Een praktische gids voor het opzetten van een professioneel prognoseproces

Veel bedrijven die hun prognoseproces willen verbeteren, weten niet waar ze moeten beginnen. Het kan verwarrend zijn om te worstelen met het leren van nieuwe statistische methoden, ervoor zorgen dat gegevens correct zijn gestructureerd en bijgewerkt, het eens worden over wie "eigenaar" is van de prognose, definiëren wat eigendom betekent en meetnauwkeurigheid. Na meer dan veertig jaar oefenen hebben we deze blog geschreven om de belangrijkste focus te schetsen en om u aan te moedigen om het in het begin simpel te houden.

1. Objectiviteit. Begrijp en communiceer eerst dat het proces van vraagplanning en -prognose een oefening in objectiviteit is. De focus ligt op het verkrijgen van input uit verschillende bronnen (stakeholders, klanten, functioneel beheerders, databases, leveranciers, enz.) en het bepalen of die input waarde toevoegt. Als u bijvoorbeeld een statistische prognose overschrijft en 20% aan de projectie toevoegt, moet u er niet zomaar van uitgaan dat u het automatisch goed had. Wees in plaats daarvan objectief en controleer of die opheffing de prognosenauwkeurigheid heeft vergroot of verkleind. Als u merkt dat uw overrides de zaken erger hebben gemaakt, heeft u iets gewonnen: dit informeert het proces en u weet dat u in de toekomst override-beslissingen beter kunt onderzoeken.

2. Teamwerk. Erken dat prognoses en vraagplanning teamsporten zijn. Maak afspraken over wie het team zal aanvoeren. De kapitein is verantwoordelijk voor het maken van de statistische basisprognoses en het toezicht houden op het vraagplanningsproces. Maar de resultaten zijn afhankelijk van het feit of iedereen in het team een positieve bijdrage levert, gegevens verstrekt, alternatieve methoden voorstelt, aannames in twijfel trekt en aanbevolen acties uitvoert. De uiteindelijke resultaten zijn eigendom van het bedrijf en elke afzonderlijke belanghebbende.

3. Meting. Fixeer u niet op benchmarks voor de nauwkeurigheid van prognoses in de branche. Elke SKU heeft zijn eigen niveau van "voorspelbaarheid", en u kunt een aantal moeilijke items beheren. Creëer in plaats daarvan uw eigen benchmarks op basis van een reeks steeds geavanceerdere prognosemethoden. Geavanceerde statistische prognoses lijken in het begin misschien ontmoedigend ingewikkeld, dus begin eenvoudig met een basismethode, zoals het voorspellen van de historische gemiddelde vraag. Meet vervolgens hoe dicht die simpele voorspelling de werkelijk waargenomen vraag benadert. Werk van daaruit verder naar technieken die te maken hebben met complicaties zoals trend en seizoensinvloeden. Meet de voortgang met behulp van nauwkeurigheidsstatistieken die door uw software zijn berekend, zoals de gemiddelde absolute procentuele fout (MAPE). Hierdoor kan uw bedrijf elke prognosecyclus een beetje beter worden.

4. Tempo. Richt u vervolgens op het maken van prognoses tot een op zichzelf staand proces dat niet wordt gecombineerd met het complexe proces van voorraadoptimalisatie. Voorraadbeheer is gebaseerd op een solide vraagvoorspelling, maar is gericht op andere onderwerpen: wat te kopen, wanneer te kopen, minimale bestelhoeveelheden, veiligheidsvoorraden, voorraadniveaus, doorlooptijden van leveranciers, enz. Laat voorraadbeheer later verder gaan . Bouw eerst "voorspellingskracht" op door het voorspellingsproces te creëren, te herzien en te ontwikkelen om een regelmatige cadans te hebben. Wanneer uw proces voldoende volwassen is, kunt u de toenemende snelheid van het bedrijfsleven bijbenen door het tempo van uw prognoseproces te verhogen tot ten minste een maandelijks tempo.

Opmerkingen

Het herzien van het prognoseproces van een bedrijf kan een grote stap zijn. Soms gebeurt het als er personeelsverloop is, soms als er een nieuw ERP-systeem is, soms als er nieuwe prognosesoftware is. Wat de overhaaste gebeurtenis ook is, deze verandering is een kans om het proces dat je eerder had te heroverwegen en te verfijnen. Maar proberen de hele olifant in één keer op te eten is een vergissing. In deze blog hebben we enkele discrete stappen uiteengezet die u kunt nemen om een succesvolle evolutie naar een beter prognoseproces te maken.

 

 

 

 

Soorten prognoseproblemen die we helpen oplossen

Hier zijn voorbeelden van prognoseproblemen die SmartForecasts kan oplossen, samen met de soorten bedrijfsgegevens die representatief zijn voor elk.

Een item voorspellen op basis van het patroon

Welke omzet kunt u, gegeven de volgende zes kwartaalverkoopcijfers, verwachten voor het derde en vierde kwartaal van 2023?

Forecasting an item based on its pattern

Verkoop per kwartaal

SmartForecasts biedt u vele manieren om dit probleem aan te pakken. U kunt uw eigen statistische prognoses maken met een van de zes verschillende Exponential smoothing en Moving average methoden. Of, zoals de meeste niet-technische voorspellers, kunt u de tijdbesparende automatische opdracht gebruiken, die is geprogrammeerd om automatisch de meest nauwkeurige methode voor uw gegevens te selecteren en te gebruiken. Ten slotte kunt u, om uw zakelijke oordeel in het prognoseproces op te nemen, elk statistisch prognoseresultaat grafisch aanpassen met behulp van SmartForecasts' "oogbol" aanpassing mogelijkheden.

 

Een item voorspellen op basis van zijn relatie met andere variabelen.

Gezien de volgende historische relatie tussen de verkoop per eenheid en het aantal vertegenwoordigers, welke verkoopniveaus kunt u verwachten wanneer de geplande toename van het verkooppersoneel plaatsvindt in de laatste twee kwartalen van 2023?

Forecasting an item based on its relationship to other variables.

Verkoop en verkoopvertegenwoordigers per kwartaal

U kunt een vraag als deze beantwoorden met behulp van het krachtige SmartForecasts Regressie commando, speciaal ontworpen om prognosetoepassingen te vergemakkelijken die oplossingen voor regressieanalyse vereisen. Regressiemodellen met een vrijwel onbeperkt aantal onafhankelijke/voorspellersvariabelen zijn mogelijk, hoewel de meeste bruikbare regressiemodellen slechts een handvol voorspellers gebruiken.

 

Gelijktijdig een aantal productitems en hun totaal voorspellen

Gegeven de volgende totale verkoop voor alle overhemden en de verdeling van de verkoop per kleur, wat zal de individuele en totale verkoop zijn in de komende zes maanden?

Forecasting an item based on its relationship to other variables.

Maandelijkse verkoop van overhemden per kleur

De unieke Group Forecasting-functies van SmartForecasts voorspellen automatisch en gelijktijdig nauw verwante tijdreeksen, zoals deze artikelen in dezelfde productgroep. Dit bespaart veel tijd en levert prognoseresultaten op, niet alleen voor de afzonderlijke artikelen, maar ook voor het totaal. "Eyeball"-aanpassingen op zowel item- als groepsniveau zijn eenvoudig te maken. U kunt snel prognoses maken voor productgroepen met honderden of zelfs duizenden artikelen.

 

Automatisch duizenden items voorspellen

Wat kunt u verwachten van de vraag in de komende zes maanden voor elk van de 5.000 SKU's, gegeven het volgende record van productvraag op SKU-niveau?

Forecasting thousands of items automatically

Maandelijkse productvraag per SKU (Stock Keeping Unit)

In slechts een paar minuten kan de krachtige automatische selectie van SmartForecasts een prognosetaak van deze omvang uitvoeren, de gegevens over de productvraag lezen, automatisch statistische prognoses voor elke SKU maken en het resultaat opslaan. De resultaten zijn vervolgens klaar voor export naar uw ERP-systeem met behulp van een van onze API-gebaseerde connectoren of via bestandsexport. Eenmaal ingesteld, worden er automatisch elke planningscyclus prognoses gemaakt zonder tussenkomst van de gebruiker.

 

Voorspelling van de vraag die meestal nul is

Een apart en vooral uitdagend type data om te voorspellen is periodieke vraag, die meestal nul is, maar op willekeurige tijdstippen omhoog springt naar willekeurige waarden die niet gelijk zijn aan nul. Dit patroon is typerend voor de vraag naar langzaam in beweging items, zoals service-onderdelen of groot ticket kapitaalgoederen.

Kijk bijvoorbeeld eens naar het volgende voorbeeld van de vraag naar serviceonderdelen voor vliegtuigen. Let op het overwicht van nulwaarden met niet-nulwaarden vermengd, vaak in bursts.

Forecasting demand that is most often zero

SmartForecasts heeft een unieke methode die speciaal is ontworpen voor dit soort data: de functie Intermittent Demand forecasting. Aangezien intermitterende vraag het vaakst ontstaat in de context van voorraadbeheer, richt deze functie zich op het voorspellen van het bereik van waarschijnlijke waarden voor de totale vraag gedurende een doorlooptijd, bijvoorbeeld de cumulatieve vraag over de periode van 23 juni tot 23 augustus in het bovenstaande voorbeeld .

 

Voorspellen van voorraadbehoeften

Het voorspellen van voorraadvereisten is een gespecialiseerde variant van prognoses die zich richt op de bovenkant van het bereik van mogelijke toekomstige waarden.

Overweeg voor de eenvoud het probleem van het voorspellen van voorraadbehoeften voor slechts één periode vooruit, bijvoorbeeld één dag vooruit. Gewoonlijk is de prognosetaak het schatten van het meest waarschijnlijke of gemiddelde niveau van de productvraag. Als de beschikbare voorraad echter gelijk is aan de gemiddelde vraag, is er een kans van ongeveer 50% dat de vraag de voorraad overtreft, wat resulteert in omzetverlies en/of goodwill. Het voorraadniveau instellen op bijvoorbeeld tien keer de gemiddelde vraag zal waarschijnlijk het probleem van stockouts elimineren, maar zal net zo zeker resulteren in opgeblazen voorraadkosten.

De truc van voorraadoptimalisatie is om een bevredigende balans te vinden tussen voldoende voorraad hebben om aan de meeste vraag te voldoen zonder al te veel middelen in het proces vast te leggen. Meestal is de oplossing een combinatie van zakelijk inzicht en statistieken. Het beoordelende deel is het definiëren van een acceptabel voorraadserviceniveau, zoals het direct uit voorraad voldoen aan 95% vraag. Het statistische deel is om het 95e percentiel van de vraag te schatten.

Wanneer niet omgaan met Intermittent demand, schat SmartForecasts het vereiste voorraadniveau door uit te gaan van een klokvormige (normale) vraagcurve, zowel het midden als de breedte van de klokcurve te schatten en vervolgens een standaard statistische formule te gebruiken om het gewenste percentiel te schatten. Het verschil tussen het gewenste voorraadniveau en het gemiddelde niveau van de vraag wordt de veiligheidsvoorraad genoemd omdat het beschermt tegen de mogelijkheid van stockouts.

Bij intermitterende vraag is de klokvormige curve een slechte benadering van de statistische verdeling van de vraag. In dit speciale geval gebruikt SmartForecasts gepatenteerde intermitterende vraagvoorspellingstechnologie om het vereiste voorraadserviceniveau te schatten.

 

 

Drie manieren om de nauwkeurigheid van prognoses te schatten

Nauwkeurigheid van prognoses is een belangrijke maatstaf om de kwaliteit van uw vraagplanningsproces te beoordelen. (Het is niet de enige. Anderen omvatten tijdigheid en kosten; zie 5 Tips voor vraagplanning voor het berekenen van prognoseonzekerheid.) Zodra u prognoses heeft, zijn er een aantal manieren om hun nauwkeurigheid samen te vatten, meestal aangeduid met obscure drie- of vierletterige acroniemen zoals MAPE, RMSE en MAE. Zien Vier handige manieren om prognosefouten te meten voor meer informatie.

Een minder besproken maar meer fundamentele kwestie is hoe computationele experimenten worden georganiseerd voor het berekenen van voorspellingsfouten. Deze post vergelijkt de drie belangrijkste experimentele ontwerpen. Een van hen is ouderwets en komt in wezen neer op valsspelen. Een andere is de gouden standaard. Een derde is een handig hulpmiddel dat de gouden standaard nabootst en kan het beste worden gezien als een voorspelling van hoe de gouden standaard zal uitpakken. Figuur 1 is een schematische weergave van de drie methoden.

 

Three Ways to Estimate Forecast Accuracy Software Smart

Afbeelding 1: Drie manieren om prognosefouten te beoordelen

 

Het bovenste paneel van figuur 1 geeft de manier weer waarop voorspellingsfouten werden beoordeeld in het begin van de jaren '80 voordat we de stand van de techniek verplaatsten naar het schema in het middelste paneel. Vroeger werden prognoses beoordeeld op dezelfde gegevens die werden gebruikt om de prognoses te berekenen. Nadat een model aan de gegevens was aangepast, waren de berekende fouten niet voor modelvoorspellingen maar voor model past bij. Het verschil is dat prognoses voor toekomstige waarden zijn, terwijl aanpassingen voor gelijktijdige waarden zijn. Stel dat het voorspellingsmodel een eenvoudig voortschrijdend gemiddelde is van de drie meest recente waarnemingen. Op tijdstip 3 berekent het model het gemiddelde van waarnemingen 1, 2 en 3. Dit gemiddelde wordt dan vergeleken met de waargenomen waarde op tijdstip 3. We noemen dit vals spelen omdat de waargenomen waarde op tijdstip 3 een stem kreeg over wat de voorspelling zou moeten zijn op tijdstip 3. Een echte prognosebeoordeling zou het gemiddelde van de eerste drie waarnemingen vergelijken met de waarde van de volgende, vierde, observatie. Anders blijft de voorspeller achter met een te optimistische beoordeling van de nauwkeurigheid van de voorspelling.

Het onderste paneel van figuur 1 toont de beste manier om de nauwkeurigheid van prognoses te beoordelen. In dit schema worden alle historische vraaggegevens gebruikt om in een model te passen, dat vervolgens wordt gebruikt om toekomstige, onbekende vraagwaarden te voorspellen. Uiteindelijk ontvouwt de toekomst zich, onthullen de werkelijke toekomstige waarden zich en kunnen werkelijke voorspellingsfouten worden berekend. Dit is de gouden standaard. Deze informatie wordt ingevuld in het rapport 'Prognoses versus actuals' in onze software.

Het middelste paneel toont een handige tussenmaat. Het probleem met de gouden standaard is dat u moet wachten om erachter te komen hoe goed de door u gekozen prognosemethoden presteren. Deze vertraging helpt niet wanneer u op dit moment moet kiezen welke prognosemethode u voor elk item wilt gebruiken. Het geeft ook geen tijdige inschatting van de prognoseonzekerheid die u zult ervaren, wat belangrijk is voor risicobeheer zoals het afdekken van prognoses. De middenweg is gebaseerd op hold-out-analyse, die de meest recente waarnemingen uitsluit (“holds out”) en de voorspellingsmethode vraagt zijn werk te doen zonder die grondwaarheden te kennen. Vervolgens kunnen de prognoses op basis van de verkorte vraaggeschiedenis worden vergeleken met de uitgestelde werkelijke waarden om een eerlijke beoordeling van de prognosefout te krijgen.

 

 

Vijftien vragen die laten zien hoe prognoses in uw bedrijf worden berekend

In een recente LinkedIn na, heb ik vier vragen uitgewerkt die, wanneer ze worden beantwoord, zullen onthullen hoe de prognoses zijn gebruikt worden in uw bedrijf. In dit artikel hebben we vragen opgesomd die u kunt stellen om te onthullen hoe de prognoses zijn gemaakt.

1. Als we gebruikers vragen hoe ze prognoses maken, is hun antwoord vaak "we gebruiken geschiedenis". Dit is duidelijk niet genoeg informatie, aangezien er verschillende soorten vraaggeschiedenis zijn die verschillende prognosemethoden vereisen. Als u historische gegevens gebruikt, zorg er dan voor dat u erachter komt of u een middelingsmodel, een trendmodel, een seizoensmodel of iets anders gebruikt om te voorspellen.

2. Zodra u het gebruikte model kent, vraagt u naar de parameterwaarden van die modellen. De prognose-output van een "gemiddelde" zal verschillen, soms aanzienlijk, afhankelijk van het aantal perioden dat u middelt. Zoek dus uit of u een gemiddelde gebruikt van de afgelopen 3 maanden, 6 maanden, 12 maanden, enz.

3. Als u trending-modellen gebruikt, vraag dan hoe de modelgewichten zijn ingesteld. In een trendingmodel, zoals dubbele exponentiële afvlakking, zullen de prognoses bijvoorbeeld aanzienlijk verschillen, afhankelijk van hoe de berekeningen recente gegevens wegen in vergelijking met oudere gegevens (hogere gewichten leggen meer nadruk op de recente gegevens).

4. Als u seizoensmodellen gebruikt, zullen de prognoseresultaten worden beïnvloed door het gebruikte "niveau" en "trendgewicht". U moet ook bepalen of seizoensperioden worden voorspeld met multiplicatieve of additieve seizoensinvloeden. (Additieve seizoensinvloeden zeggen bijvoorbeeld: "Voeg 100 eenheden toe voor juli", terwijl multiplicatieve seizoensinvloeden zeggen "Vermenigvuldig met 1,25 voor juli".) Ten slotte gebruikt u dit soort methoden misschien helemaal niet. Sommige beoefenaars zullen een voorspellingsmethode gebruiken die simpelweg het gemiddelde neemt van voorgaande perioden (dat wil zeggen, komende juni zal worden voorspeld op basis van het gemiddelde van de voorgaande drie junis).

5. Hoe kiest u het ene model boven het andere? Hangt de keuze van de techniek af van het type vraaggegevens of wanneer er nieuwe vraaggegevens beschikbaar zijn? Is dit proces geautomatiseerd? Of als een planner subjectief een trendmodel kiest, wordt dat item dan voorspeld met dat model totdat de planner het weer verandert?

6. Zijn uw prognoses 'volledig automatisch', zodat trends en/of seizoensinvloeden automatisch worden gedetecteerd? Of zijn uw prognoses afhankelijk van artikelclassificaties die door gebruikers moeten worden bijgehouden? Dit laatste vereist meer tijd en aandacht van planners om te definiëren welk gedrag een trend, seizoensinvloeden, enz. is.

7. Welke regels voor artikelclassificatie worden gebruikt? Een artikel kan bijvoorbeeld worden beschouwd als een trending artikel als de vraag met meer dan 5% periode-over-periode toeneemt. Een artikel kan als seizoensgebonden worden beschouwd als 70% of meer van de jaarlijkse vraag in vier of minder perioden plaatsvindt. Dergelijke regels worden door de gebruiker gedefinieerd en vereisen vaak te brede aannames. Soms zijn ze geconfigureerd toen een systeem oorspronkelijk werd geïmplementeerd, maar nooit herzien, zelfs niet als de omstandigheden veranderen. Het is belangrijk om ervoor te zorgen dat eventuele classificatieregels worden begrepen en, indien nodig, worden bijgewerkt.

8. Wordt de prognose automatisch opnieuw gegenereerd wanneer er nieuwe gegevens beschikbaar zijn, of moet u de prognoses handmatig opnieuw genereren?

9. Controleert u of de prognose van de ene periode op de andere verandert voordat u beslist of u de nieuwe prognose wilt gebruiken? Of ga je standaard naar de nieuwe prognose?

10. Hoe worden prognose-overschrijvingen die in eerdere planningscycli zijn gemaakt, behandeld wanneer een nieuwe prognose wordt gemaakt? Worden ze hergebruikt of vervangen?

11. Hoe verwerkt u prognoses van uw verkoopteam of van uw klanten? Vervangen deze prognoses de basislijnprognose, of gebruikt u deze invoer om planner-overrides te maken voor de basislijnprognose?

12. Onder welke omstandigheden zou u de basisprognose negeren en precies gebruiken wat verkopen of klanten u vertellen?

13. Als u vertrouwt op klantprognoses, wat doet u dan met klanten die geen prognoses geven?

14. Hoe documenteert u de effectiviteit van uw prognosebenadering? De meeste bedrijven meten alleen de nauwkeurigheid van de definitieve prognose die naar het ERP-systeem wordt gestuurd, als ze al iets meten. Maar ze beoordelen geen alternatieve voorspellingen die mogelijk zijn gebruikt. Het is belangrijk om wat je doet te vergelijken met benchmarks. Presteren de methoden die u gebruikt bijvoorbeeld beter dan een naïeve voorspelling (dwz 'morgen is gelijk aan vandaag', waar u niet bij hoeft na te denken), of wat u vorig jaar zag, of het gemiddelde van de afgelopen 12 maanden. Door uw basisprognose te benchmarken, weet u zeker dat u zoveel mogelijk nauwkeurigheid uit de gegevens haalt.

15. Meet je of overrides van sales, klanten en planners de prognose beter of slechter maken? Dit is net zo belangrijk als meten of uw statistische benaderingen beter presteren dan de naïeve methode. Als u niet weet of overrides helpen of schaden, kan het bedrijf niet beter worden in prognoses. U moet weten welke stappen waarde toevoegen, zodat u er meer van kunt doen en nog beter kunt worden. Als u de nauwkeurigheid van de prognoses niet documenteert en geen analyse van de toegevoegde waarde van de prognose uitvoert, kunt u niet goed beoordelen of de geproduceerde prognoses de beste zijn die u kunt maken. U mist kansen om het proces te verbeteren, de nauwkeurigheid te vergroten en het bedrijf te leren welk type voorspellingsfout te verwachten is.

 

 

Hoe voorspellingsresultaten te interpreteren en te manipuleren met verschillende voorspellingsmethoden

Smart IP&O wordt mogelijk gemaakt door de SmartForecasts®-prognose-engine die automatisch de meest geschikte methode voor elk item selecteert. Smart Forecast-methoden worden hieronder vermeld:

  • Eenvoudig voortschrijdend gemiddelde en enkele exponentiële afvlakking voor platte, ruisige gegevens
  • Lineair voortschrijdend gemiddelde en dubbele exponentiële afvlakking voor trendgegevens
  • Winters Additief en Winters Multiplicatief voor seizoens- en seizoens- en trendgegevens.

Deze blog legt uit hoe elk model werkt met behulp van tijdgrafieken van historische en voorspelde gegevens. Het schetst hoe te kiezen welk model te gebruiken. De onderstaande voorbeelden tonen dezelfde geschiedenis, in rood, voorspeld met elke methode, in donkergroen, vergeleken met de Slim gekozen winnende methode, in lichtgroen.

 

Seizoensgebondenheid
Als u seizoensinvloeden wilt forceren (of voorkomen) in de prognose, kies dan voor Winters-modellen. Beide methoden vereisen 2 volle jaren geschiedenis.

'Winter is multiplicatief zal de grootte van de pieken of dalen van seizoenseffecten bepalen op basis van een procentueel verschil met een trending gemiddeld volume. Het past niet goed bij items met een zeer laag volume vanwege deling door nul bij het bepalen van dat percentage. Merk in de onderstaande afbeelding op dat de grote procentuele daling van de seizoensgebonden vraag in de geschiedenis naar verwachting zal voortduren gedurende de prognosehorizon, waardoor het lijkt alsof er geen seizoensgebonden vraag is, ondanks het gebruik van een seizoensmethode.

 

Winter’s multiplicative Forecasting method software

Statistische voorspelling gemaakt met de multiplicatieve methode van Winter. 

 

Toevoeging voor de winter zal de grootte van de pieken of dalen van seizoenseffecten bepalen op basis van een eenheidsverschil met het gemiddelde volume. Het past niet goed als er een significante trend in de gegevens is. Let op in de afbeelding hieronder dat seasonaliteit wordt nu voorspeld op basis van de gemiddelde eenheidsverandering in seizoensgebondenheid. De voorspelling geeft dus nog steeds duidelijk het seizoenspatroon weer ondanks de neerwaartse trend in zowel het niveau als de seizoenspieken/dalen.

Winter’s additive Forecasting method software

Statistische voorspelling gemaakt met de additieve methode van Winter.

 

Trend

Als u trend omhoog of omlaag wilt forceren (of voorkomen) om in de prognose te tonen, beperk dan de gekozen methoden tot (of verwijder de methoden van) Lineair voortschrijdend gemiddelde en Double Exponential Smoothing.

 Dubbele exponentiële afvlakking zal een langetermijntrend oppikken. Het past niet goed als er weinig historische datapunten zijn.

Double exponential smoothing Forecasting method software

Statistische voorspelling geproduceerd met Double Exponential Smoothing

 

Lineair voortschrijdend gemiddelde zal trends op kortere termijn oppikken. Het is niet geschikt voor zeer volatiele gegevens

Linear moving average Forecasting method software

 

Niet-trending en niet-seizoensgebonden gegevens
Als u wilt forceren (of voorkomen) dat een gemiddelde wordt weergegeven in de prognose, beperk dan de gekozen methoden tot (of verwijder de methoden van) Eenvoudig voortschrijdend gemiddelde en Enkelvoudig exponentieel effenen.

Enkele exponentiële afvlakking zal de meest recente gegevens zwaarder wegen en een vlakke lijnprognose produceren. Het is niet geschikt voor trending- of seizoensgegevens.

Single exponential smoothing Forecasting method software

Statistische voorspelling met Single Exponential Smoothing

Eenvoudig voortschrijdend gemiddelde zal voor elke periode een gemiddelde vinden, dat soms lijkt te wiebelen, en beter voor middelingen op langere termijn. Het is niet geschikt voor trending- of seizoensgegevens.

Simple moving average Forecasting method software

Statistische voorspelling met behulp van eenvoudig voortschrijdend gemiddelde