Hoe om te gaan met statistische prognoses van nul

Een statistische voorspelling van nul kan voor veel verwarring zorgen bij voorspellers, vooral wanneer de historische vraag niet nul is. Natuurlijk, het is duidelijk dat de vraag naar beneden neigt, maar moet deze naar nul evolueren? Wanneer de oudere vraag veel groter is dan de meer recente vraag en de meer recente vraag een zeer laag volume is (dwz 1,2,3 gevraagde eenheden), is het antwoord, statistisch gezien, ja. Dit komt echter mogelijk niet overeen met de zakelijke kennis van de planner en het verwachte minimale vraagniveau. Dus, wat moet een voorspeller doen om dit te corrigeren? Hier zijn drie suggesties:

 

  1. Beperk de historische gegevens die aan het model worden ingevoerd. In een neerwaartse trendsituatie zijn de oudere gegevens dat vaak veel groter dan de recente gegevens. Wanneer de oudere, veel hogere volumevraag wordt genegeerd, zal de neerwaartse trend lang niet zo significant zijn. U voorspelt nog steeds een neerwaartse trend, maar de resultaten zullen eerder in lijn zijn met de zakelijke verwachtingen.
  1. Probeer trenddemping. Smart Demand Planner heeft een functie genaamd "trendhedging" waarmee gebruikers kunnen definiëren hoe een trend in de loop van de tijd moet verdwijnen. Hoe hoger het percentage trendhedge (0-100%), hoe sterker de trenddemping. Dit betekent dat een voorspelde trend zich niet gedurende de hele prognosehorizon zal voortzetten. Dit betekent dat de vraagprognose begint af te vlakken voordat deze nul bereikt bij een neerwaartse trend.
  1. Wijzig het prognosemodel. Schakel over van een trendingmethode zoals Double Exponential Smoothing of Linear Moving Average naar een niet-trendingmethode zoals Single Exponential Smoothing of Simple Moving Average. U voorspelt geen neerwaartse trend, maar uw voorspelling zal in ieder geval niet nul zijn en dus waarschijnlijker door het bedrijf worden geaccepteerd.

 

 

 

Voorbij de prognose - Samenwerking en consensusplanning

5 Stappen naar Consensus Vraagplanning

Het hele punt van vraagvoorspelling is het vaststellen van de best mogelijke zicht op de toekomstige vraag. Dit vereist dat we gebruikmaken van de beste gegevens en input die we kunnen krijgen, maak gebruik van statistieken om onderliggende patronen vast te leggen, de koppen bij elkaar te steken om overrides toe te passen op basis van zakelijke kennis, en overeenstemming te bereiken over een consensusvraagplan dat als hoeksteen dient voor het algemene vraagplan van het bedrijf.

Stap 1: Ontwikkel een nauwkeurig vraagsignaal.   Wat is vraag? Overweeg hoe uw organisatie de vraag definieert – bijvoorbeeld bevestigde verkooporders exclusief annuleringen of verzendgegevens die zijn aangepast om de impact van historische stockouts weg te nemen – en gebruik dit consequent. Dit is uw maatstaf voor wat de markt u vraagt te leveren. Verwar dit niet met uw vermogen om te leveren - dat moet worden weerspiegeld in het inkomstenplan.

Stap 2: Genereer een statistische prognose. Plan voor duizenden artikelen met behulp van een beproefde prognosetoepassing die automatisch uw gegevens binnenhaalt en op betrouwbare wijze nauwkeurige prognoses produceert voor allemaal van uw artikelen. Bekijk de eerste passage van uw prognose en breng vervolgens aanpassingen aan. Een staking of treinwrak kan de scheepvaart vorige maand hebben onderbroken - laat dat uw voorspelling niet beïnvloeden. Pas hiervoor aan en maak een nieuwe voorspelling. Doe je best en nodig dan anderen uit om mee te wegen.

Stap 3: Schakel de experts in. Productlijnmanagers, verkoopleiders, belangrijke distributiepartners kennen hun markten.  Deel uw voorspelling met hen. Smart gebruikt het concept van een "Snapshot" om een facsimile van uw voorspelling - op elk niveau, voor elke productlijn - te delen met mensen die misschien beter weten. Er kan een enorme order zijn die niet in de pijplijn zit, of een channel partner staat op het punt hun jaarlijkse promotie te houden. Geef ze een gemakkelijke manier om hun deel van de prognose te nemen en te wijzigen. Sleep deze maand omhoog, die omlaag…

Stap 4: Meet nauwkeurigheid en voorspelde toegevoegde waarde. Sommige van uw bijdragers hebben misschien gelijk met het geld, andere hebben de neiging hoog of laag bevooroordeeld te zijn. Gebruik prognose versus actuals-rapportage en meet prognosewaardetoevoegende analyse om prognosefouten te meten en of wijzigingen in de prognose pijn doen of helpen. Door het proces met deze informatie te informeren, verbetert uw bedrijf het vermogen om nauwkeuriger prognoses te maken.

Stap 5: ga akkoord met de consensusprognose.  U kunt deze productlijn of geografie per keer doen, of bedrijf per bedrijf. Roep het team bijeen, stapel hun invoer grafisch op elkaar, bekijk eerdere nauwkeurigheidsprestaties, bespreek hun redenen voor het verhogen of verlagen van de prognose en spreek af wiens input moet worden gebruikt. Dit wordt uw consensusplan. Voltooi het plan en verzend het - upload prognoses naar MRP, stuur het naar financiën en productie.  U bent net begonnen met uw verkoop-, voorraad- en operationele planningsproces.

Je kan dit doen. En wij kunnen helpen.  Als u vragen heeft over gezamenlijke vraagplanning, kunt u deze blog beantwoorden, dan nemen we contact met u op.

 

 

 

Het artikel van Smart Software heeft de 1e plaats gewonnen in de categorie 2022 Supply Chain Brief MVP Awards Forecasting!

Belmont, Massachusetts, december 2022 – Smart Software is verheugd aan te kondigen dat mede-oprichter Dr. Thomas R. Willemain's artikel "Managing Inventory amid Regime Change" de 1e plaats heeft gewonnen in de categorie Forecasting van de 2022 Supply Chain Brief MVP Awards.

"Regimeverandering" is een statistische term die een grote verandering in de aard van de vraag naar een voorraadartikel betekent. De vraaggeschiedenis van een item is de brandstof die de prognosemachines van vraagplanners aandrijft. Over het algemeen geldt: hoe meer brandstof, hoe beter, waardoor we een beter beeld hebben van het gemiddelde niveau, de vorm van elk seizoenspatroon en de grootte en richting van elke trend. Maar er is één grote uitzondering op de regel dat 'meer gegevens betere gegevens zijn'. Als er een grote verschuiving in uw bedrijf plaatsvindt en de nieuwe vraag niet lijkt op de oude vraag, dan worden oude gegevens gevaarlijk.

Lees hier het artikel over de winnaar van de MVP Award  https://smartcorp.com/inventory-optimization/managing-inventory-amid-regime-change/

Toeleveringsketen in het kort brengt de beste inhoud samen van honderden opinieleiders uit de branche. Deze MVP Award erkent de Meest waardevolle post zoals beoordeeld door het publiek, de prijscommissie en sociale media van Supply Chain Brief. Van Smart Software wordt erkend dat het de hoogste waarde biedt aan professionals uit de industrie en nuttige informatie van strategische aard biedt. https://www.supplychainbrief.com/mvp-awards/2022-SCB-MVP-AWARDS/forecasting

Dr.Thomas R.Willemain is mede-oprichter en Senior VP for Research bij Smart Software. Hij was professor aan het MIT en de Harvard Kennedy School of Government en is nu emeritus hoogleraar Industrial and Systems Engineering aan het Rensselaer Polytechnic Institute. Tom was een Distinguished Visiting Professor aan de FAA en ondersteunde de Intelligence Community als Expert Statistical Consultant (GS15) in de Mathematics Research Group van NSA en later bij IDA's Center for Computing Sciences. Hij heeft diploma's van Princeton University (BSE, summa cum laude) en Massachusetts Institute of Technology (MS en PhD), allemaal in Electrical Engineering.

Over Smart Software, Inc.
Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten bij middelgrote ondernemingen en Fortune 500-bedrijven, zoals Disney, Arizona Public Service en Ameren. Smart Inventory Planning & Optimization geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts, en is online te vinden op www.smartcorp.com.

 

 

Waarom dagen van bevoorradingsdoelen niet werken bij het berekenen van veiligheidsvoorraden

Waarom dagen van bevoorradingsdoelen niet werken bij het berekenen van veiligheidsvoorraden

CFO's vertellen ons dat ze minder aan voorraad moeten uitgeven zonder de verkoop te beïnvloeden. Een manier om dat te doen is om af te stappen van het gebruik van een gerichte leveringsdag om bestelpunten en veiligheidsvoorraadbuffers te bepalen. Hier is hoe een bevoorradingsdagenmodel werkt:

  1. Bereken de gemiddelde vraag per dag en vermenigvuldig de vraag per dag met de doorlooptijd van de leverancier in dagen om de doorlooptijdvraag te krijgen
  2. Kies een dagen voorraadbuffer (dwz 15, 30, 45 dagen, enz.). Gebruik grotere buffers voor belangrijkere items en kleinere buffers voor minder belangrijke items.
  3. Voeg de gewenste dagen aan voorraadbuffer toe aan de vraag over de doorlooptijd om het bestelpunt te krijgen. Bestel meer als de voorhanden voorraad onder het bestelpunt daalt

Dit is wat er mis is met deze benadering:

  1. Het gemiddelde houdt geen rekening met seizoensinvloeden en trends – u zult duidelijke patronen missen, tenzij u er veel tijd aan besteedt om deze handmatig aan te passen.
  2. Het gemiddelde houdt geen rekening met hoe voorspelbaar een artikel is - u zult voorspelbare artikelen te veel in voorraad hebben en minder voorspelbare artikelen. Dit komt omdat dezelfde leveringsdagen voor verschillende artikelen een heel ander voorraadrisico opleveren.
  3. Het gemiddelde vertelt een planner niet hoe het voorraadrisico wordt beïnvloed door het voorraadniveau - u hebt geen idee of u ondervoorraad, overbevoorrading of net genoeg hebt. Je plant in wezen met oogkleppen op.

Er zijn veel andere "vuistregel"-benaderingen die even problematisch zijn. Hierin kunt u meer over hen te weten komen na

Een betere manier om de juiste hoeveelheid veiligheidsvoorraad te plannen, is gebruik te maken van waarschijnlijkheidsmodellen die precies aangeven hoeveel voorraad nodig is gezien het risico van voorraad die u bereid bent te accepteren. Hieronder ziet u een screenshot van Smart Inventory Optimization die precies dat doet. Ten eerste beschrijft het de voorspelde serviceniveaus (waarschijnlijkheid van niet bevoorraden) in verband met de huidige dagen van leveringslogica. De planner kan nu de onderdelen zien waar het voorspelde serviceniveau te laag of te duur is. Ze kunnen dan onmiddellijke correcties aanbrengen door zich te richten op de gewenste serviceniveaus en het niveau van voorraadinvesteringen. Zonder deze informatie zal een planner niet weten of de beoogde dagen veiligheidsvoorraad te veel, te weinig of precies goed zijn, wat resulteert in overvoorraden en tekorten die marktaandeel en inkomsten kosten. 

Veiligheidsvoorraden berekenen 2

 

5 tips voor het maken van slimme prognoses

In de ruim veertig jaar dat Smart Software voorspellingssoftware levert, hebben we veel mensen ontmoet die, misschien verrassend, vraagvoorspellers worden. Deze blog is in de eerste plaats bedoeld voor die gelukkige individuen die op het punt staan om aan dit avontuur te beginnen (hoewel doorgewinterde pro's de opfriscursus misschien leuk vinden).

Welkom op het veld! Goede prognoses kunnen een groot verschil maken voor de prestaties van uw bedrijf, of u nu prognoses maakt ter ondersteuning van verkoop, marketing, productie, voorraad of financiën.

Er is veel wiskunde en statistiek die aan de vraag ten grondslag liggen voorspellingsmethoden, dus je opdracht suggereert dat je niet een van die wiskunde-fobische mensen bent die liever dichters zouden zijn. Gelukkig, als je je een beetje wankel voelt en nog niet genezen bent van je meetkundeles op de middelbare school, is veel van de wiskunde ingebouwd in voorspellingssoftware, dus je eerste taak is om de wiskunde voor later te laten terwijl je een zicht krijgt op de grote afbeelding. Het is inderdaad een grote afbeelding, maar laten we een paar van de ideeën isoleren die u het meest zullen helpen slagen.

 

  1. Vraagvoorspelling is een teamsport. Zelfs in een klein bedrijf maakt de vraagplanner deel uit van een team, waarbij sommige mensen de gegevens brengen, sommigen de technologie en sommigen het zakelijke oordeel. In een goed geleide onderneming zal het nooit uw taak zijn om simpelweg wat gegevens in een programma in te voeren en een prognoserapport te verzenden. Veel bedrijven hebben een proces aangenomen dat Sales and Operations Planning (S&OP) wordt genoemd, waarbij uw prognose wordt gebruikt om een vergadering te starten om bepaalde beoordelingen te maken (bijvoorbeeld: moeten we ervan uitgaan dat deze trend zich zal voortzetten? overprognose?) en om extra informatie in de uiteindelijke prognose op te nemen (bijv. input van het verkooppersoneel, business intelligence over bewegingen van concurrenten, promoties). De implicatie voor u is dat uw vaardigheden op het gebied van luisteren en communiceren belangrijk zullen zijn voor uw succes.

 

  1. Motoren voor statistische prognoses hebben goede brandstof nodig. Historische gegevens zijn de brandstof die wordt gebruikt door statistische prognoseprogramma's, dus slechte of ontbrekende of vertraagde gegevens kunnen uw werkproduct degraderen. Bij je functie hoort impliciet een aspect van kwaliteitscontrole en je moet de gegevens die je aangeleverd worden scherp in de gaten houden. Onderweg is het een goed idee om de IT-mensen tot je vrienden te maken.

 

  1. Uw naam staat op uw prognoses. Of ik het nu leuk vind of niet, als ik voorspellingen naar de commandostructuur stuur, worden ze bestempeld als 'Tom's voorspellingen'. Ik moet bereid zijn die nummers te bezitten. Om mijn plaats aan tafel te verdienen, moet ik kunnen uitleggen op welke gegevens mijn voorspellingen waren gebaseerd, hoe ze werden berekend, waarom ik methode A in plaats van methode B gebruikte om de berekeningen uit te voeren, en vooral hoe stevig of zacht ze zijn. Hier is eerlijkheid belangrijk. Van geen enkele voorspelling kan redelijkerwijs worden verwacht dat deze perfect nauwkeurig is, maar niet van alle managers kan worden verwacht dat ze volkomen redelijk zijn. Als u pech heeft, denkt uw management dat uw meldingen van onzekerheid voorspellen wijzen op onwetendheid of incompetentie. In werkelijkheid duiden ze op professionaliteit. Ik heb geen bruikbaar advies over hoe je zulke managers het beste kunt managen, maar ik kan je er wel voor waarschuwen. Het is aan jou om degenen die je prognoses gebruiken op te leiden. De beste managers zullen dat waarderen.

 

  1. Laat uw spreadsheets achter. Het is niet ongebruikelijk dat iemand wordt gepromoveerd tot voorspeller omdat ze geweldig waren met Excel. Tenzij u bij een ongewoon klein bedrijf werkt, overstijgt de schaal van moderne bedrijfsprognoses wat u met spreadsheets aankunt. De toenemende snelheid van zakendoen verergert het probleem: het slaperige tempo van jaarlijkse en driemaandelijkse planningsvergaderingen maakt snel plaats voor wekelijkse of zelfs dagelijkse herprognoses naarmate de omstandigheden veranderen. Wees dus voorbereid op een professionele leverancier van moderne, schaalbare cloudgebaseerde software voor vraagplanning en statistische prognose voor training en ondersteuning.

 

  1. Denk visueel. Het zal zeer nuttig zijn, zowel bij het beslissen hoe u vraagprognoses genereert als bij het presenteren ervan aan het management, dus profiteer van de visualisatiemogelijkheden die in de prognosesoftware zijn ingebouwd. Zoals ik hierboven al opmerkte, kunnen de gegevens waarmee u werkt in de huidige hoogfrequente zakenwereld snel veranderen, dus wat u vorige maand deed, is deze maand misschien niet de juiste keuze. Houd uw gegevens letterlijk in de gaten door eenvoudige grafieken te maken, zoals "timeplots" die zaken als trend of seizoensinvloeden of (vooral) veranderingen in trend of seizoensinvloeden of anomalieën laten zien die moeten worden aangepakt. Evenzo kan het zeer nuttig zijn in een S&OP-proces om tabellen met prognoses aan te vullen met grafieken waarin huidige prognoses worden vergeleken met eerdere prognoses met werkelijke cijfers. Tijdplots met waarden uit het verleden, voorspelde waarden en 'prognose-intervallen' die de objectieve onzekerheid in de prognoses aangeven, bieden bijvoorbeeld een solide basis voor uw team om de boodschap in uw prognoses ten volle te waarderen.

 

Dat is genoeg voor nu. Als iemand die al een halve eeuw lesgeeft aan universiteiten, ben ik geneigd om met de statistische kant van voorspellingen te beginnen, maar dat bewaar ik voor een andere keer. De vijf bovenstaande tips zouden u kunnen helpen als u uitgroeit tot een belangrijk onderdeel van uw bedrijfsplanningsteam. Welkom bij het spel!