Planning van reserveonderdelen en wisselende vraag

Voorspel de intermitterende vraag naar producten en bepaal het optimale voorraadniveau

Een fundamenteel aspect van supply chain management is nauwkeurige vraagvoorspelling. Sommige productitems hebben een intermitterend vraagpatroon waardoor ze vrijwel onmogelijk te voorspellen zijn met traditionele, op smoothing gebaseerde prognosemethoden. We behandelen het probleem van het voorspellen van intermitterende vraag (of onregelmatige vraag), dwz willekeurige vraag met een groot deel nulwaarden. Dit patroon is kenmerkend voor de vraag naar bedrijven die grote voorraden service- en reserveonderdelen beheren in sectoren als de luchtvaart, ruimtevaart, automobielindustrie, hightech en elektronica, maar ook in MRO (Maintenance, Repair and Overhaul).

Nauwkeurige prognoses van de vraag zijn belangrijk bij voorraadbeheer, maar de intermitterende aard van de vraag maakt prognoses bijzonder moeilijk voor de planning van serviceonderdelen. Soortgelijke problemen doen zich voor wanneer een organisatie langzaam bewegende artikelen produceert en verkoopprognoses nodig heeft voor planningsdoeleinden. Omdat prognoses van intermitterende en klonterige vraag zo onbetrouwbaar zijn, voorspellen de meeste bedrijven voorraadbehoeften voornamelijk op basis van subjectieve bedrijfskennis, voorspellen ze slechts een fractie van hun grotere voorraadvolume, gebruiken ze eenvoudige "vuistregel"-schattingen of traditionele statistische prognoses die ten onrechte aannemen een bepaald type vraagdistributie voor voorraadbeheer.     

In de onderstaande artikelen leest u best practices uit de sector over het verbeteren van intermitterende vraagprognoses en het creëren van efficiëntie in de toeleveringsketen.

Een inleiding op probabilistische prognoses

Een inleiding op probabilistische prognoses

Als u het nieuws over supply chain-analyses bijhoudt, komt u vaker de uitdrukking 'probabilistische prognoses' tegen. Probabilistische voorspellingen hebben de mogelijkheid om toekomstige waarden te simuleren die niet verankerd zijn in het verleden. Als deze zin raadselachtig is, lees dan verder.

Lees meer
Goudlokje Voorraadniveaus

Goudlokje Voorraadniveaus

Misschien herinner je je het verhaal van Goudlokje uit je jeugd lang geleden. Soms was de pap te heet, soms te koud, maar een keer was het precies goed. Nu we volwassen zijn, kunnen we dat sprookje vertalen in een professioneel principe voor voorraadplanning: er kan te weinig of te veel voorraad zijn en er is een bepaald Goudlokje-niveau dat "precies goed" is. Deze blog gaat over het vinden van die sweet spot.

Lees meer
De omzet verhogen door de beschikbaarheid van reserveonderdelen te vergroten

De omzet verhogen door de beschikbaarheid van reserveonderdelen te vergroten

Laten we beginnen met te erkennen dat een hogere omzet een goede zaak voor u is, en dat het verhogen van de beschikbaarheid van de reserveonderdelen die u levert een goede zaak is voor uw klanten. Maar laten we ook erkennen dat een grotere beschikbaarheid van artikelen niet noodzakelijkerwijs leidt tot hogere inkomsten. Als u verkeerd plant en uiteindelijk overtollige voorraad heeft, kan het netto-effect goed zijn voor uw klanten, maar zeker slecht voor u. Er moet een goede manier zijn om dit een win-winsituatie te maken, als het maar kan worden herkend.

Lees meer
Maximaliseer machine-uptime met probabilistische modellering

Maximaliseer machine-uptime met probabilistische modellering

Als je zowel dingen maakt als verkoopt, heb je twee voorraadproblemen. Bedrijven die dingen verkopen, moeten zich onophoudelijk concentreren op het hebben van voldoende productvoorraad om aan de vraag van de klant te voldoen. Fabrikanten en activa-intensieve industrieën zoals energieopwekking, openbaar vervoer, mijnbouw en raffinage, hebben een extra zorg voor de inventaris: ze hebben voldoende reserveonderdelen om hun machines draaiende te houden.
In deze technische briefing worden de basisprincipes van twee probabilistische modellen van machinestoringen besproken. Het relateert ook de uptime van machines aan de toereikendheid van de voorraad reserveonderdelen.

Lees meer
De voordelen van kansvoorspelling

De voordelen van kansvoorspelling

De meeste vraagprognoses zijn gedeeltelijk of onvolledig: ze bieden slechts één enkel getal: de meest waarschijnlijke waarde van de toekomstige vraag. Dit wordt een puntvoorspelling genoemd. Gewoonlijk schat de puntvoorspelling de gemiddelde waarde van de toekomstige vraag. Veel nuttiger is een voorspelling van de volledige kansverdeling van de vraag op elk toekomstig tijdstip. Dit wordt vaker waarschijnlijkheidsvoorspelling genoemd en is veel nuttiger.

Lees meer

recente berichten

  • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
    In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
  • 5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren5 manieren om de snelheid van beslissingen in de toeleveringsketen te verbeteren
    De belofte van een digitale supply chain heeft de manier waarop bedrijven opereren getransformeerd. In de kern kan het snelle, datagestuurde beslissingen nemen en tegelijkertijd kwaliteit en efficiëntie in de hele bedrijfsvoering garanderen. Het gaat echter niet alleen om toegang tot meer data. Organisaties hebben de juiste tools en platforms nodig om die data om te zetten in bruikbare inzichten. Dit is waar besluitvorming cruciaal wordt, vooral in een landschap waar nieuwe digitale supply chain-oplossingen en AI-gestuurde platforms u kunnen ondersteunen bij het stroomlijnen van veel processen binnen de beslissingsmatrix. […]
  • Twee werknemers controleren de voorraad in de tijdelijke opslag van een distributiecentrum.12 Oorzaken van Overstocking en Praktische Oplossingen
    Effectief voorraadbeheer is cruciaal voor het behouden van een gezonde balans en het verzekeren dat middelen optimaal worden toegewezen. Hier is een diepgaande verkenning van de belangrijkste oorzaken van overstocking, hun implicaties en mogelijke oplossingen. […]
  • FAQ: Slimme IP&O onder de knie krijgen voor beter voorraadbeheerFAQ: Slimme IP&O voor beter voorraadbeheer.
    Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O. […]
  • 7 belangrijke trends in vraagplanning die de toekomst vormgeven7 belangrijke trends in vraagplanning die de toekomst vormgeven
    Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt. […]

    Voorraadoptimalisatie voor fabrikanten, distributeurs en MRO

    • Het beheren van de voorraad reserveonderdelen: beste praktijkenHet beheren van de voorraad reserveonderdelen: beste praktijken
      In this blog, we’ll explore several effective strategies for managing spare parts inventory, emphasizing the importance of optimizing stock levels, maintaining service levels, and using smart tools to aid in decision-making. Managing spare parts inventory is a critical component for businesses that depend on equipment uptime and service reliability. Unlike regular inventory items, spare parts often have unpredictable demand patterns, making them more challenging to manage effectively. An efficient spare parts inventory management system helps prevent stockouts that can lead to operational downtime and costly delays while also avoiding overstocking that unnecessarily ties up capital and increases holding costs. […]
    • Innovatie van de OEM-aftermarket met AI-Driven Inventory Optimization XLInnovatie van de OEM-aftermarket met AI-gestuurde voorraadoptimalisatie
      De aftermarketsector biedt OEM's een beslissend voordeel door een stabiele inkomstenstroom te bieden en de loyaliteit van klanten te bevorderen door de betrouwbare en tijdige levering van serviceonderdelen. Het beheren van inventaris en het voorspellen van de vraag in de aftermarket gaat echter gepaard met uitdagingen, waaronder onvoorspelbare vraagpatronen, enorme productassortimenten en de noodzaak van snelle doorlooptijden. Traditionele methoden schieten vaak tekort vanwege de complexiteit en variabiliteit van de vraag in de aftermarket. De nieuwste technologieën kunnen grote datasets analyseren om de toekomstige vraag nauwkeuriger te voorspellen en voorraadniveaus te optimaliseren, wat leidt tot betere service en lagere kosten. […]
    • Toekomstbestendige hulpprogramma's. Geavanceerde analyses voor supply chain-optimalisatieToekomstbestendige hulpprogramma's: geavanceerde analyses voor optimalisatie van de supply chain
      Nutsvoorzieningen op het gebied van elektriciteit, aardgas, stedelijk water en telecommunicatie zijn allemaal activa-intensief en afhankelijk van fysieke infrastructuur die in de loop van de tijd goed moet worden onderhouden, bijgewerkt en geüpgraded. Het maximaliseren van de uptime van bedrijfsmiddelen en de betrouwbaarheid van de fysieke infrastructuur vereist effectief voorraadbeheer, prognoses van reserveonderdelen en leveranciersbeheer. Een nutsbedrijf dat deze processen effectief uitvoert, presteert beter dan zijn concurrenten, levert een beter rendement op voor zijn investeerders en hogere serviceniveaus voor zijn klanten, terwijl het zijn impact op het milieu vermindert. […]
    • Centrering Act Reserveonderdelen Timing Prijzen en betrouwbaarheidCentreringswet: timing, prijzen en betrouwbaarheid van reserveonderdelen
      In dit artikel begeleiden we u bij het opstellen van een voorraadplan voor reserveonderdelen, waarbij prioriteit wordt gegeven aan beschikbaarheidsstatistieken zoals serviceniveaus en vulpercentages, terwijl de kostenefficiëntie wordt gewaarborgd. We zullen ons concentreren op een benadering van voorraadplanning genaamd Service Level-Driven Inventory Optimization. Vervolgens bespreken we hoe u kunt bepalen welke onderdelen u in uw inventaris moet opnemen en welke onderdelen mogelijk niet nodig zijn. Ten slotte onderzoeken we manieren om uw op serviceniveau gebaseerde voorraadplan consistent te verbeteren. […]

    Het probleem

    Sommige productitems hebben een intermitterend vraagpatroon waardoor ze vrijwel onmogelijk te voorspellen zijn met traditionele, op smoothing gebaseerde prognosemethoden. Items met intermitterende vraag – ook wel bekend als klonterige, volatiele, variabele of onvoorspelbare vraag – hebben veel nul- of laagvolumewaarden afgewisseld met willekeurige pieken in de vraag die vaak vele malen groter zijn dan het gemiddelde. Dit probleem doet zich vooral voor bij bedrijven die grote voorraden service- en reserveonderdelen beheren in sectoren als de luchtvaart, ruimtevaart, automobielindustrie, hightech en elektronica, evenals in MRO (Maintenance, Repair and Overhaul).

     

    Intermittent demand

    In deze bedrijven kan maar liefst 80% van de onderdelen en productitems een intermittent of lumpy demand hebben. Intermittent demand maakt het moeilijk om de safety stock en de voorraadvereisten voor het serviceniveau nauwkeurig in te schatten die nodig zijn voor een succesvolle planning van de supply chain. Omdat de forecastsvan intermittent en lumpy demand zo onbetrouwbaar zijn, forecasten de meeste bedrijven de voorraadbehoeften op basis van subjectieve zakelijke kennis, forecasten ze slechts een fractie van hun hogere volumevoorraad, gebruiken ze eenvoudige "vuistregel"-schattingen of traditionele statistische forecasts die ten onrechte uitgaan van een bepaald type vraagverdeling voor voorraadbeheer. Het resultaat is dat er elk jaar miljarden dollars worden verspild vanwege ofwel te hoge voorraadkosten of slechte klantenservice vanwege stock-outs.

    Bootstrap uw weg naar optimale stock levels

    Intermittent demand - ook bekend als lumpy, volatile, variable or unpredictable demand.

    De slimme oplossing

    SmartForecasts en Smart Inventory Optimization gebruiken een unieke empirische en probabilistische forecasting benadering die resulteert in nauwkeurige forecasts van voorraadvereisten waar de vraag intermittent is. De oplossing werkt vooral goed wanneer de vraag niet overeenkomt met een eenvoudige normaalverdeling. Onze gepatenteerde, met APICS bekroonde "bootstrapping"-technologie genereert snel tienduizenden mogelijke scenario's van toekomstige vraagreeksen en cumulative demand values gedurende de lead time van een artikel. Deze scenario's zijn statistisch vergelijkbaar met de waargenomen gegevens van het item, en ze leggen de relevante details van intermitterende vraag vast zonder te vertrouwen op de veronderstellingen die gewoonlijk worden gemaakt over de aard van vraagverdelingen door traditionele forecasting methoden. Het resultaat is een zeer nauwkeurige voorspelling van de volledige verdeling van de cumulative demand values over de volledige lead time van een artikel. Met de informatie die deze vraagverdelingen bieden, kunt u eenvoudig de safety stock van uw bedrijf en de voorraadbehoeften op service level plannen voor duizenden met tussenpozen gevraagde artikelen met een nauwkeurigheid van bijna 100%.

     

    De voordelen

    Bedrijven die onze krachtige intermitterende demand en planning software gebruiken, verminderen doorgaans de permanente voorraad met 20% in het eerste jaar, verhogen de beschikbaarheid van onderdelen met 10-20% en verminderen de behoefte aan en de bijbehorende kosten van noodoverslag om gaten in hun supply chain te dichten. De voorraden van reparatie- en service parts zijn echt geoptimaliseerd, wat leidt tot efficiëntere operaties, verbeteringen in de klantenservice en aanzienlijk minder geld dat vastzit in de voorraad.

    Wit papier:  Smart Software Gen2

    In deze whitepaper introduceren we ‘Gen2’, onze volgende generatie probabilistische modelleringstechnologie die het Smart IP&O Platform aandrijft. We vertellen over de evolutie van de voorspellingsmethoden van Smart Software en beschrijven hoe Gen2 de mogelijkheden die Gen1 zo nuttig hebben gemaakt voor zoveel bedrijven aanzienlijk uitbreidt. Ten slotte zullen we ook een overzicht op hoog niveau geven van de waarschijnlijkheidswiskunde achter Gen2. Vul dit formulier in en wij sturen u het document per e-mail.


      Naam *

      Werk email *

      Bedrijf *