauwkeurig" per periode te voorspellen. Als een level-loading-gemiddelde niet acceptabel is, kan het effectief zijn om het artikel af te handelen door een voorraadbeleid in te stellen met een doorlooptijdprognose. U kunt er ook voor kiezen om 'hetzelfde als vorig jaar'-modellen te gebruiken die, hoewel ze niet gevoelig zijn voor nauwkeurigheid, algemeen worden geaccepteerd door het bedrijf gezien de alternatieve prognoses.

Ten slotte, als het item zo recent is geïntroduceerd dat de algoritmen niet genoeg input hebben om nauwkeurig te voorspellen, is een eenvoudige gemiddelde of handmatige voorspelling wellicht het beste. U kunt nieuwe items identificeren door te filteren op het aantal historische perioden.

 

Handmatige selectie van methoden

Zodra u rijen hebt geïdentificeerd waar de prognose niet logisch is voor het menselijk oog, kunt u een kleinere subset van alle methoden kiezen om de prognoserun toe te laten en te vergelijken met de geschiedenis. Met Smart kunt u een beperkte set methoden gebruiken voor slechts één prognoserun of de beperkte set insluiten om te gebruiken voor alle prognoseruns in de toekomst. Verschillende methoden zullen de geschiedenis op verschillende manieren in de toekomst projecteren. Als u een idee heeft van hoe elk werkt, kunt u kiezen welke u wilt toestaan.

 

Vertrouw op uw prognosetool

Hoe meer u Slimme periode-over-periode gebruikt om uw beslissingen over hoe te voorspellen en welke historische gegevens u in overweging moet nemen, vast te leggen, hoe minder vaak u uitzonderingen zult tegenkomen, zoals beschreven in deze blog. Het invoeren van prognoseparameters is een beheersbare taak wanneer u begint met kritieke items of items met een hoge impact. Zelfs als u geen handmatige beslissingen over prognosemethoden insluit, wordt de prognose elke periode opnieuw uitgevoerd met nieuwe gegevens. Dus een item met een oneven resultaat vandaag kan in de loop van de tijd gemakkelijk voorspelbaar worden.

 

 

Het plannen van reserveonderdelen is niet zo moeilijk als u denkt

Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt.

Deze conclusie is gebaseerd op honderden software-implementaties die we in de loop der jaren hebben geleid. Klanten die reserveonderdelen en serviceonderdelen beheren (de laatste voor intern verbruik/MRO), en in mindere mate aftermarket-onderdelen (voor doorverkoop aan geïnstalleerde bases), hebben onze software voor onderdelenplanning consequent sneller geïmplementeerd dan hun collega's in productie en distributie.

De belangrijkste reden is de rol bij de productie en distributie van zakelijke kennis over wat er in de toekomst zou kunnen gebeuren. In een traditionele B2B-productie- en distributieomgeving zijn er klanten en verkoop- en marketingteams die aan die klanten verkopen. Er zijn verkoopdoelen, omzetverwachtingen en budgetten. Dit betekent dat er veel zakelijke kennis is over wat er zal worden gekocht, wat zal worden gepromoot, wiens meningen moeten worden verantwoord. Er is een complexe planningslus vereist. Bij het beheer van reserveonderdelen heb je daarentegen een onderhoudsteam dat apparatuur repareert wanneer deze kapot gaat. Hoewel er vaak onderhoudsschema's zijn als richtlijn, is wat er naast een standaardlijst met verbruiksartikelen nodig is, vaak onbekend totdat een onderhoudspersoon ter plaatse is. Met andere woorden, er is gewoon niet dezelfde soort zakelijke kennis beschikbaar voor onderdelenplanners bij het nemen van voorraadbeslissingen.

Ja, dat is een nadeel, maar het heeft ook een voordeel: het is niet nodig om een periode-voor-periode consensusvraagprognose te maken met al het werk dat daarvoor nodig is. Bij het plannen van reserveonderdelen kunt u meestal veel stappen overslaan die nodig zijn voor een typische fabrikant, distributeur of detailhandelaar. Deze over te slaan stappen omvatten:  

  1. Prognoses maken op verschillende niveaus van het bedrijf, zoals productfamilie of regio.
  2. De vraagprognose delen met verkoop, marketing en klanten.
  3. Prognoseonderdrukkingen van verkoop, marketing en klanten beoordelen.
  4. Afspraken maken over een consensusprognose die statistieken en zakelijke kennis combineert.
  5. Het meten van "prognose toegevoegde waarde" om te bepalen of overschrijvingen de prognose nauwkeuriger maken.
  6. De vraagprognose aanpassen voor bekende toekomstige promoties.
  7. Rekening houden met kannibalisatie (dwz als ik meer van product A verkoop, verkoop ik minder van product B).

Bevrijd van een consensusvormingsproces, kunnen planners van reserveonderdelen en voorraadbeheerders rechtstreeks op hun software vertrouwen om het gebruik en het vereiste voorraadbeleid te voorspellen. Als ze toegang hebben tot een in de praktijk bewezen oplossing die intermitterende vraag aanpakt, kunnen ze snel live gaan met nauwkeurigere vraagprognoses en schattingen van bestelpunten, veiligheidsvoorraden en bestelsuggesties. Hun aandacht kan worden gericht op het verkrijgen van nauwkeurige gebruiks- en doorlooptijdgegevens van leveranciers. Het "politieke" deel van de taak kan worden beperkt tot het verkrijgen van consensus binnen de organisatie over doelstellingen op het gebied van serviceniveaus en inventarisbudgetten.

Software voor planning van reserveonderdelen

De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

 

 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    De rol van vertrouwen in het vraagvoorspellingsproces Deel 2: Wat vertrouwt u

    "Ongeacht hoeveel moeite er wordt gestoken in het opleiden van voorspellers en het ontwikkelen van uitgebreide ondersteuningssystemen voor prognoses, besluitvormers zullen de voorspellingen wijzigen of negeren als ze ze niet vertrouwen." — Dilek Onkal, International Journal of Forecasting 38:3 (juli-september 2022), p.802.

    De hierboven geciteerde woorden trokken mijn aandacht en leidden tot dit bericht. Degenen met een nerdachtige overtuiging, zoals uw blogger, zijn geneigd prognoses als een statistisch probleem te beschouwen. Hoewel dat duidelijk waar is, begrijpen degenen van een bepaalde leeftijd, zoals uw blogger, dat prognoses ook een sociale activiteit zijn en daarom een grote menselijke component heeft.

    Waar vertrouw je op?

    Er is een verwante dimensie van vertrouwen: niet wie vertrouw je, maar wat vertrouw je? Hiermee bedoel ik zowel data als software.

    Vertrouw op gegevens

    Vertrouwen in data ondersteunt het vertrouwen in de voorspeller die de data gebruikt. De meeste van onze klanten hebben hun gegevens in een ERP-systeem staan. Deze gegevens moeten worden begrepen als een belangrijk bedrijfsmiddel. Om de gegevens betrouwbaar te laten zijn, moeten ze de "drie C's" hebben, dwz ze moeten correct, volledig en actueel zijn.

    Correctheid is uiteraard fundamenteel. We hadden eens een klant die een nieuw, sterk prognoseproces aan het implementeren was, maar vond dat de resultaten volledig haaks stonden op hun gevoel voor wat er in het bedrijf gebeurde. Het bleek dat verschillende van hun datastromen een factor twee onjuist waren, wat een enorme fout is. Dit vertraagde natuurlijk het implementatieproces totdat ze alle grove fouten in hun vraaggegevens konden identificeren en corrigeren.

    Er is een minder voor de hand liggend punt over correctheid. Dat wil zeggen, gegevens zijn willekeurig, dus wat u nu ziet, is waarschijnlijk niet wat u hierna ziet. Het plannen van de productie op basis van de veronderstelling dat de vraag van volgende week precies hetzelfde zal zijn als de vraag van deze week is duidelijk dwaas, maar klassieke op formules gebaseerde voorspellingsmodellen zoals de hierboven genoemde exponentiële afvlakking zullen hetzelfde aantal projecteren over de hele prognosehorizon. Dit is waar op scenario's gebaseerde planning is essentieel om het hoofd te bieden aan de onvermijdelijke fluctuaties in belangrijke variabelen zoals de eisen van klanten en de doorlooptijden van leveranciers.

    Volledigheid is de tweede vereiste om gegevens te kunnen vertrouwen. Onze software haalt uiteindelijk veel van zijn waarde uit het blootleggen van de verbanden tussen operationele beslissingen (bijvoorbeeld het selecteren van bestelpunten voor het aanvullen van voorraad) en bedrijfsgerelateerde statistieken zoals voorraadkosten. Toch loopt de implementatie van prognosesoftware vaak vertraging op omdat ergens vraaginformatie beschikbaar is, maar voorraad-, bestel- en/of tekortkosten niet. Of, om nog een recent voorbeeld te noemen: een klant kon slechts de helft van zijn voorraad reserveonderdelen voor repareerbare onderdelen op de juiste maat houden, omdat niemand had bijgehouden wanneer de andere helft kapot ging, wat betekent dat er geen informatie was over de gemiddelde tijd vóór storing (MTBF). , wat betekent dat het niet mogelijk was om het pechgedrag van de helft van de vloot van repareerbare reserveonderdelen te modelleren.

    Ten slotte is de valuta van gegevens van belang. Naarmate de snelheid van zakendoen toeneemt en bedrijfsplanningscycli afnemen van een driemaandelijks of maandelijks tempo naar een wekelijks of dagelijks tempo, wordt het wenselijk om de flexibiliteit te benutten die wordt geboden door 's nachts uploads van dagelijkse transactiegegevens naar de cloud. Dit maakt hoogfrequente aanpassingen van prognoses en/of voorraadbeheerparameters mogelijk voor artikelen met een hoge volatiliteit en plotselinge verschuivingen in de vraag. Hoe verser de gegevens, hoe betrouwbaarder de analyse.

    Vertrouw op software voor vraagvoorspelling

    Zelfs met gegevens van hoge kwaliteit moeten voorspellers nog steeds vertrouwen op de analytische software die de gegevens verwerkt. Dit vertrouwen moet zich uitstrekken tot zowel de software zelf als de computationele omgeving waarin deze functioneert.

    Als voorspellers lokale software gebruiken, moeten ze vertrouwen op hun eigen IT-afdelingen om de gegevens te beschermen en beschikbaar te houden voor gebruik. Als ze in plaats daarvan de kracht van cloudgebaseerde analyses willen benutten, moeten klanten hun vertrouwelijke informatie toevertrouwen aan hun softwareleveranciers. Software op professioneel niveau, zoals de onze, rechtvaardigt het vertrouwen van klanten door middel van SOC 2-certificering. SOC 2-certificering is ontwikkeld door het American Institute of CPA's en definieert criteria voor het beheer van klantgegevens op basis van vijf "trustservice-principes": beveiliging, beschikbaarheid, verwerkingsintegriteit, vertrouwelijkheid en privacy.

    Hoe zit het met de software zelf? Wat is er nodig om het betrouwbaar te maken? De belangrijkste criteria hierbij zijn de juistheid van algoritmen en functionele betrouwbaarheid. Als de leverancier een professioneel programma-ontwikkelingsproces heeft, is de kans klein dat de software door een programmeerfout uiteindelijk de verkeerde cijfers berekent. En als de leverancier een rigoureus kwaliteitsborgingsproces heeft, is de kans klein dat de software crasht net wanneer de voorspeller een deadline heeft of een pop-upanalyse voor een speciale situatie moet verwerken.

    Overzicht

    Om bruikbaar te zijn, moeten voorspellers en hun voorspellingen worden vertrouwd door besluitvormers. Dat vertrouwen is afhankelijk van kenmerken van voorspellers en hun processen en communicatie. Het hangt ook af van de kwaliteit van de gegevens en software die worden gebruikt bij het maken van de prognoses.

     

    Lees hier het 1e deel van deze Blog “Who do you Trust”: https://smartcorp.com/forecasting/the-role-of-trust-in-the-demand-forecasting-process-part-1-who/

     

     

     

    Servicegestuurde planning voor bedrijven met serviceonderdelen

    Planning van serviceonderdelen op basis van serviceniveau is een proces in vier stappen dat verder gaat dan vereenvoudigde prognoses en vuistregels voor veiligheidsvoorraden. Het biedt planners van serviceonderdelen datagestuurde, op risico's afgestemde ondersteuning bij het nemen van beslissingen.

    Stap 1. Zorg ervoor dat alle belanghebbenden het eens zijn over de maatstaven die er toe doen. Alle deelnemers aan het planningsproces voor de inventarisatie van service-onderdelen moeten het eens zijn over de definities en welke statistieken het belangrijkst zijn voor de organisatie. Serviceniveaus beschrijf het percentage van de tijd dat u volledig aan het vereiste gebruik kunt voldoen zonder een voorraad op te lopen. Vul tarieven specificeer het percentage van het aangevraagde verbruik dat direct uit voorraad wordt gevuld. (Bekijk deze les van 4 minuten voor meer informatie over de verschillen tussen serviceniveaus en opvullingspercentage hier.) Beschikbaarheid geeft het percentage actieve reserveonderdelen weer met een voorhanden voorraad van ten minste één eenheid. Kosten vasthouden zijn de kosten op jaarbasis van het aanhouden van voorraden, rekening houdend met veroudering, belastingen, rente, opslag en andere uitgaven. Tekort kosten zijn de kosten van het opraken van de voorraad, inclusief uitvaltijd van voertuigen/apparatuur, spoed, verloren verkopen en meer. Bestellen kosten zijn de kosten die gepaard gaan met het plaatsen en ontvangen van aanvullingsorders.

    Stap 2. Benchmark historische en voorspelde huidige serviceniveauprestaties. Alle deelnemers aan het planningsproces voor de inventarisatie van service-onderdelen moeten een gemeenschappelijk inzicht hebben in de voorspelde toekomstige serviceniveaus, opvullingspercentages en kosten en de implicaties daarvan voor uw activiteiten met service-onderdelen. Het is van cruciaal belang om zowel historisch te meten Kritieke Prestatie Indicatoren (KPI's) en hun voorspellende equivalenten, Belangrijkste prestatievoorspellingen (KPP's). Door gebruik te maken van moderne software kunt u prestaties uit het verleden benchmarken en gebruikmaken van probabilistische prognosemethoden om toekomstige prestaties te simuleren. Door stress testen uw huidige voorraadbeleid tegen alle plausibele scenario's van toekomstige vraag, weet u van tevoren hoe het huidige en voorgestelde voorraadbeleid waarschijnlijk zal presteren.

    Stap 3. Spreek gerichte serviceniveaus af voor elk reserveonderdeel en onderneem proactieve corrigerende maatregelen wanneer wordt voorspeld dat doelen niet worden gehaald. Onderdelenplanners, leidinggevenden in de toeleveringsketen en de mechanische/onderhoudsteams moeten het eens worden over de gewenste serviceniveaudoelen met een volledig begrip van de wisselwerking tussen voorraadrisico en voorraadkosten. Door gebruik te maken van wat-als-scenario's in moderne software voor onderdelenplanning is het mogelijk om alternatief voorraadbeleid te vergelijken en het beleid te identificeren dat het beste aansluit bij de bedrijfsdoelstellingen. Spreek af welke mate van voorraadrisico acceptabel is voor elk onderdeel of elke klasse van onderdelen. Bepaal ook voorraadbudgetten en andere kostenbeperkingen. Zodra deze limieten zijn overeengekomen, moet u onmiddellijk actie ondernemen om stockouts en overtollige voorraad te voorkomen voordat ze zich voordoen. Gebruik uw software om gewijzigde bestelpunten, veiligheidsvoorraadniveaus en/of min/max-parameters automatisch te uploaden naar uw Enterprise Resource Planning (ERP)- of Enterprise Asset Management (EAM)-systeem om de dagelijkse inkoop van onderdelen aan te passen.

    Stap 4. Maak het zo en houd het zo. Geef het planningsteam de kennis en tools die het nodig heeft om ervoor te zorgen dat u een overeengekomen balans vindt tussen serviceniveaus en kosten door uw bestelproces aan te sturen met behulp van geoptimaliseerde inputs (prognoses, bestelpunten, bestelhoeveelheden, veiligheidsvoorraden). Houd uw KPI's bij en gebruik uw software om uitzonderingen te identificeren en aan te pakken. Laat herordeningspunten niet muf en achterhaald worden.  Opnieuw kalibreren het voorraadbeleid elke planningscyclus (minstens één keer per maand) met behulp van up-to-date gebruiksgeschiedenis, doorlooptijden van leveranciers en kosten. Onthoud: Herkalibratie van uw voorraadbeleid voor serviceonderdelen is preventief onderhoud tegen zowel stockouts als overtollige voorraad.