Een fundamenteel aspect van supply chain management is nauwkeurige vraagvoorspelling. Sommige productitems hebben een intermitterend vraagpatroon waardoor ze vrijwel onmogelijk te voorspellen zijn met traditionele, op smoothing gebaseerde prognosemethoden. We behandelen het probleem van het voorspellen van intermitterende vraag (of onregelmatige vraag), dwz willekeurige vraag met een groot deel nulwaarden. Dit patroon is kenmerkend voor de vraag naar bedrijven die grote voorraden service- en reserveonderdelen beheren in sectoren als de luchtvaart, ruimtevaart, automobielindustrie, hightech en elektronica, maar ook in MRO (Maintenance, Repair and Overhaul).
Nauwkeurige prognoses van de vraag zijn belangrijk bij voorraadbeheer, maar de intermitterende aard van de vraag maakt prognoses bijzonder moeilijk voor de planning van serviceonderdelen. Soortgelijke problemen doen zich voor wanneer een organisatie langzaam bewegende artikelen produceert en verkoopprognoses nodig heeft voor planningsdoeleinden. Omdat prognoses van intermitterende en klonterige vraag zo onbetrouwbaar zijn, voorspellen de meeste bedrijven voorraadbehoeften voornamelijk op basis van subjectieve bedrijfskennis, voorspellen ze slechts een fractie van hun grotere voorraadvolume, gebruiken ze eenvoudige "vuistregel"-schattingen of traditionele statistische prognoses die ten onrechte aannemen een bepaald type vraagdistributie voor voorraadbeheer.
In de onderstaande artikelen leest u best practices uit de sector over het verbeteren van intermitterende vraagprognoses en het creëren van efficiëntie in de toeleveringsketen.
Een inleiding op probabilistische prognoses
Als u het nieuws over supply chain-analyses bijhoudt, komt u vaker de uitdrukking 'probabilistische prognoses' tegen. Probabilistische voorspellingen hebben de mogelijkheid om toekomstige waarden te simuleren die niet verankerd zijn in het verleden. Als deze zin raadselachtig is, lees dan verder.
Goudlokje Voorraadniveaus
Misschien herinner je je het verhaal van Goudlokje uit je jeugd lang geleden. Soms was de pap te heet, soms te koud, maar een keer was het precies goed. Nu we volwassen zijn, kunnen we dat sprookje vertalen in een professioneel principe voor voorraadplanning: er kan te weinig of te veel voorraad zijn en er is een bepaald Goudlokje-niveau dat "precies goed" is. Deze blog gaat over het vinden van die sweet spot.
De omzet verhogen door de beschikbaarheid van reserveonderdelen te vergroten
Laten we beginnen met te erkennen dat een hogere omzet een goede zaak voor u is, en dat het verhogen van de beschikbaarheid van de reserveonderdelen die u levert een goede zaak is voor uw klanten. Maar laten we ook erkennen dat een grotere beschikbaarheid van artikelen niet noodzakelijkerwijs leidt tot hogere inkomsten. Als u verkeerd plant en uiteindelijk overtollige voorraad heeft, kan het netto-effect goed zijn voor uw klanten, maar zeker slecht voor u. Er moet een goede manier zijn om dit een win-winsituatie te maken, als het maar kan worden herkend.
Maximaliseer machine-uptime met probabilistische modellering
Als je zowel dingen maakt als verkoopt, heb je twee voorraadproblemen. Bedrijven die dingen verkopen, moeten zich onophoudelijk concentreren op het hebben van voldoende productvoorraad om aan de vraag van de klant te voldoen. Fabrikanten en activa-intensieve industrieën zoals energieopwekking, openbaar vervoer, mijnbouw en raffinage, hebben een extra zorg voor de inventaris: ze hebben voldoende reserveonderdelen om hun machines draaiende te houden.
In deze technische briefing worden de basisprincipes van twee probabilistische modellen van machinestoringen besproken. Het relateert ook de uptime van machines aan de toereikendheid van de voorraad reserveonderdelen.
Engineering op bestelling bij Kratos Space - beschikbaarheid van onderdelen een strategisch voordeel maken
De Kratos Space-groep binnen de National Security-technologie-innovator Kratos Defense & Security Solutions, Inc., produceert de software en componentproducten van COTS voor ruimtecommunicatie - waardoor beschikbaarheid van onderdelen een strategisch voordeel wordt
De voordelen van kansvoorspelling
De meeste vraagprognoses zijn gedeeltelijk of onvolledig: ze bieden slechts één enkel getal: de meest waarschijnlijke waarde van de toekomstige vraag. Dit wordt een puntvoorspelling genoemd. Gewoonlijk schat de puntvoorspelling de gemiddelde waarde van de toekomstige vraag. Veel nuttiger is een voorspelling van de volledige kansverdeling van de vraag op elk toekomstig tijdstip. Dit wordt vaker waarschijnlijkheidsvoorspelling genoemd en is veel nuttiger.
Het probleem
Sommige productitems hebben een intermitterend vraagpatroon waardoor ze vrijwel onmogelijk te voorspellen zijn met traditionele, op smoothing gebaseerde prognosemethoden. Items met intermitterende vraag – ook wel bekend als klonterige, volatiele, variabele of onvoorspelbare vraag – hebben veel nul- of laagvolumewaarden afgewisseld met willekeurige pieken in de vraag die vaak vele malen groter zijn dan het gemiddelde. Dit probleem doet zich vooral voor bij bedrijven die grote voorraden service- en reserveonderdelen beheren in sectoren als de luchtvaart, ruimtevaart, automobielindustrie, hightech en elektronica, evenals in MRO (Maintenance, Repair and Overhaul).
Intermittent demand
In deze bedrijven kan maar liefst 80% van de onderdelen en productitems een intermittent of lumpy demand hebben. Intermittent demand maakt het moeilijk om de safety stock en de voorraadvereisten voor het serviceniveau nauwkeurig in te schatten die nodig zijn voor een succesvolle planning van de supply chain. Omdat de forecastsvan intermittent en lumpy demand zo onbetrouwbaar zijn, forecasten de meeste bedrijven de voorraadbehoeften op basis van subjectieve zakelijke kennis, forecasten ze slechts een fractie van hun hogere volumevoorraad, gebruiken ze eenvoudige "vuistregel"-schattingen of traditionele statistische forecasts die ten onrechte uitgaan van een bepaald type vraagverdeling voor voorraadbeheer. Het resultaat is dat er elk jaar miljarden dollars worden verspild vanwege ofwel te hoge voorraadkosten of slechte klantenservice vanwege stock-outs.
Intermittent demand - ook bekend als lumpy, volatile, variable or unpredictable demand.
De slimme oplossing
SmartForecasts en Smart Inventory Optimization gebruiken een unieke empirische en probabilistische forecasting benadering die resulteert in nauwkeurige forecasts van voorraadvereisten waar de vraag intermittent is. De oplossing werkt vooral goed wanneer de vraag niet overeenkomt met een eenvoudige normaalverdeling. Onze gepatenteerde, met APICS bekroonde "bootstrapping"-technologie genereert snel tienduizenden mogelijke scenario's van toekomstige vraagreeksen en cumulative demand values gedurende de lead time van een artikel. Deze scenario's zijn statistisch vergelijkbaar met de waargenomen gegevens van het item, en ze leggen de relevante details van intermitterende vraag vast zonder te vertrouwen op de veronderstellingen die gewoonlijk worden gemaakt over de aard van vraagverdelingen door traditionele forecasting methoden. Het resultaat is een zeer nauwkeurige voorspelling van de volledige verdeling van de cumulative demand values over de volledige lead time van een artikel. Met de informatie die deze vraagverdelingen bieden, kunt u eenvoudig de safety stock van uw bedrijf en de voorraadbehoeften op service level plannen voor duizenden met tussenpozen gevraagde artikelen met een nauwkeurigheid van bijna 100%.
De voordelen
Bedrijven die onze krachtige intermitterende demand en planning software gebruiken, verminderen doorgaans de permanente voorraad met 20% in het eerste jaar, verhogen de beschikbaarheid van onderdelen met 10-20% en verminderen de behoefte aan en de bijbehorende kosten van noodoverslag om gaten in hun supply chain te dichten. De voorraden van reparatie- en service parts zijn echt geoptimaliseerd, wat leidt tot efficiëntere operaties, verbeteringen in de klantenservice en aanzienlijk minder geld dat vastzit in de voorraad.
Wit papier: Smart Software Gen2
In deze whitepaper introduceren we ‘Gen2’, onze volgende generatie probabilistische modelleringstechnologie die het Smart IP&O Platform aandrijft. We vertellen over de evolutie van de voorspellingsmethoden van Smart Software en beschrijven hoe Gen2 de mogelijkheden die Gen1 zo nuttig hebben gemaakt voor zoveel bedrijven aanzienlijk uitbreidt. Ten slotte zullen we ook een overzicht op hoog niveau geven van de waarschijnlijkheidswiskunde achter Gen2. Vul dit formulier in en wij sturen u het document per e-mail.