Forecasting is een volledig ontwikkeld bedrijfsproces waar de meeste organisaties vandaag de dag nog mee worstelen. Bijna iedereen heeft waarschijnlijk de hoogste prioriteit om consistent en nauwkeurig verkoop, vraag, kosten, voorraad, enz. te kunnen voorspellen. Het onvermogen om een goede prognose te krijgen, heeft vaak een aanzienlijke impact op het bedrijf. Onnauwkeurige prognoses leiden tot overbevoorrading of opraken, wat resulteert in hoge kosten en overschotten, wat van invloed is op het bedrijfsresultaat en het succes van het bedrijf.
Een goede prognose zou u genoeg vertrouwen moeten geven om goede zakelijke beslissingen te nemen. Overweeg deze best practices voor een efficiëntere prognose:
- Wat zijn de meest gebruikelijke prognosemethoden en waarom leveren ze onnauwkeurige resultaten op?
- Hoe u een betere ROI en optimale processen kunt bereiken door schaalbaarheid, granulariteit en flexibiliteit
- Hoe de prognosenauwkeurigheid te verbeteren
- Hoe u eenvoudige tools voor machine learning en kunstmatige intelligentie kunt gebruiken om nauwkeurige en schaalbare prognoses te krijgen
Hoeveel tijd zou het kosten om statistische prognoses te berekenen?
Hoe lang moet het duren voordat een vraagprognose wordt berekend met behulp van statistische methoden? Deze vraag wordt vaak gesteld door klanten en prospects. Het antwoord hangt er echt van af. Voorspellingsresultaten voor een enkel item kunnen in een oogwenk worden berekend, in slechts enkele honderdsten van een seconde, maar soms kan het zelfs vijf seconden duren. Om de verschillen te begrijpen, is het belangrijk om te begrijpen dat er meer bij komt kijken dan alleen de rekenkundige berekeningen zelf door te spitten. Hier zijn zes factoren die de snelheid van uw prognose-engine beïnvloeden.
Hebben uw statistische prognoses last van het wiggle-effect?
Wat is het wiggle-effect? Het is wanneer uw statistische prognose de ups en downs die zijn waargenomen in uw vraaggeschiedenis onjuist voorspelt terwijl er echt geen patroon is. Het is belangrijk om ervoor te zorgen dat uw prognoses niet schommelen, tenzij er een echt patroon is. Hier is een transcriptie van een recente klant waar dit probleem werd besproken:
5 tips voor het maken van slimme prognoses
Veel bedrijven gebruiken de term 'slimme prognoses' of 'slimme prognoses' zonder duidelijke rechtvaardiging. Laten we een onderscheid maken tussen het merk Smart en slim zijn in de manier waarop u uw prognosewerk doet. Vraagvoorspelling is een cruciaal onderdeel van de vraagplanning en het S&OP-proces. Hier zijn 5 tips die u zullen helpen uw prognoses intelligent uit te voeren.
Supply Chain Math: neem geen mes mee naar een vuurgevecht
Wiskunde en de toeleveringsketen gaan hand in hand. Naarmate toeleveringsketens groeien, zal de toenemende complexiteit bedrijven ertoe aanzetten om manieren te zoeken om grootschalige besluitvorming te beheren. Wiskunde is een feit van het leven voor iedereen in voorraadbeheer en vraagvoorspelling die hoopt concurrerend te blijven in de moderne wereld. Lees ons artikel voor meer informatie.
Op scenario's gebaseerde prognoses versus vergelijkingen
Van oudsher heeft software gediend als een leveringsvehikel voor vergelijkingen. Dit is prima, voor zover het gaat. Maar wij bij Smart Software denken dat u er beter aan doet door uw vergelijkingen in te ruilen voor scenario's. Ontdek waarom op scenario's gebaseerde planning planners helpt om risico's beter te beheren en betere resultaten te behalen.
Top vijf tips voor nieuwe vraagplanners en -voorspellingen
Goede prognoses kunnen een groot verschil maken voor de prestaties van uw bedrijf, of u nu prognoses maakt ter ondersteuning van verkoop, marketing, productie, voorraad of financiën. Deze blog is in de eerste plaats bedoeld voor die gelukkige mensen die op het punt staan om aan dit avontuur te beginnen. Welkom op het veld!
Probleem
Het genereren van nauwkeurige statistische forecasts is geen gemakkelijke taak. Planners moeten historische gegevens voortdurend up-to-date houden, een database met forecasting modellen bouwen en beheren, weten welke forecasting methoden ze moeten gebruiken, forecasting overrides bijhouden en rapporteren over de nauwkeurigheid van forecasts. Deze stappen worden doorgaans beheerd in een omslachtige spreadsheet die vaak foutgevoelig, traag en moeilijk te delen is met de rest van het bedrijf. Forecasts zijn meestal gebaseerd op one-size-fits-all-methoden waarvoor seizoensinvloeden en trends handmatig moeten worden toegevoegd, wat resulteert in onnauwkeurige voorspellingen.
Oplossing
SmartForecasts® Cloud
Nauwkeurige demand forecasts
Beste forecasting methoden
Importeert historische data
Wat kunt u doen met SmartForecasts?
- Organiseer een Forecasting Tournament dat de juiste voorspellingsmethode voor elk item selecteert.
- Handmatige forecasts met behulp van verschillende time-series forecasting methoden en non-statistical methoden.
- Voorspel automatisch trends, seizoensinvloeden en cyclische patronen.
- Importeert demand data uit bestanden
- Maak gebruik van ERP-connectoren om automatisch demand data te importeren en forecasting resultaten te retourneren
Voor wie is SmartForecasts bedoeld?
• Demand Planners.
• Forecasting analisten.
• Materiaal- en voorraadplanners.
• Operationele onderzoeksprofessionals.
• Verkoopanalisten.
• Statistisch ingestelde leidinggevenden.
Een betrouwbaar en veilig platform