Is uw demand planning en forecasting proces een black box?

Er is één ding waar ik bijna elke dag aan herinnerd wordt bij Smart Software dat me een raadsel stelt: de meeste bedrijven begrijpen niet hoe prognoses worden gemaakt en hoe voorraadbeleid wordt bepaald. Het is een organisatorische zwarte doos. Hier is een voorbeeld van een recent verkoopgesprek:

Hoe voorspel je?
Wij gebruiken geschiedenis.

Hoe gebruik je geschiedenis?
Wat bedoel je?

Welnu, u kunt een gemiddelde nemen van het afgelopen jaar, de afgelopen twee jaar, het gemiddelde nemen van de meest recente perioden, of een ander type formule gebruiken om de prognose te genereren.
Ik ben er vrij zeker van dat we een gemiddelde van de laatste 12 maanden gebruiken.

Waarom 12 maanden in plaats van een andere hoeveelheid geschiedenis?
12 maanden is een goede hoeveelheid tijd om te gebruiken omdat het niet vertekend wordt door oudere gegevens, maar het is recent genoeg

Hoe weet je dat het nauwkeuriger is dan 18 maanden of een andere lengte van de geschiedenis te gebruiken?
We weten het niet. Wel passen we de prognoses aan op basis van feedback van sales.  

Weet u of de aanpassingen de zaken nauwkeuriger of minder nauwkeurig maken dan wanneer u alleen het gemiddelde zou gebruiken?
We weten het niet, maar zijn ervan overtuigd dat de prognoses te hoog zijn

Wat doen de voorraadkopers dan als ze denken dat de cijfers te hoog zijn?
Ze hebben veel zakelijke kennis en passen hun aankopen hierop aan

Dus, is het eerlijk om te zeggen dat ze de voorspellingen in ieder geval een deel van de tijd zouden negeren?
Ja, soms.

Hoe beslissen de kopers wanneer ze meer bestellen? Heeft u een bestelpunt of veiligheidsvoorraad gespecificeerd in uw ERP-systeem die u helpt bij het nemen van deze beslissingen?
Ja, we gebruiken een veiligheidsvoorraadveld.

Hoe wordt de veiligheidsvoorraad berekend?
Kopers bepalen dit op basis van het belang van het artikel, doorlooptijden en andere overwegingen, zoals hoeveel klanten het artikel kopen, de snelheid van het artikel en de kosten. Afhankelijk hiervan zullen ze verschillende hoeveelheden veiligheidsvoorraad bij zich hebben.

De discussie ging door. De belangrijkste afhaalmogelijkheid hier is dat wanneer je net onder het oppervlak krabt, er veel meer vragen worden onthuld dan antwoorden. Dit betekent vaak dat het voorraadplanning- en vraagprognoseproces zeer subjectief is, van planner tot planner varieert, niet goed wordt begrepen door de rest van de organisatie en waarschijnlijk reactief is. Zoals Tom Willemain heeft beschreven, is het "chaos gemaskeerd door improvisatie". Het "as-is"-proces moet volledig worden geïdentificeerd en gedocumenteerd. Alleen dan kunnen hiaten worden blootgelegd en kunnen verbeteringen worden aangebracht.   Hier is een lijst met 10 vragen die u kunt stellen dat zal het werkelijke proces van prognoses, vraagplanning en voorraadplanning van uw organisatie onthullen.

 

 

 

 

 

Vijftien vragen die laten zien hoe prognoses in uw bedrijf worden berekend

In een recente LinkedIn na, heb ik vier vragen uitgewerkt die, wanneer ze worden beantwoord, zullen onthullen hoe de prognoses zijn gebruikt worden in uw bedrijf. In dit artikel hebben we vragen opgesomd die u kunt stellen om te onthullen hoe de prognoses zijn gemaakt.

1. Als we gebruikers vragen hoe ze prognoses maken, is hun antwoord vaak "we gebruiken geschiedenis". Dit is duidelijk niet genoeg informatie, aangezien er verschillende soorten vraaggeschiedenis zijn die verschillende prognosemethoden vereisen. Als u historische gegevens gebruikt, zorg er dan voor dat u erachter komt of u een middelingsmodel, een trendmodel, een seizoensmodel of iets anders gebruikt om te voorspellen.

2. Zodra u het gebruikte model kent, vraagt u naar de parameterwaarden van die modellen. De prognose-output van een "gemiddelde" zal verschillen, soms aanzienlijk, afhankelijk van het aantal perioden dat u middelt. Zoek dus uit of u een gemiddelde gebruikt van de afgelopen 3 maanden, 6 maanden, 12 maanden, enz.

3. Als u trending-modellen gebruikt, vraag dan hoe de modelgewichten zijn ingesteld. In een trendingmodel, zoals dubbele exponentiële afvlakking, zullen de prognoses bijvoorbeeld aanzienlijk verschillen, afhankelijk van hoe de berekeningen recente gegevens wegen in vergelijking met oudere gegevens (hogere gewichten leggen meer nadruk op de recente gegevens).

4. Als u seizoensmodellen gebruikt, zullen de prognoseresultaten worden beïnvloed door het gebruikte "niveau" en "trendgewicht". U moet ook bepalen of seizoensperioden worden voorspeld met multiplicatieve of additieve seizoensinvloeden. (Additieve seizoensinvloeden zeggen bijvoorbeeld: "Voeg 100 eenheden toe voor juli", terwijl multiplicatieve seizoensinvloeden zeggen "Vermenigvuldig met 1,25 voor juli".) Ten slotte gebruikt u dit soort methoden misschien helemaal niet. Sommige beoefenaars zullen een voorspellingsmethode gebruiken die simpelweg het gemiddelde neemt van voorgaande perioden (dat wil zeggen, komende juni zal worden voorspeld op basis van het gemiddelde van de voorgaande drie junis).

5. Hoe kiest u het ene model boven het andere? Hangt de keuze van de techniek af van het type vraaggegevens of wanneer er nieuwe vraaggegevens beschikbaar zijn? Is dit proces geautomatiseerd? Of als een planner subjectief een trendmodel kiest, wordt dat item dan voorspeld met dat model totdat de planner het weer verandert?

6. Zijn uw prognoses 'volledig automatisch', zodat trends en/of seizoensinvloeden automatisch worden gedetecteerd? Of zijn uw prognoses afhankelijk van artikelclassificaties die door gebruikers moeten worden bijgehouden? Dit laatste vereist meer tijd en aandacht van planners om te definiëren welk gedrag een trend, seizoensinvloeden, enz. is.

7. Welke regels voor artikelclassificatie worden gebruikt? Een artikel kan bijvoorbeeld worden beschouwd als een trending artikel als de vraag met meer dan 5% periode-over-periode toeneemt. Een artikel kan als seizoensgebonden worden beschouwd als 70% of meer van de jaarlijkse vraag in vier of minder perioden plaatsvindt. Dergelijke regels worden door de gebruiker gedefinieerd en vereisen vaak te brede aannames. Soms zijn ze geconfigureerd toen een systeem oorspronkelijk werd geïmplementeerd, maar nooit herzien, zelfs niet als de omstandigheden veranderen. Het is belangrijk om ervoor te zorgen dat eventuele classificatieregels worden begrepen en, indien nodig, worden bijgewerkt.

8. Wordt de prognose automatisch opnieuw gegenereerd wanneer er nieuwe gegevens beschikbaar zijn, of moet u de prognoses handmatig opnieuw genereren?

9. Controleert u of de prognose van de ene periode op de andere verandert voordat u beslist of u de nieuwe prognose wilt gebruiken? Of ga je standaard naar de nieuwe prognose?

10. Hoe worden prognose-overschrijvingen die in eerdere planningscycli zijn gemaakt, behandeld wanneer een nieuwe prognose wordt gemaakt? Worden ze hergebruikt of vervangen?

11. Hoe verwerkt u prognoses van uw verkoopteam of van uw klanten? Vervangen deze prognoses de basislijnprognose, of gebruikt u deze invoer om planner-overrides te maken voor de basislijnprognose?

12. Onder welke omstandigheden zou u de basisprognose negeren en precies gebruiken wat verkopen of klanten u vertellen?

13. Als u vertrouwt op klantprognoses, wat doet u dan met klanten die geen prognoses geven?

14. Hoe documenteert u de effectiviteit van uw prognosebenadering? De meeste bedrijven meten alleen de nauwkeurigheid van de definitieve prognose die naar het ERP-systeem wordt gestuurd, als ze al iets meten. Maar ze beoordelen geen alternatieve voorspellingen die mogelijk zijn gebruikt. Het is belangrijk om wat je doet te vergelijken met benchmarks. Presteren de methoden die u gebruikt bijvoorbeeld beter dan een naïeve voorspelling (dwz 'morgen is gelijk aan vandaag', waar u niet bij hoeft na te denken), of wat u vorig jaar zag, of het gemiddelde van de afgelopen 12 maanden. Door uw basisprognose te benchmarken, weet u zeker dat u zoveel mogelijk nauwkeurigheid uit de gegevens haalt.

15. Meet je of overrides van sales, klanten en planners de prognose beter of slechter maken? Dit is net zo belangrijk als meten of uw statistische benaderingen beter presteren dan de naïeve methode. Als u niet weet of overrides helpen of schaden, kan het bedrijf niet beter worden in prognoses. U moet weten welke stappen waarde toevoegen, zodat u er meer van kunt doen en nog beter kunt worden. Als u de nauwkeurigheid van de prognoses niet documenteert en geen analyse van de toegevoegde waarde van de prognose uitvoert, kunt u niet goed beoordelen of de geproduceerde prognoses de beste zijn die u kunt maken. U mist kansen om het proces te verbeteren, de nauwkeurigheid te vergroten en het bedrijf te leren welk type voorspellingsfout te verwachten is.

 

 

De top 3 redenen waarom uw spreadsheet niet werkt voor het optimaliseren van bestelpunten voor reserveonderdelen

We komen vaak op Excel gebaseerde methoden voor het plannen van bestelpunten tegen. In dit bericht hebben we een benadering beschreven die een klant gebruikte voordat hij verder ging met Smart. We beschrijven hoe hun spreadsheet werkte, de statistische benaderingen waarop het zich baseerde, de stappen die planners doorliepen bij elke planningscyclus en hun aangegeven motivaties om deze intern ontwikkelde spreadsheet te gebruiken (en echt leuk te vinden).

Hun maandelijkse proces bestond uit het bijwerken van een nieuwe maand met actuals naar het 'puntenoverzicht voor opnieuw bestellen'. Een ingebedde formule herberekende het Reorder Point (ROP) en order-up-to (Max) niveau. Het werkte als volgt:

  • ROP = LT Vraag + Veiligheidsvoorraad
  • LT-vraag = gemiddelde dagelijkse vraag x doorlooptijddagen (constant verondersteld om het simpel te houden)
  • Veiligheidsvoorraad voor onderdelen met een lange doorlooptijd = Standaardafwijking x 2,0
  • Veiligheidsvoorraad voor onderdelen met een korte doorlooptijd = Standaardafwijking x 1,2
  • Max = ROP + door de leverancier voorgeschreven minimale bestelhoeveelheid

Historische gemiddelden en standaarddeviaties gebruikten 52 weken voortschrijdende geschiedenis (dwz de nieuwste week verving de oudste week in elke periode). De standaarddeviatie van de vraag werd berekend met behulp van de functie "stdevp" in Excel.

Elke maand werd een nieuwe ROP opnieuw berekend. Zowel de gemiddelde vraag als de standaarddeviatie werden gewijzigd door de vraag van de nieuwe week, die op zijn beurt de ROP bijwerkte.

De standaard ROP is altijd gebaseerd op de bovenstaande logica. Planners zouden echter onder bepaalde voorwaarden wijzigingen aanbrengen:

1. Planners zouden de minimumprijs voor goedkope onderdelen verhogen om het risico op een on-time delivery hit (OTD) op een goedkoop onderdeel te verkleinen.

2. Het Excel-blad identificeerde elk onderdeel met een nieuw berekende ROP die ± 20% verschilde van de huidige ROP.

3. Planners beoordeelden onderdelen die de uitzonderingsdrempel overschreden, stelden wijzigingen voor en lieten een manager goedkeuren.

4. Planners beoordeelden items met OTD-hits en verhoogden de ROP op basis van hun intuïtie. Planners bleven die onderdelen gedurende verschillende perioden monitoren en verlaagden de ROP wanneer ze dachten dat het veilig was.

5. Nadat de ROP en de maximale hoeveelheid waren bepaald, werd het bestand met herziene resultaten naar IT gestuurd, die het in hun ERP uploadde.

6. Het ERP-systeem beheerde vervolgens de dagelijkse bevoorrading en het orderbeheer.

Objectief gezien was dit misschien een bovengemiddelde benadering van voorraadbeheer. Sommige bedrijven zijn zich bijvoorbeeld niet bewust van het verband tussen vraagvariabiliteit en veiligheidsvoorraadvereisten en vertrouwen uitsluitend op methodes of intuïtie. Er zijn echter problemen met hun aanpak:

1. Handmatige gegevensupdates
De spreadsheets moesten handmatig worden bijgewerkt. Om opnieuw te berekenen waren meerdere stappen nodig, elk met hun eigen afhankelijkheid. Eerst moest er een datadump worden uitgevoerd vanuit het ERP-systeem. Ten tweede zou een planner de spreadsheet moeten openen en bekijken om er zeker van te zijn dat de gegevens correct zijn geïmporteerd. Ten derde moesten ze de uitvoer beoordelen om er zeker van te zijn dat deze berekend was zoals verwacht. Ten vierde waren er handmatige stappen nodig om de resultaten terug te sturen naar het ERP-systeem.

2. Eén maat voor alle veiligheidsvoorraad
Of in dit geval "one of two sizes fit all". De keuze om 2x en 1,2x standaarddeviatie te gebruiken voor respectievelijk artikelen met een lange en korte doorlooptijd komt overeen met serviceniveaus van 97.7% en 88.4%. Dit is een groot probleem, aangezien het logisch is dat niet elk onderdeel in elke groep hetzelfde serviceniveau vereist. Sommige onderdelen hebben meer voorraadpijn dan andere en vice versa. Serviceniveaus moeten daarom dienovereenkomstig worden gespecificeerd en in overeenstemming zijn met het belang van het item. We ontdekten dat ze OTD-hits ondervonden op ongeveer 20% van hun kritieke reserveonderdelen, waardoor handmatige aanpassingen van de ROP nodig waren. De hoofdoorzaak was dat ze voor alle items met een korte doorlooptijd een serviceniveau van 88,4% hadden gepland. Dus het beste wat ze hadden kunnen krijgen, was om 12% van die tijd in voorraad te hebben, zelfs als ze 'volgens plan' waren. Het zou beter zijn geweest om serviceniveaudoelen te plannen op basis van het belang van het onderdeel.

3. Veiligheidsvoorraad is onnauwkeurig.  De artikelen die voor dit bedrijf worden gepland, zijn reserveonderdelen ter ondersteuning van diagnostische apparatuur. De vraag naar de meeste van deze onderdelen is zeer intermitterend en sporadisch. De keuze om een gemiddelde te gebruiken om de vraag naar doorlooptijd te berekenen, was dus niet onredelijk als je de noodzaak accepteert om variabiliteit in doorlooptijden te negeren. Echter, het beroep op a Normale verdeling het bepalen van de veiligheidsvoorraad was een grote fout die resulteerde in onnauwkeurige veiligheidsvoorraden. Het bedrijf verklaarde dat het serviceniveau voor artikelen met een lange doorlooptijd in het 90%-bereik lag in vergelijking met hun doel van 97,7%, en dat ze het verschil goedmaakten met spoed. De bereikte serviceniveaus voor items met een kortere doorlooptijd bedroegen ongeveer 80%, ondanks het feit dat er werd gestreefd naar 88,4%. Ze berekenden de veiligheidsvoorraad verkeerd omdat hun vraag niet "klokvormig" is, maar ze kozen de veiligheidsvoorraad in de veronderstelling dat dit wel het geval was. Deze vereenvoudiging resulteert in het missen van serviceniveaudoelen, waardoor de handmatige beoordeling van veel items wordt gedwongen die vervolgens handmatig "gedurende meerdere perioden" moeten worden gecontroleerd door een planner. Zou het niet beter zijn om ervoor te zorgen dat het bestelpunt vanaf het begin precies het gewenste serviceniveau had? Dit zou ervoor zorgen dat u uw serviceniveau bereikt en onnodige handmatige tussenkomst minimaliseert.

Er is een vierde probleem dat de lijst niet heeft gehaald, maar het vermelden waard is. De spreadsheet kon geen trend- of seizoenspatronen volgen. Historische gemiddelden negeren trend en seizoensgebondenheid, dus de cumulatieve vraag over de doorlooptijd die in de ROP wordt gebruikt, zal aanzienlijk minder nauwkeurig zijn voor trending of seizoensgebonden onderdelen. Het planningsteam erkende dit, maar vond het geen legitiem probleem, redenerend dat het grootste deel van de vraag onregelmatig was en niet seizoensgebonden. Het is belangrijk voor het model om trend en seizoensinvloeden op te pikken op intermitterende gegevens als die bestaan, maar we hebben niet gevonden dat hun gegevens deze patronen vertoonden. Dus we waren het erover eens dat dit geen probleem was voor hen. Maar naarmate het planningstempo toeneemt tot het punt dat de vraag in een emmer terechtkomt dagelijks, zelfs intermitterende vraag blijkt heel vaak seizoensgebonden te zijn per dag van de week en soms per week. Als je nu niet met een hogere frequentie rent, houd er dan rekening mee dat je misschien binnenkort gedwongen zult worden om de meer behendige concurrentie bij te houden. Op dat moment zal de verwerking op basis van spreadsheets het gewoon niet bij kunnen houden.

Tot slot: gebruik geen spreadsheets. Ze zijn niet bevorderlijk voor zinvolle wat-als-analyses, ze zijn te arbeidsintensief en de onderliggende logica moet worden afgezwakt om snel genoeg te kunnen worden verwerkt om bruikbaar te zijn. Kortom, ga voor doelgerichte oplossingen. En zorg ervoor dat ze in de cloud draaien.

 

Software voor planning van reserveonderdelen

De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

 

 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    Het plannen van reserveonderdelen is niet zo moeilijk als u denkt

    Bij het beheer van serviceonderdelen weet u niet wat er kapot gaat en wanneer, omdat defecten aan onderdelen willekeurig en plotseling zijn. Als gevolg hiervan zijn vraagpatronen meestal extreem intermitterend en missen ze een significante trend- of seizoensstructuur. Het aantal combinaties van onderdelen per locatie loopt vaak in de honderdduizenden, dus het is niet haalbaar om de vraag naar afzonderlijke onderdelen handmatig te beoordelen. Desalniettemin is het veel eenvoudiger om een planning- en prognosesysteem te implementeren ter ondersteuning van de planning van reserveonderdelen dan u misschien denkt.

    Deze conclusie is gebaseerd op honderden software-implementaties die we in de loop der jaren hebben geleid. Klanten die reserveonderdelen en serviceonderdelen beheren (de laatste voor intern verbruik/MRO), en in mindere mate aftermarket-onderdelen (voor doorverkoop aan geïnstalleerde bases), hebben onze software voor onderdelenplanning consequent sneller geïmplementeerd dan hun collega's in productie en distributie.

    De belangrijkste reden is de rol bij de productie en distributie van zakelijke kennis over wat er in de toekomst zou kunnen gebeuren. In een traditionele B2B-productie- en distributieomgeving zijn er klanten en verkoop- en marketingteams die aan die klanten verkopen. Er zijn verkoopdoelen, omzetverwachtingen en budgetten. Dit betekent dat er veel zakelijke kennis is over wat er zal worden gekocht, wat zal worden gepromoot, wiens meningen moeten worden verantwoord. Er is een complexe planningslus vereist. Bij het beheer van reserveonderdelen heb je daarentegen een onderhoudsteam dat apparatuur repareert wanneer deze kapot gaat. Hoewel er vaak onderhoudsschema's zijn als richtlijn, is wat er naast een standaardlijst met verbruiksartikelen nodig is, vaak onbekend totdat een onderhoudspersoon ter plaatse is. Met andere woorden, er is gewoon niet dezelfde soort zakelijke kennis beschikbaar voor onderdelenplanners bij het nemen van voorraadbeslissingen.

    Ja, dat is een nadeel, maar het heeft ook een voordeel: het is niet nodig om een periode-voor-periode consensusvraagprognose te maken met al het werk dat daarvoor nodig is. Bij het plannen van reserveonderdelen kunt u meestal veel stappen overslaan die nodig zijn voor een typische fabrikant, distributeur of detailhandelaar. Deze over te slaan stappen omvatten:  

    1. Prognoses maken op verschillende niveaus van het bedrijf, zoals productfamilie of regio.
    2. De vraagprognose delen met verkoop, marketing en klanten.
    3. Prognoseonderdrukkingen van verkoop, marketing en klanten beoordelen.
    4. Afspraken maken over een consensusprognose die statistieken en zakelijke kennis combineert.
    5. Het meten van "prognose toegevoegde waarde" om te bepalen of overschrijvingen de prognose nauwkeuriger maken.
    6. De vraagprognose aanpassen voor bekende toekomstige promoties.
    7. Rekening houden met kannibalisatie (dwz als ik meer van product A verkoop, verkoop ik minder van product B).

    Bevrijd van een consensusvormingsproces, kunnen planners van reserveonderdelen en voorraadbeheerders rechtstreeks op hun software vertrouwen om het gebruik en het vereiste voorraadbeleid te voorspellen. Als ze toegang hebben tot een in de praktijk bewezen oplossing die intermitterende vraag aanpakt, kunnen ze snel live gaan met nauwkeurigere vraagprognoses en schattingen van bestelpunten, veiligheidsvoorraden en bestelsuggesties. Hun aandacht kan worden gericht op het verkrijgen van nauwkeurige gebruiks- en doorlooptijdgegevens van leveranciers. Het "politieke" deel van de taak kan worden beperkt tot het verkrijgen van consensus binnen de organisatie over doelstellingen op het gebied van serviceniveaus en inventarisbudgetten.

    Software voor planning van reserveonderdelen

    De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

    Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

     

     

    Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

     

    Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

     

      Servicegestuurde planning voor bedrijven met serviceonderdelen

      Planning van serviceonderdelen op basis van serviceniveau is een proces in vier stappen dat verder gaat dan vereenvoudigde prognoses en vuistregels voor veiligheidsvoorraden. Het biedt planners van serviceonderdelen datagestuurde, op risico's afgestemde ondersteuning bij het nemen van beslissingen.

      Stap 1. Zorg ervoor dat alle belanghebbenden het eens zijn over de maatstaven die er toe doen. Alle deelnemers aan het planningsproces voor de inventarisatie van service-onderdelen moeten het eens zijn over de definities en welke statistieken het belangrijkst zijn voor de organisatie. Serviceniveaus beschrijf het percentage van de tijd dat u volledig aan het vereiste gebruik kunt voldoen zonder een voorraad op te lopen. Vul tarieven specificeer het percentage van het aangevraagde verbruik dat direct uit voorraad wordt gevuld. (Bekijk deze les van 4 minuten voor meer informatie over de verschillen tussen serviceniveaus en opvullingspercentage hier.) Beschikbaarheid geeft het percentage actieve reserveonderdelen weer met een voorhanden voorraad van ten minste één eenheid. Kosten vasthouden zijn de kosten op jaarbasis van het aanhouden van voorraden, rekening houdend met veroudering, belastingen, rente, opslag en andere uitgaven. Tekort kosten zijn de kosten van het opraken van de voorraad, inclusief uitvaltijd van voertuigen/apparatuur, spoed, verloren verkopen en meer. Bestellen kosten zijn de kosten die gepaard gaan met het plaatsen en ontvangen van aanvullingsorders.

      Stap 2. Benchmark historische en voorspelde huidige serviceniveauprestaties. Alle deelnemers aan het planningsproces voor de inventarisatie van service-onderdelen moeten een gemeenschappelijk inzicht hebben in de voorspelde toekomstige serviceniveaus, opvullingspercentages en kosten en de implicaties daarvan voor uw activiteiten met service-onderdelen. Het is van cruciaal belang om zowel historisch te meten Kritieke Prestatie Indicatoren (KPI's) en hun voorspellende equivalenten, Belangrijkste prestatievoorspellingen (KPP's). Door gebruik te maken van moderne software kunt u prestaties uit het verleden benchmarken en gebruikmaken van probabilistische prognosemethoden om toekomstige prestaties te simuleren. Door stress testen uw huidige voorraadbeleid tegen alle plausibele scenario's van toekomstige vraag, weet u van tevoren hoe het huidige en voorgestelde voorraadbeleid waarschijnlijk zal presteren.

      Stap 3. Spreek gerichte serviceniveaus af voor elk reserveonderdeel en onderneem proactieve corrigerende maatregelen wanneer wordt voorspeld dat doelen niet worden gehaald. Onderdelenplanners, leidinggevenden in de toeleveringsketen en de mechanische/onderhoudsteams moeten het eens worden over de gewenste serviceniveaudoelen met een volledig begrip van de wisselwerking tussen voorraadrisico en voorraadkosten. Door gebruik te maken van wat-als-scenario's in moderne software voor onderdelenplanning is het mogelijk om alternatief voorraadbeleid te vergelijken en het beleid te identificeren dat het beste aansluit bij de bedrijfsdoelstellingen. Spreek af welke mate van voorraadrisico acceptabel is voor elk onderdeel of elke klasse van onderdelen. Bepaal ook voorraadbudgetten en andere kostenbeperkingen. Zodra deze limieten zijn overeengekomen, moet u onmiddellijk actie ondernemen om stockouts en overtollige voorraad te voorkomen voordat ze zich voordoen. Gebruik uw software om gewijzigde bestelpunten, veiligheidsvoorraadniveaus en/of min/max-parameters automatisch te uploaden naar uw Enterprise Resource Planning (ERP)- of Enterprise Asset Management (EAM)-systeem om de dagelijkse inkoop van onderdelen aan te passen.

      Stap 4. Maak het zo en houd het zo. Geef het planningsteam de kennis en tools die het nodig heeft om ervoor te zorgen dat u een overeengekomen balans vindt tussen serviceniveaus en kosten door uw bestelproces aan te sturen met behulp van geoptimaliseerde inputs (prognoses, bestelpunten, bestelhoeveelheden, veiligheidsvoorraden). Houd uw KPI's bij en gebruik uw software om uitzonderingen te identificeren en aan te pakken. Laat herordeningspunten niet muf en achterhaald worden.  Opnieuw kalibreren het voorraadbeleid elke planningscyclus (minstens één keer per maand) met behulp van up-to-date gebruiksgeschiedenis, doorlooptijden van leveranciers en kosten. Onthoud: Herkalibratie van uw voorraadbeleid voor serviceonderdelen is preventief onderhoud tegen zowel stockouts als overtollige voorraad.