Beheersing van automatische prognoses voor tijdreeksgegevens

In deze blog analyseren we de automatische prognoses voor vraagprojecties in tijdreeksen, waarbij we ons concentreren op de belangrijkste technieken, uitdagingen en best practices. Er zijn meerdere methoden om de toekomstige vraag naar een artikel te voorspellen, en dit wordt complex als het om duizenden artikelen gaat, die elk een andere voorspellingstechniek vereisen vanwege hun unieke vraagpatronen. Sommige artikelen hebben een stabiele vraag, andere vertonen een stijgende of dalende trend en sommige vertonen seizoensinvloeden. Het selecteren van de juiste methode voor elk item kan overweldigend zijn. Hier onderzoeken we hoe automatische prognoses dit proces vereenvoudigen.

Automatische prognoses worden van fundamenteel belang bij het beheren van grootschalige vraagprojecties. Met duizenden items is het handmatig selecteren van een prognosemethode voor elk item onpraktisch. Automatische prognoses maken gebruik van software om deze beslissingen te nemen, waardoor nauwkeurigheid en efficiëntie in het prognoseproces worden gegarandeerd. Het belang ervan ligt in het vermogen om complexe, grootschalige prognosebehoeften efficiënt af te handelen. Het elimineert de noodzaak van handmatige selectie, waardoor tijd wordt bespaard en fouten worden verminderd. Deze aanpak is vooral nuttig in omgevingen met uiteenlopende vraagpatronen, waarbij voor elk artikel mogelijk een andere prognosemethode nodig is.

 

Belangrijke overwegingen voor effectieve prognoses

  1. Uitdagingen van handmatige prognoses:
    • Onhaalbaarheid: het handmatig kiezen van prognosemethoden voor duizenden items is onbeheersbaar.
    • Inconsistentie: Menselijke fouten kunnen leiden tot inconsistente en onnauwkeurige voorspellingen.
  2. Criteria voor methodeselectie:
    • Foutmeting: Het primaire criterium voor het selecteren van een voorspellingsmethode is de typische voorspellingsfout, gedefinieerd als het verschil tussen voorspelde en werkelijke waarden. Deze fout wordt gemiddeld over de prognosehorizon (bijvoorbeeld maandelijkse prognoses over een jaar).
    • Holdout-analyse: deze techniek simuleert het proces van wachten tot een jaar is verstreken door enkele historische gegevens te verbergen, voorspellingen te doen en vervolgens de verborgen gegevens te onthullen om fouten te berekenen. Dit helpt bij het kiezen van de beste methode in realtime.
  3. Prognose toernooi:
    • Methodevergelijking: Verschillende methoden concurreren om elk item te voorspellen, waarbij de methode de laagste gemiddelde fout oplevert.
    • Parameterafstemming: Elke methode wordt getest met verschillende parameters om de optimale instellingen te vinden. Eenvoudige exponentiële afvlakking kan bijvoorbeeld worden geprobeerd met verschillende wegingsfactoren.

 

De algoritmen achter effectieve automatische prognoses

Automatische prognoses zijn zeer rekenkundig, maar haalbaar met moderne technologie. Het proces omvat:

  • Gegevenssegmentatie: Door historische gegevens in segmenten te verdelen, kunt u verschillende aspecten van historische gegevens beheren en benutten voor nauwkeurigere prognoses. Voor een product met een seizoensgebonden vraag kunnen de gegevens bijvoorbeeld worden gesegmenteerd op basis van seizoenen om seizoensspecifieke trends en patronen vast te leggen. Door deze segmentatie kunnen voorspellers effectiever voorspellingen maken en testen.
  • Herhaalde simulaties: Het gebruik van glijdende simulaties houdt in dat voorspellingen over verschillende perioden herhaaldelijk worden getest en verfijnd. Deze methode valideert de nauwkeurigheid van voorspellingsmethoden door ze toe te passen op verschillende gegevenssegmenten. Een voorbeeld is de glijdende-venstermethode, waarbij een venster met een vaste grootte door de tijdreeksgegevens beweegt en voor elke positie voorspellingen wordt gegenereerd om de prestaties te evalueren.
  • Parameteroptimalisatie: Parameteroptimalisatie omvat het uitproberen van meerdere varianten van elke prognosemethode om de best presterende te vinden. Door parameters aan te passen, zoals de afvlakkingsfactor bij exponentiële afvlakkingsmethoden of het aantal eerdere waarnemingen in ARIMA-modellen, kunnen voorspellers modellen verfijnen om de prestaties te verbeteren.

In onze software laten we bijvoorbeeld verschillende prognosemethoden met elkaar concurreren om de beste prestaties op een bepaald item. Kennis van automatische prognoses wordt onmiddellijk overgedragen op Simple Moving Average, lineair voortschrijdend gemiddelde, Single Exponential Smoothing, Double Exponential Smoothing, Winters' Exponential Smoothing en Promo-voorspellingen. Deze competitie zorgt ervoor dat de meest geschikte methode wordt geselecteerd op basis van empirisch bewijs, en niet op basis van subjectief oordeel. De winnaar van het toernooi komt het dichtst in de buurt van het voorspellen van nieuwe gegevenswaarden uit oude gegevens. De nauwkeurigheid wordt gemeten aan de hand van de gemiddelde absolute fout (dat wil zeggen de gemiddelde fout, waarbij eventuele mintekens worden genegeerd). Het gemiddelde wordt berekend over een reeks voorspellingen, waarbij elk een deel van de gegevens gebruikt, in een proces dat bekend staat als glijdende simulatie. eerder uitgelegd in een eerdere blog.

 

Methoden die worden gebruikt bij automatische prognoses

Normaal gesproken zijn er zes extrapolatieve voorspellingsmethoden die meedoen aan het automatische voorspellingstoernooi:

  • Eenvoudig voortschrijdend gemiddelde
  • Lineair voortschrijdend gemiddelde
  • Enkele exponentiële afvlakking
  • Dubbele exponentiële afvlakking
  • Additieve versie van Winters' exponentiële afvlakking
  • Multiplicatieve versie van Winters' exponentiële afvlakking

De laatste twee methoden zijn geschikt voor seizoensreeksen; ze worden echter automatisch uitgesloten van het toernooi als er minder dan twee volledige seizoenscycli met gegevens zijn (bijvoorbeeld minder dan 24 perioden met maandelijkse gegevens of acht perioden met driemaandelijkse gegevens). Deze zes klassieke, op afvlakking gebaseerde methoden hebben bewezen gemakkelijk te begrijpen, eenvoudig te berekenen en nauwkeurig te zijn. Je kunt elk van deze methoden uitsluiten van het toernooi als je een voorkeur hebt voor sommige deelnemers en niet voor andere.

Automatische prognoses voor tijdreeksgegevens zijn essentieel voor het efficiënt en nauwkeurig beheren van grootschalige vraagprojecties. Bedrijven kunnen een betere voorspellingsnauwkeurigheid bereiken en hun planningsprocessen stroomlijnen door de selectie van voorspellingsmethoden te automatiseren en technieken zoals holdout-analyse en voorspellingstoernooien te gebruiken. Het omarmen van deze geavanceerde voorspellingstechnieken zorgt ervoor dat bedrijven voorop blijven lopen in dynamische marktomgevingen en weloverwogen beslissingen nemen op basis van betrouwbare gegevensprojecties.

 

 

 

De methoden voor voorspelling

Software voor vraagplanning en statistische prognoses speelt een cruciale rol in effectief bedrijfsbeheer door functies te integreren die de nauwkeurigheid van prognoses aanzienlijk verbeteren. Een belangrijk aspect is het gebruik van op afvlakking gebaseerde of extrapolatieve modellen, waardoor bedrijven snel voorspellingen kunnen doen die uitsluitend op historische gegevens zijn gebaseerd. Deze basis, geworteld in prestaties uit het verleden, is cruciaal voor het begrijpen van trends en patronen, vooral in variabelen zoals verkoop of productvraag. Voorspellingssoftware gaat verder dan louter data-analyse door de combinatie van professioneel oordeel met statistische voorspellingen mogelijk te maken, waarbij wordt erkend dat prognoses geen one-size-fits-all proces zijn. Deze flexibiliteit stelt bedrijven in staat menselijke inzichten en sectorkennis in het voorspellingsmodel op te nemen, waardoor een genuanceerdere en nauwkeurigere voorspelling wordt gegarandeerd.

Functies zoals het voorspellen van meerdere artikelen als groep, het rekening houden met promotiegestuurde vraag en het omgaan met intermitterende vraagpatronen zijn essentiële mogelijkheden voor bedrijven die te maken hebben met uiteenlopende productportfolio's en dynamische marktomstandigheden. Een juiste implementatie van deze toepassingen geeft bedrijven de beschikking over veelzijdige prognosetools, die aanzienlijk bijdragen aan geïnformeerde besluitvorming en operationele efficiëntie.

Extrapolatieve modellen

Onze oplossingen voor vraagvoorspelling ondersteunen een verscheidenheid aan voorspellingsbenaderingen, waaronder extrapolatieve of op afvlakking gebaseerde voorspellingsmodellen, zoals exponentiële afvlakking en voortschrijdende gemiddelden. De filosofie achter deze modellen is eenvoudig: ze proberen zich herhalende patronen in de historische gegevens te detecteren, kwantificeren en in de toekomst te projecteren.

  Er zijn twee soorten patronen die in de historische gegevens kunnen worden aangetroffen:

  • Trend
  • Seizoensgebondenheid

Deze patronen worden in de volgende afbeelding geïllustreerd, samen met willekeurige gegevens.

De methoden voor voorspelling

 

Ter illustratie van trend-, seizoens- en willekeurige tijdreeksgegevens

Als het patroon een trend is, schatten extrapolatieve modellen zoals dubbele exponentiële afvlakking en lineair voortschrijdend gemiddelde het tempo van de stijging of daling van het niveau van de variabele en projecteren dat tempo naar de toekomst.

Als het patroon seizoensgebonden is, schatten modellen zoals Winters en drievoudige exponentiële afvlakking seizoensvermenigvuldigers of seizoensgebonden optellingsfactoren en passen deze vervolgens toe op projecties van het niet-seizoensgebonden deel van de gegevens.

Heel vaak, vooral bij gegevens over detailhandelsverkopen, zijn zowel trend- als seizoenspatronen betrokken. Als deze patronen stabiel zijn, kunnen ze worden benut om zeer nauwkeurige voorspellingen te doen.

Soms zijn er echter geen duidelijke patronen, zodat de plots van de gegevens op willekeurige ruis lijken. Soms zijn patronen duidelijk zichtbaar, maar ze veranderen in de loop van de tijd en er kan niet op worden vertrouwd dat ze zich herhalen. In deze gevallen proberen de extrapolatieve modellen geen patronen te kwantificeren en te projecteren. In plaats daarvan proberen ze de ruis te middelen en goede schattingen te maken van het midden van de verdeling van gegevenswaarden. Deze typische waarden worden dan de voorspellingen. Wanneer gebruikers een historisch plot met veel ups en downs zien, maken ze zich soms zorgen omdat de voorspelling deze ups en downs niet repliceert. Normaal gesproken hoeft dit geen reden tot bezorgdheid te zijn. Dit gebeurt wanneer de historische patronen niet sterk genoeg zijn om het gebruik van een voorspellingsmethode te rechtvaardigen die het patroon repliceert. U wilt er zeker van zijn dat uw prognoses niet lijden onder het “wiebeleffect” dat hierin wordt beschreven blogpost.

Het verleden als voorspeller van de toekomst

De belangrijkste aanname die inherent is aan extrapolatieve modellen is dat het verleden een goede leidraad is voor de toekomst. Deze veronderstelling kan echter mislukken. Sommige historische gegevens kunnen verouderd zijn. De gegevens kunnen bijvoorbeeld een bedrijfsomgeving beschrijven die niet meer bestaat. Of de wereld die het model vertegenwoordigt, kan binnenkort veranderen, waardoor alle gegevens overbodig worden. Vanwege dergelijke complicerende factoren zijn de risico's van extrapolatieve voorspellingen kleiner als er slechts korte tijd in de toekomst wordt voorspeld.

Extrapolatieve modellen hebben het praktische voordeel dat ze goedkoop zijn en gemakkelijk te bouwen, te onderhouden en te gebruiken. Ze vereisen alleen nauwkeurige registraties van waarden uit het verleden van de variabelen die u moet voorspellen. Naarmate de tijd verstrijkt, voegt u eenvoudigweg de nieuwste gegevenspunten toe aan de tijdreeks en maakt u een nieuwe voorspelling. De hieronder beschreven causale modellen vereisen daarentegen meer denkwerk en meer gegevens. De eenvoud van extrapolatieve modellen wordt het meest op prijs gesteld als u met een enorm voorspellingsprobleem kampt, zoals het maken van nachtelijke prognoses van de vraag naar alle 30.000 artikelen die in een magazijn op voorraad zijn.

Oordelende aanpassingen

Extrapolatieve modellen kunnen met Demand Planner volledig automatisch worden uitgevoerd, zonder dat tussenkomst vereist is. Causale modellen vereisen inhoudelijk oordeel voor een verstandige selectie van onafhankelijke variabelen. Beide soorten statistische modellen kunnen echter worden verbeterd door oordelende aanpassingen. Beiden kunnen profiteren van uw inzichten.

Zowel causale als extrapolatieve modellen zijn gebaseerd op historische gegevens. Het is echter mogelijk dat u over aanvullende informatie beschikt die niet wordt weerspiegeld in de cijfers in het historische record. U weet bijvoorbeeld misschien dat de concurrentieomstandigheden binnenkort zullen veranderen, misschien als gevolg van prijskortingen of trends in de sector, of de opkomst van nieuwe concurrenten, of de aankondiging van een nieuwe generatie van uw eigen producten. Als deze gebeurtenissen plaatsvinden tijdens de periode waarvoor u voorspellingen doet, kunnen ze de nauwkeurigheid van puur statistische voorspellingen aantasten. Met de grafische aanpassingsfunctie van Smart Demand Planner kunt u deze extra factoren in uw prognoses opnemen via het proces van grafische aanpassing op het scherm.

Houd er rekening mee dat het toepassen van gebruikersaanpassingen op de prognose een tweesnijdend zwaard is. Als het op de juiste manier wordt gebruikt, kan het de nauwkeurigheid van voorspellingen verbeteren door gebruik te maken van een rijkere reeks informatie. Als het promiscue wordt gebruikt, kan het extra ruis aan het proces toevoegen en de nauwkeurigheid verminderen. Wij raden u aan spaarzaam om te gaan met oordelende aanpassingen, maar nooit blindelings de voorspellingen van een puur statistische voorspellingsmethode te aanvaarden. Het is ook erg belangrijk om de verwachte toegevoegde waarde te meten. Dat wil zeggen de waarde die door elke incrementele stap aan het prognoseproces wordt toegevoegd. Als u bijvoorbeeld aanpassingen toepast op basis van bedrijfskennis, is het belangrijk om te meten of deze aanpassingen waarde toevoegen door de nauwkeurigheid van de prognoses te verbeteren. Smart Demand Planner ondersteunt het meten van de verwachte toegevoegde waarde door elke overwogen prognose bij te houden en de nauwkeurigheidsrapporten van de prognoses te automatiseren. U kunt statistische prognoses selecteren, de fouten ervan meten en deze vergelijken met de overschreven voorspellingen. Door dit te doen informeert u het prognoseproces, zodat in de toekomst betere beslissingen kunnen worden genomen. 

Voorspellingen op meerdere niveaus

Een andere veel voorkomende situatie betreft prognoses op meerdere niveaus, waarbij er meerdere items als groep worden voorspeld of er zelfs meerdere groepen kunnen zijn, waarbij elke groep meerdere items bevat. We zullen dit soort prognoses over het algemeen Multilevel Forecasting noemen. Het belangrijkste voorbeeld is de productlijnprognose, waarbij elk artikel lid is van een artikelfamilie en het totaal van alle artikelen in de familie een betekenisvolle hoeveelheid is.

U heeft bijvoorbeeld, zoals in de volgende afbeelding, mogelijk een lijn tractoren en u wilt verkoopprognoses voor elk type tractor en voor de gehele tractorlijn.

De methoden voor het voorspellen 2

Ter illustratie van productprognoses op meerdere niveaus

 Smart Demand Planner biedt roll-up/roll-down-prognoses. Deze functie is cruciaal voor het verkrijgen van uitgebreide prognoses van alle productartikelen en hun groepstotaal. De Roll Down/Roll Up-methode binnen deze functie biedt twee opties voor het verkrijgen van deze prognoses:

Samenvatten (Bottom-Up): Deze optie voorspelt in eerste instantie elk item afzonderlijk en voegt vervolgens de prognoses op itemniveau samen om een prognose op familieniveau te genereren.

Roll-down (van boven naar beneden): Als alternatief begint de roll-down-optie met het vormen van het historische totaal op familieniveau, voorspelt het en wijst het totaal vervolgens proportioneel toe tot op itemniveau.

Wanneer u Roll Down/Roll Up gebruikt, heeft u toegang tot het volledige scala aan prognosemethoden van Smart Demand Planner, zowel op artikel- als op familieniveau. Dit zorgt voor flexibiliteit en nauwkeurigheid bij het voorspellen, waarbij wordt voldaan aan de specifieke behoeften van uw bedrijf op verschillende hiërarchische niveaus.

Onderzoek naar prognoses heeft geen duidelijke voorwaarden geschapen die de voorkeur geven aan een top-down- of bottom-up-benadering van prognoses. De bottom-up benadering lijkt echter de voorkeur te hebben als de geschiedenis van items stabiel is en de nadruk ligt op de trends en seizoenspatronen van de individuele items. Top-down is normaal gesproken een betere keuze als sommige items een zeer luidruchtige geschiedenis hebben of als de nadruk ligt op prognoses op groepsniveau. Omdat Smart Demand Planner het snel en gemakkelijk maakt om zowel een bottom-up als een top-down benadering te proberen, moet u beide methoden proberen en de resultaten vergelijken. U kunt de functie 'Hold back on Current' van Smart Demand Planner in 'Prognose vs. Actueel' gebruiken om beide benaderingen op uw eigen gegevens te testen en te zien welke een nauwkeurigere voorspelling voor uw bedrijf oplevert. 

 

Het prognoseproces voor besluitvormers

In bijna elk bedrijf en elke sector hebben besluitvormers betrouwbare voorspellingen nodig van kritische variabelen, zoals omzet, inkomsten, vraag naar producten, voorraadniveaus, marktaandeel, kosten en trends in de sector.

Er zijn veel soorten mensen die deze voorspellingen doen. Sommigen zijn geavanceerde technische analisten, zoals bedrijfseconomen en statistici. Vele anderen beschouwen forecasting als een belangrijk onderdeel van hun totale werk: algemeen managers, productieplanners, voorraadbeheerspecialisten, financiële analisten, strategische planners, marktonderzoekers en product- en verkoopmanagers. Toch beschouwen anderen zichzelf zelden als voorspellers, maar moeten ze vaak voorspellingen doen op een intuïtieve, oordelende basis.

Door de manier waarop we Smart Demand Planner hebben ontworpen, heeft het alle soorten voorspellers iets te bieden. Dit ontwerp komt voort uit verschillende observaties over het voorspellingsproces. Omdat we Smart Demand Planner met deze observaties in gedachten hebben ontworpen, zijn we van mening dat de stijl en inhoud ervan uniek geschikt zijn om van uw browser een effectief prognose- en planningshulpmiddel te maken:

Voorspellen is een kunst die een mix van professioneel oordeel en objectieve, statistische analyse vereist.

Het is vaak effectief om te beginnen met een objectieve statistische voorspelling die automatisch rekening houdt met trends, seizoensinvloeden en andere patronen. Pas vervolgens aanpassingen of prognoseoverschrijvingen toe op basis van uw zakelijke oordeel. Smart Demand Planner maakt het eenvoudig om grafische en tabelvormige aanpassingen aan statistische prognoses uit te voeren.

Het prognoseproces is doorgaans iteratief.

U zult waarschijnlijk besluiten uw oorspronkelijke prognose een aantal malen te verfijnen voordat u tevreden bent. Mogelijk wilt u oudere historische gegevens uitsluiten die u niet langer relevant vindt. U kunt verschillende gewichten op het voorspellingsmodel toepassen, waarbij verschillende accenten op de meest recente gegevens worden gelegd. U kunt trenddemping toepassen om agressief trendmatige statistische voorspellingen te verhogen of te verlagen. U kunt de Machine Learning-modellen de prognoseselectie voor u laten verfijnen en automatisch het winnende model selecteren. De verwerkingssnelheid van Smart Demand Planner geeft u voldoende tijd om meerdere keren te passen en slaat meerdere versies van de prognoses op als 'momentopnamen', zodat u de nauwkeurigheid van de prognoses later kunt vergelijken.

Voorspellen vereist grafische ondersteuning.

De patronen die in de gegevens zichtbaar zijn, kunnen door een scherp oog worden gezien. De geloofwaardigheid van uw prognoses zal vaak sterk afhangen van grafische vergelijkingen die andere zakelijke belanghebbenden maken wanneer zij de historische gegevens en prognoses beoordelen. Smart Demand Planner biedt grafische weergaven van prognoses, geschiedenis en rapportage van prognoses versus werkelijke cijfers.

Voorspellingen kloppen nooit helemaal.

Omdat zelfs in het beste voorspellingsproces altijd een fout sluipt, is een van de nuttigste aanvullingen op een voorspelling een eerlijke schatting van de foutmarge.

Smart Demand Planner presenteert zowel grafische als tabelvormige samenvattingen van de nauwkeurigheid van de prognoses, gebaseerd op de zuurtest van het voorspellen van gegevens die zijn achtergehouden bij de ontwikkeling van het voorspellingsmodel. 

Prognose-intervallen of betrouwbaarheidsintervallen zijn ook erg handig. Ze beschrijven het waarschijnlijke bereik van de mogelijke vraag die naar verwachting zal optreden. Als de werkelijke vraag bijvoorbeeld meer dan 10% van de tijd buiten het 90%-betrouwbaarheidsinterval valt, is er reden om verder onderzoek te doen.  

Voorspellen vereist een match tussen methode en gegevens.

Een van de belangrijkste technische taken bij het voorspellen is het afstemmen van de keuze van de voorspellingstechniek op de aard van de gegevens. Kenmerken van een datareeks zoals trend, seizoensinvloeden of abrupte niveauverschuivingen suggereren bepaalde technieken in plaats van andere.

De automatische prognosefunctie van Smart Demand Planner maakt deze match snel, nauwkeurig en automatisch.

Prognoses maken vaak deel uit van een groter plannings- of controleproces.

Prognoses kunnen bijvoorbeeld een krachtige aanvulling zijn op op spreadsheets gebaseerde financiële analyses, waardoor rijen met cijfers naar de toekomst kunnen worden uitgebreid. Bovendien zijn nauwkeurige prognoses van de verkoop en de vraag naar producten fundamentele input voor de productieplanning en voorraadcontroleprocessen van een fabrikant. Een objectieve statistische voorspelling van toekomstige verkopen helpt altijd bij het identificeren wanneer het budget (of het verkoopplan) te onrealistisch is. Gap-analyse stelt het bedrijf in staat corrigerende maatregelen te nemen voor hun vraag- en marketingplannen om ervoor te zorgen dat ze het gebudgetteerde plan niet missen.

Prognoses moeten worden geïntegreerd in ERP-systemen
Smart Demand Planner kan zijn resultaten snel en eenvoudig overbrengen naar andere applicaties, zoals spreadsheets, databases en planningssystemen inclusief ERP-applicaties. Gebruikers kunnen voorspellingen in verschillende bestandsformaten exporteren, hetzij via download, hetzij via beveiligde FTP-bestandslocaties. Smart Demand Planner omvat API-gebaseerde integraties met een verscheidenheid aan ERP- en EAM-systemen, waaronder Epicor Kinetic en Epicor Prophet 21, Sage X3 en Sage 300, Oracle NetSuite en elk van de Dynamics 365 ERP-systemen van Microsoft. Dankzij API-gebaseerde integraties kunnen klanten prognoseresultaten op verzoek rechtstreeks terugsturen naar het ERP-systeem.

Het resultaat is een efficiëntere verkoopplanning, budgettering, productieplanning, bestellingen en voorraadplanning.

 

 

 

 

Elk voorspellingsmodel is goed waarvoor het is ontworpen

Wanneer u traditionele extrapolatieve voorspellingstechnieken moet gebruiken.

Met zoveel hype rond nieuwe Machine Learning (ML) en probabilistische voorspellingsmethoden lijken de traditionele “extrapolatieve” of “tijdreeksen” statistische voorspellingsmethoden de koude schouder te krijgen. Het is echter de moeite waard om te onthouden dat deze traditionele technieken (zoals enkele en dubbele exponentiële afvlakking, lineaire en eenvoudige voortschrijdende middeling, en Winters-modellen voor seizoensitems) vaak behoorlijk goed werken voor gegevens met een groter volume. Elke methode is goed voor waarvoor deze is ontworpen. Pas ze allemaal op de juiste manier toe, bijvoorbeeld: neem geen mes mee naar een vuurgevecht en gebruik geen drilboor als een eenvoudige handhamer voldoende is. 

Extrapolatieve methoden presteren goed wanneer de vraag een hoog volume heeft en niet te gedetailleerd is (dat wil zeggen, de vraag wordt maandelijks of driemaandelijks gespreid). Ze zijn ook erg snel en gebruiken niet zoveel computerbronnen als probabilistische en ML-methoden. Dit maakt ze zeer toegankelijk.

Zijn de traditionele methoden even nauwkeurig als nieuwere voorspellingsmethoden? Smart heeft ontdekt dat extrapolatieve methoden het zeer slecht doen als de vraag intermitterend is. Wanneer de vraag echter groter is, doen ze het slechts iets slechter dan onze nieuwe probabilistische methoden wanneer de vraag maandelijks wordt gesegmenteerd. Gezien hun toegankelijkheid, snelheid en het feit dat u prognoseoverschrijvingen gaat toepassen op basis van bedrijfskennis, zal het verschil in basislijnnauwkeurigheid hier niet materieel zijn.

Het voordeel van geavanceerdere modellen zoals de GEN2-probabilistische methoden van Smart is wanneer u patronen moet voorspellen met behulp van gedetailleerdere buckets zoals dagelijkse (of zelfs wekelijkse) gegevens. Dit komt omdat probabilistische modellen patronen van de dag van de week, de week van de maand en de maand van het jaar kunnen simuleren die met eenvoudigere technieken verloren zullen gaan. Heeft u ooit geprobeerd de dagelijkse seizoensinvloeden te voorspellen met een Wintermodel? Hier is een hint: het gaat niet werken en vereist veel techniek.

Probabilistische methoden bieden ook waarde die verder gaat dan de basisvoorspelling, omdat ze scenario's genereren die kunnen worden gebruikt bij stresstests voor voorraadbeheermodellen. Dit maakt ze geschikter om bijvoorbeeld te beoordelen hoe een verandering in het bestelpunt de voorraadkansen, opvullingspercentages en andere KPI's zal beïnvloeden. Door duizenden mogelijke aanvragen gedurende vele doorlooptijden te simuleren (die zelf in scenariovorm worden gepresenteerd), krijgt u een veel beter idee van hoe uw huidige en voorgestelde voorraadbeleid zal presteren. U kunt betere beslissingen nemen over waar u gerichte voorraadverhogingen en -verlagingen kunt doorvoeren.

Gooi dus nog niet het oude weg voor het nieuwe. Weet gewoon wanneer je een hamer nodig hebt en wanneer je een drilboor nodig hebt.

 

 

 

 

Probabilistische voorspellingsscenario's creëren en exploiteren

Probabilistische scenario's zijn reeksen gegevenspunten die worden gegenereerd om potentiële situaties uit de echte wereld weer te geven. In tegenstelling tot scenario's in oorlogsspellen of andere simulaties zijn dit synthetische tijdreeksen die worden gebruikt als input voor systeemmodellen of als intuïtiebouwers voor besluitvormers.

Scenario's van de toekomstige vraag naar artikelen kunnen bijvoorbeeld worden ingevoerd in Monte Carlo-simulatiemodellen van voorraadbeheersystemen, waardoor een virtueel laboratorium ontstaat waarin de gevolgen van managementbeslissingen kunnen worden onderzocht, zoals het wijzigen van bestelpunten en/of bestelhoeveelheden. Bovendien kunnen grafieken van meetgegevens, zoals voorhanden voorraad of stockouts, voorraadplanners helpen hun ‘gevoel’ voor de willekeur die inherent is aan hun activiteiten te verdiepen.

Figuur 1 toont dagelijkse vraagscenario's die zijn gegenereerd op basis van een enkele waargenomen vraagreeks die gedurende één jaar is geregistreerd. Merk op dat hetzelfde proces voor het genereren van gegevens er in detail “heel anders uit kan zien” van monster tot monster. Dit bootst het echte leven na.

Probabilistische voorspellingsscenario's creëren en exploiteren Volgorde 1

Figuur 1: Een waargenomen vraagvolgorde en daarvan afgeleide vraagscenario’s.

 

Figuur 2 toont twee vraagscenario's en hun gevolgen voor de voorraad in een bepaald voorraadbeheersysteem. Het verschil tussen de twee voorraadgrafieken illustreert de mate waarin de willekeur in de vraag het probleem domineert. Het bovenste plot toont twee afleveringen van stockout, terwijl het onderste plot negen toont. Door het gemiddelde te nemen over vele scenario's zullen de typische waarden van Key Performance Metrics (KPI's) worden verduidelijkt, zoals het gemiddelde aantal stockouts dat is gekoppeld aan elke keuze van het bestelpunt en de bestelhoeveelheid (die respectievelijk 10 en 25 zijn in figuur 2).

Probabilistische voorspellingsscenario's creëren en exploiteren Volgorde 2

Figuur 2: Twee vraagscenario's en hun gevolgen voor de voorhanden voorraad

 

In deze notitie beschrijven we technieken voor het maken van scenario's en geven we criteria op voor het evalueren van scenariogeneratoren.

Criteria voor scenario's

Zoals we hieronder zullen zien, zijn er verschillende manieren om scenario's te maken. Ongeacht de bron, welke criteria definiëren een ‘goed’ scenario? Er zijn vier hoofdcriteria: trouw, variëteit, hoeveelheid en kosten. Trouw vat samen hoe nauwkeurig een scenario situaties uit de echte wereld imiteert. High-fidelity betekent dat de scenario's de werkelijke gebeurtenissen nauwkeurig weerspiegelen en een solide basis vormen voor analyse en besluitvorming. Verscheidenheid beschrijft de diversiteit aan scenario's die een generator kan creëren. Een veelzijdige generator kan een breed scala aan potentiële situaties simuleren, waardoor mogelijkheden en risico's grondig kunnen worden verkend. Hoeveelheid verwijst naar het aantal scenario's dat een generator kan produceren. Een generator die een groot aantal scenario's kan creëren, levert voldoende gegevens voor analyse. Kosten houdt rekening met zowel de computer- als de menselijke hulpbronnen die nodig zijn om de scenario's te produceren. Een efficiënte scenariogenerator brengt kwaliteit in evenwicht met het gebruik van hulpbronnen, zodat de inspanning wordt gerechtvaardigd door de waarde en nauwkeurigheid van de resultaten.

Scenariogeneratie

Denk opnieuw aan een scenario als een tijdreeks. Hoe komen scenario's tot stand?

  1. Gepetto's werkplaats: Deze aanpak omvat het handmatig vervaardigen van scenario's door experts. Hoewel het high-fidelity (realisme) kan opleveren, vergt het zeer veel middelen en kan het niet gemakkelijk variatie genereren, wat een groot aantal scenario's vereist.
  2. Groundhog-dag: Bij deze methode wordt herhaaldelijk één enkele praktijksituatie als input gebruikt. Hoewel het per definitie realistisch en kosteneffectief is (er worden geen andere middelen gebruikt dan het vastleggen van de gegevens), mist deze aanpak variatie en kan daarom de diversiteit van scenario's uit de echte wereld niet accuraat weerspiegelen.
  3. Parametrische modellen: Voorbeelden van parametrische modellen zijn de klassiekers die in de klassen van de Statistiek worden bestudeerd: Normaal, exponentieel, Poisson, enz. De vraagdiagrammen in Figuur 2 worden parametrisch gegenereerd, zijnde de kwadraten van willekeurige Poisson-variabelen. Deze modellen genereren een onbeperkt aantal goedkope scenario's met een goede variëteit, maar ze geven niet altijd de complexiteit van gegevens uit de echte wereld weer, waardoor de betrouwbaarheid mogelijk in gevaar komt. Wanneer de werkelijkheid ingewikkelder is, genereren deze modellen te vereenvoudigde scenario's.
  4. Niet-parametrische tijdreeksbootstraps: Deze aanpak kan goed scoren op alle criteria: trouw, variëteit, kwantiteit en kosten. Het is een veelzijdige methode die uitblinkt in het creëren van enorme aantallen realistische scenario's. De synthetische vraaggeschiedenissen in Figuur 1 zijn eenvoudige bootstrap-voorbeelden, gebaseerd op de waargenomen waarden in de bovenste grafiek. (Zie de onderstaande links voor enkele details over het genereren van scenario's.)

Scenario's exploiteren

Scenario's bewijzen hun waarde op twee manieren: als input voor besluitvorming en als intuïtiebouwers. Wanneer vraagscenario's bijvoorbeeld worden gebruikt als input voor simulatiemodellen, maken ze stresstests en prestatieschattingen voor systeemontwerp mogelijk. Scenario's kunnen ook dienen als intuïtiebouwers voor besluitvormers of systeembeheerders. Hun visuele weergave helpt bij het ontwikkelen van inzicht in en waardering voor de risico's die gepaard gaan met het nemen van operationele beslissingen, of het nu gaat om vraagvoorspelling of voorraadbeheer.

Scenario-gebaseerde analyse is zeer computerintensief, vooral wanneer de scenario's worden gegenereerd door middel van bootstrapping. Bij Smart Software gebeurt het rekenen in de cloud. Stel je de rekenlast voor die gepaard gaat met het bepalen van bestelpunten en bestelhoeveelheden voor elk van de tienduizenden voorraadartikelen met behulp van honderden of duizenden vraagsimulaties voor elk artikel. Stel je verder voor dat de software niet alleen een specifiek voorgesteld paar van bestelpunten en bestelhoeveelheid evalueert, maar door de hele “ontwerpruimte” van paren dwaalt om het beste paar controleparameters voor elk item te vinden. Om dit praktisch te maken, profiteren we van de parallelle verwerkingskracht van de cloud. In wezen krijgt elk inventarisitem een eigen computer toegewezen die bij de berekeningen kan worden gebruikt, zodat al dat computerwerk tegelijkertijd kan plaatsvinden in plaats van opeenvolgend. Nu kunnen we losgaan en u echt de resultaten bezorgen die u nodig heeft.

Meer leren

Wie geïnteresseerd is in verdere technische details en referenties, kan hier meer informatie vinden.

Wat maakt een probabilistische voorspelling?

Probabilistische prognoses voor intermitterende vraag