Zes best practices voor vraagplanning waar u twee keer over moet nadenken

Op elk gebied, inclusief voorspellingen, wordt volkswijsheid verzameld die zich uiteindelijk voordoet als ‘best practices’. Deze best practices zijn vaak verstandig, althans gedeeltelijk, maar missen vaak context en zijn mogelijk niet geschikt voor bepaalde klanten, sectoren of bedrijfssituaties. Er zit vaak een addertje onder het gras: een ‘ja, maar’. Deze opmerking gaat over zes doorgaans juiste voorspellingen, die niettemin hun kanttekeningen plaatsen.

 

  1. Organiseer uw bedrijf rond een prognose van één getal. Dat klinkt verstandig: het is goed om een gedeelde visie te hebben. Maar elk onderdeel van het bedrijf zal zijn eigen idee hebben over welk getal het getal is. De financiële sector wil misschien kwartaalomzet, de marketing wil misschien websitebezoeken, de verkoop wil misschien een verloop, het onderhoud wil misschien een langere tijd tot het misgaat. Overigens heeft elke eenheid waarschijnlijk een handvol belangrijke statistieken. U heeft geen slogan nodig, u moet uw werk gedaan krijgen.

 

  1. Integreer bedrijfskennis in een gezamenlijk prognoseproces. Dit is een goede algemene regel, maar als uw samenwerkingsproces gebrekkig is, kan het knoeien met een statistische prognose via managementoverschrijvingen de nauwkeurigheid verminderen. Je hebt geen slogan nodig; je moet de nauwkeurigheid van alle methoden meten en vergelijken en de winnaars volgen.

 

  1. Voorspelling met behulp van causale modellering. Extrapolatieve prognosemethoden houden geen rekening met de onderliggende krachten die uw verkopen aandrijven, ze werken alleen met de resultaten. Causale modellering brengt u dieper in de fundamentele drijfveren en kan zowel de nauwkeurigheid als het inzicht verbeteren. Causale modellen (geïmplementeerd door middel van regressieanalyse) kunnen echter minder nauwkeurig zijn, vooral als ze voorspellingen van de drijvende krachten vereisen (“voorspellingen van de voorspellers”) in plaats van simpelweg de geregistreerde waarden van vertraagde voorspellende variabelen in te pluggen. Je hebt geen slogan nodig: je hebt een onderlinge vergelijking nodig.

 

  1. Voorspel de vraag in plaats van verzendingen. Vraag is wat je echt wilt, maar het ‘opstellen van een vraagsignaal’ kan lastig zijn: wat doe je met interne overboekingen? Eenmalige? Verloren omzet? Bovendien kunnen vraaggegevens worden gemanipuleerd. Als klanten bijvoorbeeld opzettelijk geen bestellingen plaatsen of proberen hun bestellingen te misleiden door te lang van tevoren te bestellen, zal de bestelgeschiedenis niet beter zijn dan de verzendgeschiedenis. Althans met verzendgeschiedenis, het klopt: u weet wat u heeft verzonden. Prognoses van verzendingen zijn geen voorspellingen van de ‘vraag’, maar vormen een solide uitgangspunt.

 

  1. Gebruik Machine Learning-methoden. Ten eerste is ‘Machine learning’ een elastisch concept dat een steeds groter aantal alternatieven omvat. Onder de motorkap van veel door ML geadverteerde modellen bevindt zich slechts een automatisch kiezen een extrapolatieve voorspellingsmethode (dat wil zeggen: de beste pasvorm) die, hoewel uitstekend in het voorspellen van de normale vraag, al bestaat sinds de jaren tachtig (Smart Software was het eerste bedrijf dat een automatische selectiemethode voor de pc uitbracht). ML-modellen zijn data-hogs die grotere datasets nodig hebben dan u mogelijk ter beschikking heeft. Het op de juiste manier kiezen en trainen van een ML-model vereist een niveau van statistische expertise dat ongebruikelijk is in veel productie- en distributiebedrijven. Misschien wil je iemand vinden die je hand vasthoudt voordat je dit spel gaat spelen.

 

  1. Door uitschieters te verwijderen, ontstaan betere voorspellingen. Hoewel het waar is dat zeer ongebruikelijke pieken of dalen in de vraag onderliggende vraagpatronen, zoals trends of seizoensinvloeden, zullen maskeren, is het niet altijd waar dat u de pieken moet wegnemen. Vaak weerspiegelen deze pieken in de vraag de onzekerheid die willekeurig uw bedrijfsvoering kan verstoren en waarmee dus rekening moet worden gehouden. Het verwijderen van dit soort gegevens uit uw vraagvoorspellingsmodel kan de gegevens op papier voorspelbaarder maken, maar u zult verrast zijn als dit opnieuw gebeurt. Wees dus voorzichtig met het verwijderen van uitschieters massaal.

 

 

 

 

De automatische prognosefunctie

Automatische prognoses zijn de populairste en meest gebruikte functie van SmartForecasts en Smart Demand Planner. Automatische prognoses maken is eenvoudig. Maar de eenvoud van Automatic Forecasting maskeert een krachtige interactie van een aantal zeer effectieve prognosemethoden. In deze blog bespreken we een deel van de theorie achter deze kernfunctie. We richten ons op automatische prognoses, deels vanwege de populariteit ervan en deels omdat veel andere prognosemethoden vergelijkbare resultaten opleveren. Kennis van automatische prognoses wordt onmiddellijk overgedragen naar eenvoudig voortschrijdend gemiddelde, lineair voortschrijdend gemiddelde, enkele exponentiële afvlakking, dubbele exponentiële afvlakking, Winters' exponentiële afvlakking en promoprognoses.

 

Prognose toernooi

Automatische prognoses werken door een toernooi uit te voeren met een reeks concurrerende methoden. Omdat personal computers en cloud computing snel zijn, en omdat we zeer efficiënte algoritmen hebben gecodeerd in de automatische voorspellingsengine van SmartForecasts, is het praktisch om een puur empirische benadering te volgen om te beslissen welke extrapolatieve voorspellingsmethode moet worden gebruikt. Dit betekent dat u het zich kunt veroorloven om een aantal benaderingen uit te proberen en vervolgens degene te behouden die het beste presteert bij het voorspellen van de betreffende gegevensreeks. SmartForecasts automatiseert dit proces volledig voor u door de verschillende voorspellingsmethoden uit te proberen in een gesimuleerd voorspellingstoernooi. De winnaar van het toernooi is de methode die het dichtst bij het voorspellen van nieuwe gegevenswaarden van oude komt. Nauwkeurigheid wordt gemeten aan de hand van de gemiddelde absolute fout (dat wil zeggen de gemiddelde fout, waarbij eventuele mintekens worden genegeerd). Het gemiddelde wordt berekend over een reeks voorspellingen, die elk een deel van de gegevens gebruiken, in een proces dat bekend staat als glijdende simulatie.

 

Glijdende simulatie

De glijdende simulatie veegt herhaaldelijk door steeds langere delen van de historische gegevens, waarbij in elk geval het gewenste aantal perioden in uw prognosehorizon wordt voorspeld. Stel dat er 36 historische gegevenswaarden zijn en dat u zes perioden vooruit moet voorspellen. Stel je voor dat je de voorspellingsnauwkeurigheid van een bepaalde methode, bijvoorbeeld een voortschrijdend gemiddelde van vier waarnemingen, wilt beoordelen op de gegevensreeks die voorhanden is.

Op een gegeven moment in de glijdende simulatie worden de eerste 24 punten (alleen) gebruikt om de 25e tot en met 30e historische gegevenswaarden te voorspellen, die we tijdelijk als onbekend beschouwen. We zeggen dat de punten 25-30 buiten de analyse worden gehouden. Het berekenen van de absolute waarden van de verschillen tussen de zes prognoses en de overeenkomstige werkelijke historische waarden levert één exemplaar op van elk een 1-staps, 2-staps, 3-staps, 4-staps, 5-staps en 6-staps vooruit absolute voorspelling fout. Als u dit proces herhaalt met de eerste 25 punten, krijgt u meer voorbeelden van 1-staps, 2-staps, 3-staps vooruit-fouten, enzovoort. Het gemiddelde van alle absolute foutschattingen die op deze manier zijn verkregen, geeft een samenvatting van de nauwkeurigheid in één getal.

 

Methoden die worden gebruikt bij automatische prognoses

Normaal gesproken zijn er zes extrapolatieve voorspellingsmethoden die meedoen aan het automatische voorspellingstoernooi:

  • Eenvoudig voortschrijdend gemiddelde
  • Lineair voortschrijdend gemiddelde
  • Enkele exponentiële afvlakking
  • Dubbele exponentiële afvlakking
  • Additieve versie van Winters' exponentiële afvlakking
  • Multiplicatieve versie van Winters' exponentiële afvlakking

 

De laatste twee methoden zijn geschikt voor seizoenreeksen; ze worden echter automatisch uitgesloten van het toernooi als er minder dan twee volledige seizoensgegevenscycli zijn (bijvoorbeeld minder dan 24 periodes met maandelijkse gegevens of acht periodes met driemaandelijkse gegevens).

Deze zes klassieke, op afvlakking gebaseerde methoden hebben bewezen gemakkelijk te begrijpen, gemakkelijk te berekenen en nauwkeurig te zijn. Je kunt elk van deze methoden uitsluiten van het toernooi als je een voorkeur hebt voor sommige deelnemers en niet voor andere.

 

 

 

 

De doelstellingen bij het voorspellen

Een voorspelling is een voorspelling over de waarde van een tijdreeksvariabele op een bepaald moment in de toekomst. U kunt bijvoorbeeld een schatting willen maken van de verkoop of vraag naar een productartikel voor volgende maand. Een tijdreeks is een reeks getallen die met gelijke tijdsintervallen zijn geregistreerd; bijvoorbeeld de maandelijks geregistreerde verkoop per eenheid.

De doelstellingen die u nastreeft wanneer u prognoses maakt, zijn afhankelijk van de aard van uw baan en uw bedrijf. Elke voorspelling is onzeker; in feite is er een reeks mogelijke waarden voor elke variabele die u voorspeld. Waarden in het midden van dit bereik hebben een grotere kans om daadwerkelijk te voorkomen, terwijl waarden aan de uiteinden van het bereik minder waarschijnlijk voorkomen. De volgende afbeelding illustreert een typische verdeling van voorspelde waarden.

voorspelde verdeling van voorspelde waarden

Ter illustratie van een voorspelde verdeling van voorspelde waarden

 

Punt voorspellingen

Het meest gebruikelijke gebruik van voorspellingen is het schatten van een reeks getallen die de meest waarschijnlijke toekomstige waarden van de betreffende variabele vertegenwoordigen. Stel dat u bijvoorbeeld een verkoop- en marketingplan voor uw bedrijf ontwikkelt. Mogelijk moet u twaalf cellen in een financieel spreadsheet invullen met schattingen van de totale inkomsten van uw bedrijf in de komende twaalf maanden. Dergelijke schattingen worden puntprognoses genoemd, omdat u voor elke prognoseperiode één enkel getal (gegevenspunt) wilt. De automatische prognosefunctie van Smart Demand Planner voorziet u automatisch van deze puntprognoses.

Intervalvoorspellingen

Hoewel puntvoorspellingen handig zijn, heeft u vaak meer profijt van intervalvoorspellingen. Intervalvoorspellingen tonen het meest waarschijnlijke bereik (interval) van waarden die zich in de toekomst kunnen voordoen. Deze zijn meestal nuttiger dan puntprognoses, omdat ze de hoeveelheid onzekerheid of risico weergeven die met een voorspelling gepaard gaat. Het prognose-intervalpercentage kan worden opgegeven in de verschillende prognosedialoogvensters in de Demand Planning SoftwareMet elk van de vele voorspellingsmethoden (automatisch, voortschrijdend gemiddelde, exponentiële afvlakking enzovoort) die beschikbaar zijn in Smart Demand Planner, kunt u een voorspellingsinterval instellen.

De standaardconfiguratie in Smart Demand Planner biedt 90%-voorspellingsintervallen. Interpreteer deze intervallen als het bereik waarbinnen de werkelijke waarden 90% van de tijd zullen vallen. Als de intervallen groot zijn, is er veel onzekerheid verbonden aan de puntvoorspellingen. Als de intervallen smal zijn, kunt u meer vertrouwen hebben. Als u een planningsfunctie uitvoert en op verschillende tijdstippen in de toekomst best-case- en worst-case-waarden wilt voor de variabelen die van belang zijn, kunt u voor dat doel de boven- en ondergrenzen van de prognose-intervallen gebruiken, waarbij de enkele puntschatting de meest waarschijnlijke waarde. In de vorige afbeelding strekt het voorspellingsinterval van 90% zich uit van 3,36 tot 6,64.

Bovenste percentielen

Bij voorraadbeheer kan het uw doel zijn om goede schattingen te maken van een hoog percentiel van de vraag naar een productitem. Met deze schattingen kunt u omgaan met de afweging tussen enerzijds het minimaliseren van de kosten voor het aanhouden en bestellen van voorraad, en anderzijds het minimaliseren van het aantal verloren of nabestelde verkopen als gevolg van een voorraadtekort. Om deze reden wilt u misschien het 99e percentiel of het serviceniveau van de vraag weten, aangezien de kans om dat niveau te overschrijden slechts 1% is.

Houd er bij het voorspellen van individuele variabelen met functies zoals automatische prognoses rekening mee dat de bovengrens van een 90%-voorspellingsinterval het 95e percentiel vertegenwoordigt van de voorspelde verdeling van de vraag naar die variabele. (Als u het 5e percentiel van het 95e percentiel aftrekt, blijft er een interval over met 95%-5% = 90% van de mogelijke waarden.) Dit betekent dat u de bovenste percentielen kunt schatten door de waarde van het voorspellingsinterval te wijzigen. In de figuur ‘Illustratie van een prognoseverdeling’ is het 95e percentiel 6,64.

Om het voorraadbeleid op het gewenste serviceniveau te optimaliseren of om het systeem te laten adviseren welk voorraadbeleid en serviceniveau het beste rendement oplevert, kunt u Smart Inventory Optimization overwegen. Het is ontworpen om wat-als-scenario's te ondersteunen die voorspelde afwegingen laten zien tussen verschillende voorraadbeleidslijnen, waaronder verschillende serviceniveaudoelen.

Lagere percentielen

Soms maakt u zich misschien zorgen over de onderkant van de voorspelde verdeling voor een variabele. Dergelijke gevallen doen zich vaak voor bij financiële toepassingen, waarbij een laag percentiel van een inkomstenraming een onvoorziene gebeurtenis vertegenwoordigt die financiële reserves vereist. U kunt Smart Demand Planner in dit geval gebruiken op een manier die analoog is aan het voorspellen van de bovenste percentielen. In de figuur ‘Illustratie van een prognoseverdeling’ is het 5e percentiel 3,36.

Kortom, bij voorspellen gaat het om het voorspellen van toekomstige waarden, waarbij puntvoorspellingen afzonderlijke schattingen bieden en intervalvoorspellingen die waarschijnlijke waardebereiken bieden. Smart Demand Planner automatiseert puntprognoses en stelt gebruikers in staat intervallen in te stellen, wat helpt bij het inschatten van de onzekerheid. Voor voorraadbeheer vergemakkelijkt de tool het begrijpen van de bovenste (bijvoorbeeld 99e percentiel) en lagere (bijvoorbeeld 5e percentiel) percentielen. Om het voorraadbeleid en de serviceniveaus te optimaliseren ondersteunt Smart Inventory Optimization 'wat-als'-scenario's, waardoor een effectieve besluitvorming wordt gegarandeerd over hoeveel u op voorraad moet hebben, gegeven het risico dat u bereid bent een voorraad op te geven.

 

 

 

Een zachte inleiding tot twee geavanceerde technieken: statistische bootstrapping en Monte Carlo-simulatie

Overzicht

De geavanceerde supply chain-analyse van Smart Software maakt gebruik van meerdere geavanceerde methoden. Twee van de belangrijkste zijn "statistische bootstrapping" en "Monte Carlo-simulatie". Omdat er bij beide veel willekeurige getallen rondvliegen, raken mensen soms in de war over wat wat is en waar ze goed voor zijn. Vandaar deze notitie. Waar het op neerkomt: statistische bootstrapping genereert vraagscenario's voor prognoses. Monte Carlo-simulatie gebruikt de scenario's voor voorraadoptimalisatie.

Opstarten

Bootstrapping, ook wel "resampling" genoemd, is een methode van computationele statistieken die we gebruiken om vraagscenario's voor prognoses te creëren. De essentie van het prognoseprobleem is het blootleggen van mogelijke toekomsten waarmee uw bedrijf te maken kan krijgen, zodat u kunt uitzoeken hoe u bedrijfsrisico's kunt beheersen. Traditionele prognosemethoden richten zich op het berekenen van de "meest waarschijnlijke" toekomst, maar ze geven niet het volledige risicobeeld weer. Bootstrapping biedt een onbeperkt aantal realistische wat-als-scenario's.

Bootstrapping doet dit zonder onrealistische aannames te doen over de vraag, dwz dat deze niet intermitterend is, of dat deze een klokvormige verdeling van groottes heeft. Die aannames zijn krukken om de wiskunde eenvoudiger te maken, maar de bootstrap is een procedure, geen vergelijking, dus dergelijke vereenvoudigingen zijn niet nodig.

Voor het eenvoudigste vraagtype, dat een stabiele willekeur is zonder seizoensgebondenheid of trend, is bootstrapping doodeenvoudig. Om een redelijk idee te krijgen van wat een enkele toekomstige vraagwaarde zou kunnen zijn, kiest u willekeurig een van de historische eisen. Om een vraagscenario te creëren, maakt u meerdere willekeurige selecties uit het verleden en rijgt u ze aan elkaar. Klaar. Het is mogelijk om wat meer realisme toe te voegen door de gevraagde waarden te "jitteren", dwz een beetje extra willekeur aan elke waarde toe te voegen of af te trekken, maar zelfs dat is eenvoudig.

Figuur 1 toont een eenvoudige bootstrap. De eerste regel is een korte reeks historische vraag naar een SKU. De volgende regels tonen scenario's van toekomstige vraag die zijn gemaakt door willekeurig waarden uit de vraaggeschiedenis te selecteren. De volgende drie eisen kunnen bijvoorbeeld zijn (0, 14, 6), of (2, 3, 5), enz.

Statistische bootstrapping en Monte Carlo-simulatie 1

Afbeelding 1: voorbeeld van vraagscenario's gegenereerd door een eenvoudige bootstrap

 

Bewerkingen met een hogere frequentie, zoals dagelijkse prognoses, brengen complexere vraagpatronen met zich mee, zoals dubbele seizoensgebondenheid (bijv. dag van de week en maand van het jaar) en/of trend. Dit daagde ons uit om een nieuwe generatie bootstrapping-algoritmen uit te vinden. We hebben onlangs een Amerikaans patent gewonnen voor deze doorbraak, maar de essentie is zoals hierboven beschreven.

Monte Carlo simulatie

Monte Carlo staat bekend om zijn casino's, die net als bootstrapping het idee van willekeur oproepen. Monte Carlo-methoden gaan ver terug, maar de moderne impuls kwam met de noodzaak om wat harige berekeningen te maken over waar neutronen zouden vliegen als een A-bom ontploft.

De essentie van Monte Carlo-analyse is deze: “Ons probleem is te ingewikkeld om te analyseren met vergelijkingen van papier en potlood. Dus, laten we een computerprogramma schrijven dat de individuele stappen van het proces codeert, de willekeurige elementen erin stoppen (bijvoorbeeld welke kant een neutron op schiet), het opwinden en kijken hoe het gaat. Aangezien er veel willekeur is, laten we het programma een ontelbaar aantal keren uitvoeren en het gemiddelde van de resultaten nemen.”

Als we deze benadering toepassen op voorraadbeheer, hebben we een andere reeks willekeurig voorkomende gebeurtenissen: een vraag van een bepaalde omvang komt bijvoorbeeld op een willekeurige dag binnen, een aanvulling van een bepaalde omvang arriveert na een willekeurige doorlooptijd, we snijden een aanvullings-PO van een bepaalde maat wanneer de voorraad daalt tot of onder een bepaald bestelpunt. We coderen de logica die deze gebeurtenissen met elkaar in verband brengt in een programma. We voeden het met een willekeurige vraagvolgorde (zie bootstrapping hierboven), voeren het programma een tijdje uit, laten we zeggen een jaar dagelijkse bewerkingen, berekenen prestatiestatistieken zoals Fill Rate en Average On Hand-inventaris, en "gooi de dobbelstenen" door het opnieuw uit te voeren het programma vele malen en het gemiddelde van de resultaten van vele gesimuleerde jaren. Het resultaat is een goede inschatting van wat er gebeurt als we belangrijke managementbeslissingen nemen: “Als we het bestelpunt op 10 eenheden zetten en de bestelhoeveelheid op 15 eenheden, kunnen we een serviceniveau verwachten van 89% en een gemiddelde beschikbaarheid van 21 eenheden.” Wat de simulatie voor ons doet, is het blootleggen van de gevolgen van managementbeslissingen op basis van realistische vraagscenario's en solide wiskunde. Het giswerk is weg.

Figuur 2 toont enkele van de innerlijke werkingen van een Monte Carlo-simulatie van een voorraadsysteem in vier panelen. Het systeem gebruikt een Min/Max voorraadbeheerbeleid met Min=10 en Max=25. Nabestellingen zijn niet toegestaan: u heeft het goed of u verliest het bedrijf. Doorlooptijden voor aanvulling zijn meestal 7 dagen, maar soms ook 14. Deze simulatie duurde een jaar.

Het eerste paneel toont een complex willekeurig vraagscenario waarin er geen vraag is in het weekend, maar de vraag over het algemeen elke dag toeneemt van maandag tot en met vrijdag. Het tweede paneel toont het willekeurige aantal beschikbare eenheden, dat ebt en vloeit met elke aanvullingscyclus. Het derde paneel toont de willekeurige groottes en tijdstippen van aanvullingsorders die binnenkomen van de leverancier. Het laatste paneel toont de onbevredigde vraag die de klantrelaties in gevaar brengt. Dit soort detail kan erg handig zijn om inzicht te krijgen in de dynamiek van een voorraadsysteem.

Statistische bootstrapping en Monte Carlo-simulatie 2

Figuur 2: Details van een Monte Carlo-simulatie

 

Figuur 2 toont slechts een van de talloze manieren waarop het jaar zou kunnen verlopen. Over het algemeen willen we de resultaten van vele gesimuleerde jaren middelen. Niemand zou tenslotte een munt opgooien om te beslissen of het een eerlijke munt was. Figuur 3 laat zien hoe vier key performance metrics (KPI's) van jaar tot jaar variëren voor dit systeem. Sommige statistieken zijn relatief stabiel in simulaties (Fill Rate), maar andere laten meer relatieve variabiliteit zien (Operating Cost = Holding Cost + Ordering Cost + Shortage Cost). Als we de grafieken bekijken, kunnen we schatten dat de keuzes van Min=10, Max=25 leiden tot gemiddelde bedrijfskosten van ongeveer $3.000 per jaar, een opvullingspercentage van ongeveer 90%, een serviceniveau van ongeveer 75% en een gemiddelde aan Hand van ongeveer 10

Statistische bootstrapping en Monte Carlo-simulatie 3

Figuur 3: Variatie in KPI's berekend over 1000 gesimuleerde jaren

 

Het is nu zelfs mogelijk om een managementvraag van een hoger niveau te beantwoorden. We kunnen verder gaan dan "Wat gebeurt er als ik zus-en-zo doe?" naar “Wat is de best wat ik kan doen om een opvullingspercentage van ten minste 90% voor dit item te bereiken tegen de laagst mogelijke kosten?” De wiskundige  achter deze sprong zit nog een andere sleuteltechnologie genaamd "stochastische optimalisatie", maar we stoppen hier voor nu. Het volstaat te zeggen dat de SIO&P-software van Smart de "ontwerpruimte" van min- en max-waarden kan doorzoeken om automatisch de beste keuze te vinden.

 

Hoe gaat uw ERP-systeem om met veiligheidsvoorraad?

Wordt veiligheidsvoorraad beschouwd als noodreserve of als dagelijkse buffer tegen pieken in de vraag? Het verschil kennen en uw ERP correct configureren, zal een groot verschil maken voor uw bedrijfsresultaten.

De Safety Stock veld in je ERP systeem kan heel verschillende dingen betekenen, afhankelijk van de configuratie. Het niet begrijpen van deze verschillen en hoe ze uw winst beïnvloeden, is een veelvoorkomend probleem dat we hebben gezien bij implementaties van onze software.

Het implementeren van software voor voorraadoptimalisatie begint met nieuwe klanten die de technische implementatie voltooien om de gegevensstroom op gang te brengen. Vervolgens krijgen ze gebruikerstraining en besteden ze weken aan het zorgvuldig configureren van hun initiële veiligheidsvoorraden, bestelniveaus en consensusvraagprognoses met Smart IP&O. Het team raakt vertrouwd met Smart's Key Performance Forecasts (KPP's) voor serviceniveaus, bestelkosten en beschikbare voorraad, die allemaal worden voorspeld met behulp van het nieuwe voorraadbeleid.

Maar wanneer ze het beleid en de prognoses opslaan in hun ERP-testsysteem, zijn de voorgestelde bestellingen soms veel groter en komen ze vaker voor dan ze hadden verwacht, wat de verwachte voorraadkosten opdrijft.

Wanneer dit gebeurt, is de primaire boosdoener de manier waarop het ERP is geconfigureerd om veiligheidsvoorraad te behandelen. Door op de hoogte te zijn van deze configuratie-instellingen kunnen planningsteams de verwachtingen beter stellen en de verwachte resultaten bereiken met minder inspanning (en reden tot ongerustheid!).

Dit zijn de drie veelvoorkomende voorbeelden van configuraties van ERP-veiligheidsvoorraden:

Configuratie 1. Veiligheidsvoorraad wordt behandeld als noodvoorraad dat kan niet geconsumeerd worden. Als een inbreuk op de veiligheidsvoorraad wordt voorspeld, dwingt het ERP-systeem een spoedprocedure af, ongeacht de kosten, zodat de aanwezige voorraad nooit onder de veiligheidsvoorraad komt, zelfs als een geplande ontvangst al in bestelling is en binnenkort zal aankomen.

Configuratie 2. Veiligheidsvoorraad wordt behandeld als Buffervoorraad die is ontworpen om te worden geconsumeerd. Het ERP-systeem zal een bestelling plaatsen wanneer een inbreuk op de veiligheidsvoorraad wordt voorspeld, maar de voorhanden voorraad mag onder de veiligheidsvoorraad dalen. De buffervoorraad beschermt tegen stockout tijdens de bevoorradingsperiode (dwz de doorlooptijd).

Configuratie 3. Veiligheidsvoorraad wordt door het systeem genegeerd en behandeld als een visuele weergave planningshulp of vuistregel. Het wordt genegeerd door de berekeningen van de leveringsplanning, maar wordt door de planner gebruikt om handmatige beoordelingen te maken van wanneer er besteld moet worden.

Opmerking: we raden nooit aan om het veiligheidsvoorraadveld te gebruiken zoals beschreven in Configuratie 3. In de meeste gevallen waren deze configuraties niet bedoeld, maar het resultaat van jarenlange improvisatie die ertoe hebben geleid dat het ERP op een niet-standaard manier werd gebruikt. Over het algemeen zijn deze velden ontworpen om de aanvullingsberekeningen programmatisch te beïnvloeden. De focus van ons gesprek zal dus liggen op configuraties 1 en 2. 

Systemen voor prognoses en inventarisoptimalisatie zijn ontworpen om prognoses te berekenen die anticiperen op voorraadafname en vervolgens veiligheidsvoorraden te berekenen die voldoende zijn om bescherming te bieden tegen variabiliteit in vraag en aanbod. Dit betekent dat de veiligheidsvoorraad bedoeld is om te worden gebruikt als een beschermende buffer (configuratie 2) en niet als noodsituatie schaars (configuratie 3). Het is ook belangrijk om te begrijpen dat, door het ontwerp, de veiligheidsvoorraad zal worden geconsumeerd ongeveer 50% van die tijd.

Waarom 50%? Omdat werkelijke bestellingen de helft van de tijd een onbevooroordeelde prognose zullen overschrijden. Zie onderstaande afbeelding om dit te illustreren. Een "goede" prognose zou de waarde moeten opleveren die het dichtst bij de werkelijke vraag komt, zodat de werkelijke vraag hoger of lager zal zijn zonder vooringenomenheid in beide richtingen.

 

Hoe gaat uw ERP-systeem om met veiligheidsvoorraad 1

 

Als u uw ERP-systeem zo heeft geconfigureerd dat het verbruik van veiligheidsvoorraad correct is toegestaan, dan kan de voorhanden voorraad er uitzien zoals in de onderstaande grafiek. Houd er rekening mee dat een deel van de veiligheidsvoorraad is verbruikt, maar een stockout is vermeden. Het serviceniveau dat u nastreeft bij het berekenen van de veiligheidsvoorraad, bepaalt hoe vaak u uw voorraad moet aanvullen voordat de aanvullingsorder arriveert. De gemiddelde voorraad is in dit scenario ongeveer 60 eenheden over de tijdshorizon.

 

Hoe gaat uw ERP-systeem om met veiligheidsvoorraad 2

 

Als uw ERP-systeem is geconfigureerd om niet het verbruik van de veiligheidsvoorraad toestaat en de ingevoerde hoeveelheid in het veld voor de veiligheidsvoorraad meer behandelt als noodreserves, dan heb je een enorme overvoorraad! Uw beschikbare voorraad ziet er uit als in de onderstaande grafiek, waarbij bestellingen worden versneld zodra een inbreuk op de veiligheidsvoorraad wordt verwacht. De gemiddelde voorraad is ongeveer 90 eenheden, een toename van 50% in vergelijking met toen u toestond dat veiligheidsvoorraad werd verbruikt.

 

Hoe gaat uw ERP-systeem om met veiligheidsvoorraad 3