Forecasting is een volledig ontwikkeld bedrijfsproces waar de meeste organisaties vandaag de dag nog mee worstelen. Bijna iedereen heeft waarschijnlijk de hoogste prioriteit om consistent en nauwkeurig verkoop, vraag, kosten, voorraad, enz. te kunnen voorspellen. Het onvermogen om een goede prognose te krijgen, heeft vaak een aanzienlijke impact op het bedrijf. Onnauwkeurige prognoses leiden tot overbevoorrading of opraken, wat resulteert in hoge kosten en overschotten, wat van invloed is op het bedrijfsresultaat en het succes van het bedrijf.
Een goede prognose zou u genoeg vertrouwen moeten geven om goede zakelijke beslissingen te nemen. Overweeg deze best practices voor een efficiëntere prognose:
- Wat zijn de meest gebruikelijke prognosemethoden en waarom leveren ze onnauwkeurige resultaten op?
- Hoe u een betere ROI en optimale processen kunt bereiken door schaalbaarheid, granulariteit en flexibiliteit
- Hoe de prognosenauwkeurigheid te verbeteren
- Hoe u eenvoudige tools voor machine learning en kunstmatige intelligentie kunt gebruiken om nauwkeurige en schaalbare prognoses te krijgen
Voorlopende indicatoren kunnen een voorbode zijn van de vraag
De meeste statistische prognoses werken in één directe stroom van gegevens uit het verleden naar prognoses. Voorspellen met voorlopende indicatoren werkt op een andere manier. Een leidende indicator is een tweede variabele die van invloed kan zijn op degene die wordt voorspeld. Het toepassen van toetsbare menselijke kennis over de voorspellende kracht in de relatie tussen deze verschillende gegevenssets levert soms superieure nauwkeurigheid op.
Wat is "een goede voorspelling"
Door de voorraadniveaus te optimaliseren met behulp van de beste voorspellingen van de toekomstige vraag, kunnen enorme kostenbesparende efficiënties worden bereikt. Bekendheid met de basisprincipes van prognoses is een belangrijk onderdeel van effectief zijn met de softwaretools die zijn ontworpen om deze efficiëntie te benutten. Deze beknopte introductie (de eerste in een korte reeks blogposts) biedt de drukbezette professional een inleiding in de basisideeën die u nodig heeft bij het maken van prognoses. Hoe evalueert u uw prognose-inspanningen en hoe betrouwbaar zijn de resultaten?
Het gemiddelde is niet het antwoord
Fluctuaties in de toeleveringsketen van een voorraad zijn onvermijdelijk. Willekeur, die een bron van verwarring en frustratie kan zijn, garandeert dit. Een schip met goederen uit China kan vertraging oplopen door een storm op zee. Een plotselinge toename van de vraag op een dag kan de voorraad in één dag wegvagen, waardoor u niet meer aan de vraag van de volgende dag kunt voldoen. Willekeur zorgt voor fricties die het moeilijk maken om je werk te doen.
Prognoses met de juiste gegevens
Om de efficiëntievoordelen van prognoses te benutten, hebt u de meest nauwkeurige prognoses nodig: prognoses die zijn gebaseerd op de meest geschikte historische gegevens. De meeste discussies over dit probleem hebben de neiging zich te concentreren op de verdiensten van het gebruik van de geschiedenis van vraag versus verzending - en ik zal hier later op ingaan. Maar laten we het eerst hebben over het gebruik van netto versus bruto gegevens.
Probleem
Het genereren van nauwkeurige statistische forecasts is geen gemakkelijke taak. Planners moeten historische gegevens voortdurend up-to-date houden, een database met forecasting modellen bouwen en beheren, weten welke forecasting methoden ze moeten gebruiken, forecasting overrides bijhouden en rapporteren over de nauwkeurigheid van forecasts. Deze stappen worden doorgaans beheerd in een omslachtige spreadsheet die vaak foutgevoelig, traag en moeilijk te delen is met de rest van het bedrijf. Forecasts zijn meestal gebaseerd op one-size-fits-all-methoden waarvoor seizoensinvloeden en trends handmatig moeten worden toegevoegd, wat resulteert in onnauwkeurige voorspellingen.
Oplossing
SmartForecasts® Cloud
Nauwkeurige demand forecasts
Beste forecasting methoden
Importeert historische data
Wat kunt u doen met SmartForecasts?
- Organiseer een Forecasting Tournament dat de juiste voorspellingsmethode voor elk item selecteert.
- Handmatige forecasts met behulp van verschillende time-series forecasting methoden en non-statistical methoden.
- Voorspel automatisch trends, seizoensinvloeden en cyclische patronen.
- Importeert demand data uit bestanden
- Maak gebruik van ERP-connectoren om automatisch demand data te importeren en forecasting resultaten te retourneren
Voor wie is SmartForecasts bedoeld?
• Demand Planners.
• Forecasting analisten.
• Materiaal- en voorraadplanners.
• Operationele onderzoeksprofessionals.
• Verkoopanalisten.
• Statistisch ingestelde leidinggevenden.
Een betrouwbaar en veilig platform