De voorspelling is belangrijk, maar misschien niet zoals u denkt

Waar of niet waar: de prognose is niet van belang voor het voorraadbeheer van reserveonderdelen.

Op het eerste gezicht lijkt deze verklaring duidelijk onjuist. Prognoses zijn immers cruciaal voor het plannen van de voorraadniveaus, toch?

Het hangt ervan af wat je onder ‘voorspelling’ verstaat. Als u een ouderwetse prognose met één cijfer bedoelt (“de vraag naar artikel CX218b zal volgende week 3 eenheden bedragen en de week erna 6 eenheden”), dan nee. Als je de betekenis van voorspelling verruimt tot een kansverdeling die rekening houdt met onzekerheden in zowel vraag als aanbod, dan ja.

De belangrijkste realiteit is dat voor veel artikelen, vooral reserve- en serviceonderdelen, een onvoorspelbare, periodieke vraag bestaat. (De doorlooptijden van leveranciers kunnen ook grillig zijn, vooral wanneer onderdelen afkomstig zijn van een OEM met een achterstand.) We hebben vastgesteld dat hoewel fabrikanten en distributeurs doorgaans een intermitterende vraag ervaren naar slechts 20% of meer van hun artikelen, het percentage voor op MRO gebaseerde bedrijven groeit naar 80%+. Dit betekent dat historische gegevens vaak periodes van nulvraag laten zien, afgewisseld met willekeurige perioden van niet-nulvraag. Soms zijn deze niet-nuleisen zo laag als 1 of 2 eenheden, terwijl ze op andere momenten onverwacht oplopen tot hoeveelheden die vele malen groter zijn dan het gemiddelde.

Dit is niet het soort gegevens waar uw collega-'vraagplanners' in de detailhandel, consumentenproducten en voedingsmiddelen en dranken doorgaans mee te maken krijgen. Die mensen hebben meestal te maken met grotere hoeveelheden en hebben verhoudingsgewijs minder willekeur. En ze kunnen surfen op voorspellingsverbeterende functies zoals trends en stabiele seizoenspatronen. In plaats daarvan is het gebruik van reserveonderdelen veel willekeuriger, wat het planningsproces in de war brengt, zelfs in de minderheid van de gevallen waarin seizoensvariaties waarneembaar zijn.

Op het gebied van de intermitterende vraag zal de best beschikbare voorspelling aanzienlijk afwijken van de werkelijke vraag. In tegenstelling tot consumentenproducten met een gemiddeld tot hoog volume en een gemiddelde frequentie, kan de voorspelling van een serviceonderdeel de plank misslaan met honderden procentpunten. Een voorspelling van gemiddeld één of twee eenheden zal altijd mislukken als de werkelijke vraag nul is. Zelfs met geavanceerde business intelligence- of machine learning-algoritmen zal de fout bij het voorspellen van de niet-nuleisen nog steeds aanzienlijk zijn.

Misschien vanwege de moeilijkheid van statistische prognoses op het gebied van de inventarisatie, is voorraadplanning in de praktijk vaak afhankelijk van intuïtie en plannerkennis. Helaas schaalt deze aanpak niet over tienduizenden onderdelen. Intuïtie kan gewoon niet omgaan met het volledige scala aan vraag- en doorlooptijdmogelijkheden, laat staan nauwkeurig de waarschijnlijkheid van elk mogelijk scenario inschatten. Zelfs als uw bedrijf een of twee uitzonderlijke intuïtieve voorspellers heeft, betekent personeelspensionering en reorganisatie van de productlijnen dat er in de toekomst niet meer op intuïtieve prognoses kan worden vertrouwd.

De oplossing ligt in het verleggen van de focus van traditionele prognoses naar het voorspellen van de kansen voor elk potentieel vraag- en doorlooptijdscenario. Deze verschuiving transformeert het gesprek van een onrealistisch ‘één nummerplan’ naar een reeks getallen met bijbehorende waarschijnlijkheden. Door de kansen voor elke vraag en doorlooptijd te voorspellen, kunt u de voorraadniveaus beter afstemmen op de risicotolerantie voor elke groep onderdelen.

Software die vraag- en doorlooptijdscenario's genereert en dit proces tienduizenden keren herhaalt, kan nauwkeurig simuleren hoe het huidige voorraadbeleid zal presteren in vergelijking met dit beleid. Als de prestaties in de simulatie tekortschieten en er wordt voorspeld dat u vaker voorraad zult hebben dan u prettig vindt, of als u met een overschot aan voorraad blijft zitten, maakt het uitvoeren van 'wat als'-scenario's aanpassingen aan het beleid mogelijk. U kunt vervolgens voorspellen hoe dit herziene beleid het zal doen tegen willekeurige eisen en doorlooptijden. U kunt dit proces iteratief uitvoeren en verfijnen bij elk nieuw 'wat-als'-scenario, of u kunt steunen op door het systeem voorgeschreven beleid dat optimaal een balans vindt tussen risico's en kosten.

Dus als u service- en reserveonderdeleninventarisaties plant, hoeft u zich geen zorgen meer te maken over het voorspellen van de vraag op de manier waarop traditionele retail- en CPG-vraagplanners dat doen. Concentreer u in plaats daarvan op hoe uw voorraadbeleid bestand is tegen de willekeur van de toekomst, en pas het aan op basis van uw risicotolerantie. Hiervoor heeft u de juiste set beslissingsondersteunende software nodig, en dit is hoe Smart Software u kan helpen.

 

 

Software voor planning van reserveonderdelen

De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

 

 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    Waarom MRO-bedrijven zich zorgen moeten maken over overtollige voorraad

    Geven MRO-bedrijven echt prioriteit aan het verminderen van de overtollige voorraad reserveonderdelen? Vanuit organisatorisch oogpunt blijkt uit onze ervaring dat dit niet noodzakelijk het geval is. Discussies in de bestuurskamer gaan doorgaans over het uitbreiden van wagenparken, het verwerven van nieuwe klanten, het voldoen aan Service Level Agreements (SLA's), het moderniseren van de infrastructuur en het maximaliseren van de uptime. In bedrijfstakken waar activa die worden ondersteund door reserveonderdelen honderden miljoenen kosten of aanzienlijke inkomsten genereren (bijvoorbeeld de mijnbouw of de olie- en gassector), doet de waarde van de voorraad nauwelijks de wenkbrauwen fronsen en hebben organisaties de neiging grote hoeveelheden buitensporige voorraden over het hoofd te zien.

    Denk eens aan een openbaar vervoersbedrijf. In de meeste grote steden zullen de jaarlijkse operationele budgetten de $3 miljard overschrijden. De kapitaaluitgaven voor treinen, metro's en infrastructuur kunnen jaarlijks honderden miljoenen bedragen. Bijgevolg zal een voorraad reserveonderdelen ter waarde van $150 miljoen wellicht niet de aandacht trekken van de CFO of algemeen directeur, aangezien deze een klein percentage van de balans vertegenwoordigt. Bovendien moeten in op MRO gebaseerde industrieën veel onderdelen de machineparken tien jaar of langer ondersteunen, waardoor extra voorraden een noodzakelijke troef zijn. In sommige sectoren, zoals nutsbedrijven, kan het aanhouden van extra voorraden zelfs gestimuleerd worden om ervoor te zorgen dat de apparatuur in goede staat blijft.

    We hebben zorgen over overtollige voorraden zien ontstaan wanneer de magazijnruimte beperkt is. Ik herinner me dat ik aan het begin van mijn carrière getuige was van het spoorwegemplacement van een openbaar vervoersbedrijf, gevuld met verroeste assen met een waarde van meer dan $100.000 per stuk. Mij werd verteld dat de assen moesten worden blootgesteld aan de elementen vanwege onvoldoende magazijnruimte. De opportuniteitskosten die verband houden met de ruimte die wordt ingenomen door extra voorraad worden een overweging wanneer de magazijncapaciteit is uitgeput. De belangrijkste overweging die alle andere beslissingen overtroeft, is hoe de voorraad een hoog serviceniveau voor interne en externe klanten garandeert. Voorraadplanners maken zich veel meer zorgen over terugslag als gevolg van voorraadtekorten dan over overaankopen. Wanneer een ontbrekend onderdeel leidt tot een SLA-schending of het stilleggen van de productielijn, wat resulteert in miljoenen aan boetes en onherstelbare productie-output, is dat begrijpelijk.

    Vermogensintensieve bedrijven missen één groot punt. Dat is de extra voorraad isoleert niet tegen stockouts; het draagt eraan bij. Hoe meer eigen risico u heeft, hoe lager uw algehele serviceniveau, omdat het geld dat nodig is om onderdelen te kopen eindig is, en geld uitgegeven aan overtollige voorraad betekent dat er geen contant geld beschikbaar is voor de onderdelen die het nodig hebben. Zelfs door de overheid gefinancierde MRO-bedrijven, zoals nutsbedrijven en transportbedrijven, erkennen nu meer dan ooit de noodzaak om de uitgaven te optimaliseren. Zoals een materiaalmanager deelde: “We kunnen problemen met zakken met contant geld uit Washington niet langer oplossen.” Ze moeten dus meer doen met minder, en zorgen voor een optimale toewijzing over de tienduizenden onderdelen die ze beheren.

    Dit is waar state-of-the-art voorraadoptimalisatiesoftware van pas komt, die de benodigde voorraad voor gerichte serviceniveaus voorspelt, identificeert wanneer voorraadniveaus negatieve rendementen opleveren en herschikkingen aanbeveelt voor verbeterde algehele serviceniveaus. Smart Software helpt al tientallen jaren activa-intensieve MRO-gebaseerde bedrijven bij het optimaliseren van de bestelniveaus voor elk onderdeel. Bel ons voor meer informatie. 

     

     

    Software voor planning van reserveonderdelen

    De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

    Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

     

     

    Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

     

    Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

     

      Belangrijkste verschillen tussen voorraadplanning voor eindproducten en voor MRO en reserveonderdelen

      Wat is er anders aan voorraadplanning voor onderhoud, reparatie en bewerkingen (MRO) vergeleken met voorraadplanning in productie- en distributieomgevingen? Kortom, het is de aard van de vraagpatronen in combinatie met het gebrek aan bruikbare bedrijfskennis.

      Vraagpatronen

      Fabrikanten en distributeurs hebben de neiging zich te concentreren op de topverkopers die het grootste deel van hun omzet genereren. Er is doorgaans een grote vraag naar deze artikelen, die relatief eenvoudig te voorspellen zijn met traditionele tijdreeksmodellen die inspelen op voorspelbare trends en/of seizoensinvloeden. Daarentegen hebben MRO-planners bijna altijd te maken met een intermitterende vraag, die schaarser, willekeuriger en moeilijker te voorspellen is. Bovendien zijn de fundamentele hoeveelheden van belang verschillend. MRO-planners geven uiteindelijk het meeste om de ‘wanneer’-vraag: wanneer gaat er iets kapot? Terwijl de anderen zich concentreren op de “hoeveel” vraag van verkochte eenheden.

       

      Zakelijke kennis

      Productie- en distributieplanners kunnen vaak rekenen op het verzamelen van klant- en verkoopfeedback, die kan worden gecombineerd met statistische methoden om de nauwkeurigheid van de prognoses te verbeteren. Aan de andere kant zijn lagers, tandwielen, verbruiksartikelen en repareerbare onderdelen zelden bereid hun mening te delen. Met MRO is bedrijfskennis over welke onderdelen nodig zijn en wanneer niet betrouwbaar (behalve gepland onderhoud wanneer verbruiksartikelen in grotere volumes worden vervangen). Het succes van de MRO-voorraadplanning gaat dus slechts zo ver als het vermogen van hun waarschijnlijkheidsmodellen om toekomstig gebruik te voorspellen. En omdat de vraag zo wisselend is, kunnen ze met traditionele benaderingen niet voorbij Go komen.

       

      Methoden voor MRO

      In de praktijk is het gebruikelijk dat MRO- en activa-intensieve bedrijven hun voorraden beheren door hun toevlucht te nemen tot statische Min/Max-niveaus op basis van subjectieve veelvouden van gemiddeld gebruik, aangevuld met incidentele handmatige aanpassingen op basis van onderbuikgevoelens. Het proces wordt een slechte mix van statisch en reactief, met als resultaat dat er veel tijd en geld wordt verspild aan het versnellen.

      Er zijn alternatieve planningsmethoden die meer op wiskunde en data zijn gebaseerd, hoewel deze stijl van plannen bij MRO minder gebruikelijk is dan in de andere domeinen. Er zijn twee toonaangevende benaderingen voor het modelleren van defecten aan onderdelen en machines: modellen gebaseerd op de betrouwbaarheidstheorie en modellen voor ‘conditiegebaseerd onderhoud’ gebaseerd op realtime monitoring.

       

      Betrouwbaarheidsmodellen

      Betrouwbaarheidsmodellen zijn de eenvoudigste van de twee en vereisen minder gegevens. Ze gaan ervan uit dat alle artikelen van hetzelfde type, bijvoorbeeld een bepaald reserveonderdeel, statistisch gelijkwaardig zijn. Hun belangrijkste onderdeel is een ‘gevarenfunctie’, die het risico op falen in het volgende korte tijdsinterval beschrijft. De gevarenfunctie kan worden vertaald in iets dat beter geschikt is voor besluitvorming: de ‘overlevingsfunctie’, wat de waarschijnlijkheid is dat het item nog steeds werkt na X gebruiksduur (waarbij X kan worden uitgedrukt in dagen, maanden, kilometers, gebruik, enz.). Figuur 1 toont een constante gevaarfunctie en de bijbehorende overlevingsfunctie.

       

      MRO- en reserveonderdelenfunctie en de overlevingsfunctie ervan

      Figuur 1: Constante gevarenfunctie en zijn overlevingsfunctie

       

      Een gevarenfunctie die niet verandert, houdt in dat alleen willekeurige ongelukken een storing veroorzaken. Een gevaarfunctie die in de loop van de tijd toeneemt, impliceert daarentegen dat het artikel versleten is. En een afnemende gevaarfunctie impliceert dat een item zich vestigt. Figuur 2 toont een toenemende gevaarfunctie en de bijbehorende overlevingsfunctie.

       

      MRO en reserveonderdelen Vergroten van de gevaarfunctie en overlevingsfunctie

      Figuur 2: Toenemende gevarenfunctie en zijn overlevingsfunctie

       

      Betrouwbaarheidsmodellen worden vaak gebruikt voor goedkope onderdelen, zoals mechanische bevestigingsmiddelen, waarvan de vervanging misschien niet moeilijk of duur is (maar toch essentieel kan zijn).

       

      Conditiegebaseerd onderhoud

      Modellen gebaseerd op real-time monitoring worden gebruikt ter ondersteuning van condition-based onderhoud (CBM) voor dure zaken als straalmotoren. Deze modellen gebruiken gegevens van sensoren die in de items zelf zijn ingebed. Dergelijke gegevens zijn doorgaans complex en bedrijfseigen, evenals de waarschijnlijkheidsmodellen die door de gegevens worden ondersteund. Het voordeel van real-time monitoring is dat je problemen kunt zien aankomen, dat wil zeggen dat de verslechtering zichtbaar wordt gemaakt en dat voorspellingen kunnen voorspellen wanneer het item de rode lijn zal bereiken en daarom uit het speelveld moet worden gehaald. Dit maakt geïndividualiseerd, proactief onderhoud of vervanging van het artikel mogelijk.

      Figuur 3 illustreert het soort gegevens dat in CBM wordt gebruikt. Elke keer dat het systeem wordt gebruikt, is er een bijdrage aan de cumulatieve slijtage ervan. (Houd er echter rekening mee dat gebruik soms de staat van het apparaat kan verbeteren, bijvoorbeeld wanneer regen een machine koel houdt). U kunt de algemene trend naar boven zien richting een rode lijn, waarna het apparaat onderhoud nodig heeft. U kunt de cumulatieve slijtage extrapoleren om in te schatten wanneer deze de rode lijn zal bereiken en dienovereenkomstig plannen.

       

      MRO en Spare Parts real-time monitoring voor condition-based onderhoud

      Figuur 3: Ter illustratie van real-time monitoring voor conditiegebaseerd onderhoud

       

      Voor zover ik weet, maakt niemand zulke modellen van klanten met eindproducten om te voorspellen wanneer en hoeveel ze de volgende keer zullen bestellen, misschien omdat de klanten er bezwaar tegen zouden hebben om voortdurend hersenmonitors te dragen. Maar CBM, met zijn complexe monitoring en modellering, wint aan populariteit voor systemen die niet kunnen falen, zoals straalmotoren. Ondertussen hebben klassieke betrouwbaarheidsmodellen nog steeds veel waarde voor het beheer van grote vloten met goedkopere maar nog steeds essentiële artikelen.

       

      Smart's aanpak
      De bovengenoemde op condities gebaseerde onderhouds- en betrouwbaarheidsbenaderingen vereisen een buitensporige last voor het verzamelen en opschonen van gegevens die veel MRO-bedrijven niet aankunnen. Voor die bedrijven biedt Smart een aanpak waarbij geen betrouwbaarheidsmodellen hoeven te worden ontwikkeld. In plaats daarvan exploiteert het gebruiksgegevens op een andere manier. Het maakt gebruik van op waarschijnlijkheid gebaseerde modellen van zowel gebruik als doorlooptijden van leveranciers om duizenden mogelijke scenario's voor doorlooptijden van bevoorrading en vraag te simuleren. Het resultaat is een nauwkeurige verdeling van de vraag en de doorlooptijden voor elk verbruiksonderdeel, die kan worden benut om de optimale voorraadparameters te bepalen. Figuur 4 toont een simulatie die begint met een scenario voor de vraag naar reserveonderdelen (bovenste grafiek) en vervolgens een scenario oplevert van voorhanden aanbod voor bepaalde keuzes van Min/Max-waarden (onderste lijn). Key Performance Indicators (KPI's) kunnen worden geschat door de resultaten van veel van dergelijke simulaties te middelen.

      MRO- en reserveonderdelensimulatie van de vraag en voorraad

      Figuur 4: Een voorbeeld van een simulatie van de vraag naar reserveonderdelen en de voorhanden voorraad

      U kunt hier lezen over de aanpak van Smart bij het voorspellen van reserveonderdelen: https://smartcorp.com/wp-content/uploads/2019/10/Probabilistic-Forecasting-for-Intermittent-Demand.pdf

       

       

      Software voor planning van reserveonderdelen

      De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

      Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

       

       

      Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

       

      Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

       

        5 stappen om de financiële impact van reserveonderdelenplanning te verbeteren

        In het huidige competitieve zakelijke landschap zijn bedrijven voortdurend op zoek naar manieren om hun operationele efficiëntie te verbeteren en meer inkomsten te genereren. Het optimaliseren van het beheer van serviceonderdelen is een vaak over het hoofd gezien aspect dat een aanzienlijke financiële impact kan hebben. Bedrijven kunnen de algehele efficiëntie verbeteren en aanzienlijke financiële opbrengsten genereren door de voorraad reserveonderdelen effectief te beheren. Dit artikel gaat in op de economische implicaties van geoptimaliseerd beheer van serviceonderdelen en hoe investeren in software voor voorraadoptimalisatie en vraagplanning een concurrentievoordeel kan opleveren.

        Het belang van een geoptimaliseerde planning van serviceonderdelen:

        Geoptimaliseerd beheer van serviceonderdelen speelt een cruciale rol bij het beperken van voorraadrisico's en het waarborgen van de beschikbaarheid van kritieke reserveonderdelen. Hoewel subjectieve planning op kleine schaal kan werken, wordt het onvoldoende bij het beheer van grote voorraden van af en toe gevraagde reserveonderdelen. Traditionele prognosebenaderingen houden simpelweg geen rekening met de extreme variabiliteit in de vraag en frequente periodes van nulvraag die zo gewoon zijn bij reserveonderdelen. Dit resulteert in grote misallocaties van voorraden, hogere kosten en slechte serviceniveaus.

        De sleutel tot geoptimaliseerd beheer van serviceonderdelen ligt in het begrijpen van de wisselwerking tussen service en kosten. Software voor voorraadoptimalisatie en vraagplanning, mogelijk gemaakt door probabilistische prognoses en machine learning-algoritmen, kan bedrijven helpen de kosten versus baten van elke voorraadbeslissing beter te begrijpen en voorraad als een concurrentievoordeel te gebruiken. Door binnen enkele seconden nauwkeurige vraagprognoses en een optimaal voorraadbeleid zoals Min/Max, veiligheidsvoorraadniveaus en bestelpunten te genereren, kunnen bedrijven weten hoeveel te veel is en wanneer ze meer moeten toevoegen. Door voorraad als een concurrentievoordeel te hanteren, kunnen bedrijven hun serviceniveau verhogen en de kosten verlagen.

        Verbeter het financiële resultaat van de planning van reserveonderdelen

        1. Nauwkeurige prognoses zijn cruciaal om de voorraadplanning te optimaliseren en effectief aan de vraag van de klant te voldoen. State-of-the-art software voor vraagplanning voorspelt nauwkeurig de voorraadvereisten, zelfs voor intermitterende vraagpatronen. Door prognoses te automatiseren, kunnen bedrijven tijd, geld en middelen besparen en tegelijkertijd de nauwkeurigheid verbeteren.
        2. Voldoen aan de vraag van de klant is een cruciaal aspect van het beheer van serviceonderdelen. Bedrijven kunnen de klanttevredenheid en -loyaliteit vergroten en hun kansen vergroten om toekomstige contracten binnen te halen voor de activa-intensieve apparatuur die ze verkopen door ervoor te zorgen dat reserveonderdelen beschikbaar zijn wanneer dat nodig is. Door effectieve vraagplanning en voorraadoptimalisatie kunnen organisaties doorlooptijden verkorten, voorraadtekorten minimaliseren en serviceniveaus handhaven, waardoor de financiële impact van alle beslissingen wordt verbeterd.
        3. Financiële voordelen kunnen worden behaald door een geoptimaliseerde planning van serviceonderdelen, inclusief de vermindering van voorraad- en productkosten. Overtollige opslag en verouderde inventaris kunnen een aanzienlijke kostenpost zijn voor organisaties. Door best-of-breed voorraadoptimalisatiesoftware te implementeren, kunnen bedrijven kosteneffectieve oplossingen vinden, het serviceniveau verhogen en de kosten verlagen. Dit leidt tot verbeterde voorraadomzet, lagere transportkosten en hogere winstgevendheid.
        4. Inkoopplanning is een ander essentieel aspect van het beheer van serviceonderdelen. Organisaties kunnen voorraadniveaus optimaliseren, doorlooptijden verkorten en voorraadtekorten voorkomen door inkoop en de bijbehorende orderhoeveelheden af te stemmen op nauwkeurige vraagprognoses. Er kunnen bijvoorbeeld nauwkeurige prognoses worden gedeeld met leveranciers, zodat algemene inkoopverplichtingen kunnen worden aangegaan. Dit geeft de leverancier omzetzekerheid en kan in ruil daarvoor meer voorraad aanhouden, waardoor de doorlooptijden worden verkort.
        5. Intermitterende vraagplanning is een bijzondere uitdaging bij het beheer van reserveonderdelen. Conventionele vuistregels schieten tekort in het effectief omgaan met vraagvariabiliteit. Dit komt omdat traditionele benaderingen ervan uitgaan dat de vraag normaal verdeeld is, terwijl dat in werkelijkheid allesbehalve normaal is. Reserveonderdelen vragen om willekeurige uitbarstingen van grote vraag die worden afgewisseld met perioden van nul vraag. De oplossing van Smart Software bevat geavanceerde statistische modellen en machine learning-algoritmen om historische vraagpatronen te analyseren, waardoor een nauwkeurige planning voor intermitterende vraag mogelijk wordt. Bedrijven kunnen de voorraadkosten aanzienlijk verlagen en de efficiëntie verbeteren door deze uitdaging aan te gaan.

        Bewijs van klanten van Smart Software:

        Door te investeren in de software voor voorraadoptimalisatie en vraagplanning van Smart Software kunnen bedrijven kostenbesparingen realiseren, de klantenservice naar een hoger niveau tillen en de operationele efficiëntie verbeteren. Door nauwkeurige vraagprognoses, geoptimaliseerd voorraadbeheer en gestroomlijnde inkoopprocessen kunnen organisaties financiële besparingen realiseren, effectief voldoen aan de eisen van klanten en de algehele bedrijfsprestaties verbeteren.

        • Metro-North Railroad (MNR) ervoer een 8%-vermindering van de onderdelenvoorraad, bereikte een recordhoog klantenserviceniveau van 98,7% en verminderde de voorraadgroei voor nieuwe apparatuur van een verwachte 10% tot slechts 6%. Slimme software speelde een cruciale rol bij het identificeren van meerjarige behoeften aan serviceonderdelen, het verkorten van administratieve doorlooptijden, het opstellen van plannen voor voorraadvermindering voor wagenparken die buiten gebruik worden gesteld en het identificeren van inactieve inventaris voor verwijdering. MNR bespaarde kosten, maximaliseerde verwijderingsvoordelen, verbeterde serviceniveaus en verwierf nauwkeurige inzichten voor weloverwogen besluitvorming, wat uiteindelijk hun bedrijfsresultaten en klanttevredenheid verbeterde.
        • Seneca Companies, marktleider op het gebied van petroleumservices voor de auto-industrie, heeft Smart Software gebruikt om de vraag van klanten te modelleren, de voorraadprestaties te controleren en aanvulling te stimuleren. Buitendiensttechnici omarmden het gebruik ervan en de totale inventarisinvestering daalde met meer dan 25%, van $11 miljoen naar $8 miljoen, terwijl de first-time fix rates van 90%+ behouden bleven.
        • Een toonaangevend elektriciteitsbedrijf implementeerde Smart IP&O in slechts 3 maanden en gebruikte de software vervolgens om de bestelpunten en bestelhoeveelheden voor meer dan 250.000 reserveonderdelen te optimaliseren. Tijdens de eerste fase van de implementatie hielp het platform het nutsbedrijf om de voorraad met $9.000.000 te verminderen met behoud van serviceniveaus. De implementatie was onderdeel van het strategische optimalisatie-initiatief van het bedrijf.

        Optimalisatie van de planning van serviceonderdelen voor concurrentievoordeel

        Geoptimaliseerd beheer van serviceonderdelen is cruciaal voor bedrijven die de efficiëntie willen verbeteren, kosten willen verlagen en de beschikbaarheid van noodzakelijke reserveonderdelen willen waarborgen. Organisaties kunnen op dit gebied aanzienlijke waarde ontsluiten door te investeren in de software voor voorraadoptimalisatie en vraagplanning van Smart Software. Bedrijven kunnen betere financiële prestaties behalen en een concurrentievoordeel behalen in hun respectievelijke markten door verbeterde data-analyse, automatisering en voorraadplanning.

        Smart Software is ontworpen voor de moderne markt, die volatiel is en altijd verandert. Het kan SKU-proliferatie, langere toeleveringsketens, minder voorspelbare doorlooptijden en meer intermitterende en minder voorspelbare vraagpatronen aan. Het kan ook worden geïntegreerd met vrijwel elke ERP-oplossing op de markt, door in de praktijk bewezen naadloze verbindingen of door een eenvoudig import-/exportproces te gebruiken dat wordt ondersteund door het datamodel en de dataverwerkingsengine van Smart Software. Door slimme software te gebruiken, kunnen bedrijven voorraad als een concurrentievoordeel gebruiken, de klanttevredenheid verbeteren, het serviceniveau verhogen, de kosten verlagen en aanzienlijk geld besparen.

         

        Software voor planning van reserveonderdelen

        De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

        Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

         

         

        Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

         

        Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.