Los objetivos de suministro diarios no funcionan al calcular las existencias de seguridad

Los objetivos de suministro diarios no funcionan al calcular las existencias de seguridad

Los CFO nos dicen que necesitan gastar menos en inventario y sin que afecte a las ventas. Una forma de hacerlo es dejar de usar los objetivos diarios de suministro para determinar los puntos de pedido y las reservas de existencias de seguridad. Así es como funciona un modelo de suministro diario:

  1. Calcule el promedioa de la demanda diaria y multiplique la demanda diaria por el tiempo de entrega del proveedor por días para obtener la demanda de tiempo de entrega
  2. Elija un búfer de suministro por días (es decir, 15, 30, 45 días, etc.). Use búferes más grandes para elementos más importantes y búferes más pequeños para elementos menos importantes.
  3. Agregue los días de reserva deseados del suministro a la demanda durante el tiempo de entrega para obtener el punto de reorden. Pida más cuando el inventario disponible esté por debajo del punto de reorden.

Este enfoque es erroneo por las siguientes razones:

  1. El promedio no tiene en cuenta la estacionalidad ni la tendencia: no verá patrones obvios a menos que pase mucho tiempo ajustándolos manualmente.
  2. El promedio no tiene en cuenta cuán predecible es un artículo: tendrá un exceso de existencias de artículos predecibles y una escasez de artículos menos predecibles. Esto se debe a que los mismos días de suministro para diferentes artículos generan un riesgo de agotamiento de existencias muy diferente.
  3. El promedio no le dice a un planificador cómo el nivel de inventario afecta el riesgo de falta de existencias: no tendrá idea de si tiene existencias insuficientes, excesivas o si tiene suficiente.

Hay muchos otros enfoques de "regla general" que son igualmente problemáticos. Puedes aprender más sobre ellos en este blog

Una mejor manera de planificar la cantidad correcta del inventario de seguridad es aprovechar los modelos de probabilidad que identifican exactamente cuánto inventario se necesita contando el riesgo de desabastecimiento que está dispuesto a aceptar. A continuación se muestra una captura de pantalla de Smart Inventory Optimization que hace exactamente eso. En primer lugar, detalla los niveles de servicio previstos (probabilidad de no agotarse) asociados con la lógica de suministro de los días actuales. El planificador ahora puede ver las partes en las que el nivel de servicio previsto es demasiado bajo o demasiado costoso. Luego pueden hacer correcciones inmediatas enfocándose en los niveles de servicio deseados y el nivel de inversión en inventario. Sin esta información, un planificador no sabrá si los días previstos de existencias de seguridad son demasiado, demasiado poco o simplemente correctos, lo que resulta en excesos y escasez que cuestan participación de mercado e ingresos. 

Informática de existencias de seguridad 2

 

5 consejos para crear pronósticos inteligentes

En los más de cuarenta años que Smart sirve software de predicción, en este tiempo hemos conocido a muchas personas que se han convertido en pronosticadores de demanda. Este blog está dirigido principalmente a aquellas personas afortunadas que están a punto de comenzar esta aventura (aunque los profesionales experimentados pueden disfrutar de la actualización).

¡Bienvenido al sector! Una buena previsión puede marcar una gran diferencia en el rendimiento de su empresa, ya sea que esté pronosticando para respaldar las ventas, el marketing, la producción, el inventario o las finanzas.

Hay muchas matemáticas y estadísticas subyacentes a la demanda y a los métodos de pronóstico, por lo que su tarea sugiere que usted no es una de esas personas con fobia a las matemáticas que prefieren ser poetas. Afortunadamente, si te sientes un poco inestable y aún no te has curado de la clase de geometría de la escuela secundaria, tranquilidad, ya que gran parte de las matemáticas están integradas en el software de pronóstico, por lo que tu primer trabajo obtiener una visión general y dejar las matemáticas para más tarde. De hecho, aunque sean una perspectyiva más generica, aislemos algunas de las ideas que más aportarán al éxito.

 

  1. La previsión de la demanda es un deporte de equipo. Incluso en una empresa pequeña, el planificador de la demanda es parte de un equipo, con algunas personas que aportan los datos, otras que aportan la tecnología y otras que aportan el juicio comercial. En una empresa bien administrada, su trabajo nunca será simplemente ingresar algunos datos en un programa y enviar un informe de pronóstico. Muchas empresas han adoptado un proceso llamado Planificación de ventas y operaciones (S&OP, por sus siglas en inglés) en el que su pronóstico se utilizará para iniciar una reunión para tomar ciertas decisiones (por ejemplo, ¿debemos asumir que esta tendencia continuará? ¿Será peor pronosticar por debajo o ¿sobrepronóstico?) y combinar información adicional en el pronóstico final (p. ej., información del equipo de ventas, inteligencia empresarial sobre los movimientos de los competidores, promociones). La implicación para usted es que sus habilidades para escuchar y comunicarse serán importantes para su éxito.

 

  1. Los motores de pronóstico estadístico necesitan buen combustible. Los datos históricos son el combustible utilizado por los programas de previsión estadística, por lo que los datos incorrectos, faltantes o retrasados pueden degradar el producto final. Su trabajo incluirá implícitamente un aspecto de control de calidad, y debe estar atento a los datos que se le proporcionan. Es una buena idea que en el camino la gente de informática se haga tu amiga.

 

  1. Su nombre aparecerá en los pronósticos. Nos guste o no, si envío pronósticos a la cadena de mando, se etiquetan como "pronósticos de Tom". Debo estar preparado para poseer esos números. Para ganar mi asiento en la mesa, debo ser capaz de explicar en qué datos se basaron mis pronósticos, cómo se calcularon, por qué usé el Método A en lugar del Método B para hacer los cálculos y, especialmente, qué tan firmes o blandos son. Aquí la honestidad es importante. No se puede esperar razonablemente que ningún pronóstico sea perfectamente preciso, pero no se puede esperar que todos los gerentes sean perfectamente razonables. Si no tiene suerte, Dirección pensará que sus informes de incertidumbre del pronóstico sugieren ignorancia o incompetencia. Cuando en realidad, indican profesionalismo. No tengo consejos útiles sobre la mejor manera de administrar a tales gerentes, pero puedo advertirle sobre ellos. Depende de usted educar a aquellos que usan sus pronósticos. Los mejores gerentes lo apreciarán.

 

  1. Deje sus hojas de cálculo de lado. No es raro que alguien sea ascendido a pronosticador porque era excelente con Excel. A menos que esté en una empresa inusualmente pequeña, la escala de los pronósticos corporativos modernos supera lo que puede manejar con las hojas de cálculo. La creciente velocidad de los negocios agrava el problema: el ritmo somnoliento de las reuniones de planificación anuales y trimestrales está dando paso rápidamente a re-pronósticos semanales o incluso diarios a medida que cambian las condiciones. Por lo tanto, prepárese para apoyarse en un proveedor profesional de software de pronóstico estadístico y planificación de la demanda moderno y escalable basado en la nube para capacitación y soporte.

 

  1. Piensa visualmente. Será muy útil, tanto para decidir cómo generar pronósticos de demanda como para presentarlos a la Dirección, así que aproveche las capacidades de visualización integradas en el software de pronóstico. Como señalé anteriormente, en el mundo empresarial actual, los datos con los que trabaja pueden cambiar rápidamente, y lo que hizo el mes pasado puede no ser lo correcto para este mes. Literalmente, vigile sus datos haciendo gráficos simples, como "gráficos de tiempo" que muestran cosas como la tendencia o la estacionalidad o (especialmente) los cambios en la tendencia o la estacionalidad o las anomalías que deben tratarse. Del mismo modo, complementar las tablas de pronósticos con gráficos que comparen los pronósticos actuales con los pronósticos anteriores puede ser muy útil en un proceso de S&OP. Por ejemplo, los gráficos de tiempo que muestran valores pasados, valores pronosticados e "intervalos de pronóstico" que indican la incertidumbre objetiva en los pronósticos brindan una base sólida para que su equipo aprecie completamente el mensaje en sus pronósticos.

 

Con estas recomendaciones es suficiente por ahora. Como una persona que ha enseñado en universidades durante medio siglo, me inclino a comenzar con el lado estadístico de los pronósticos, pero lo dejaré para otro momento. Los cinco consejos anteriores deberían serle útiles a medida que se convierte en una parte clave de su equipo de planificación corporativa. ¡Bienvenido al juego!

 

 

 

Matemáticas en la cadena de suministro: no lleve un cuchillo a un tiroteo

Ya sea que usted mismo las entienda en detalle o confíe en un buen software, las matemáticas son un hecho de la vida para cualquier persona en la gestión del inventario y previsión de la demanda que pretende seguir siendo competitivo en el mundo moderno.

Recientemente, en una conferencia, el presentador principal de un taller de administración de inventario proclamó con orgullo que no necesitaba "matemáticas de alto nivel", lo que interpretó como algo más allá de las matemáticas de primaria.

Las matemáticas no son el primer amor de todos. Pero si realmente te preocupas por hacer bien tu trabajo, no puedes abordar el trabajo con una mentalidad de escuela primaria. Las tareas de la cadena de suministro, como la previsión de la demanda y la gestión del inventario, son inherentemente matemáticos. Un blog asociado con edX, un sitio reconocido de cursos universitarios en línea, tiene una excelente publicación sobre este tema, en https://www.mooc.org/blog/how-is-math-used-in-supply-chain. Permítanme citar la introducción de dicho curso:

Las matemáticas y la cadena de suministro van de la mano. A medida que crecen las cadenas de suministro, la creciente complejidad impulsará a las empresas a buscar formas de gestionar la toma de decisiones a gran escala. No pueden volver a cómo eran hace 100 años, o incluso hace dos años antes de la pandemia. En cambio, las nuevas tecnologías ayudarán a optimizar y administrar las muchas partes móviles. Las habilidades logísticas, las tecnologías de optimización y las habilidades organizativas utilizadas en la cadena de suministro requieren matemáticas.

Nuestros clientes no necesitan ser expertos en matemáticas de la cadena de suministro, solo necesitan poder manejar el software que contiene las matemáticas. El software combina la experiencia de los usuarios y la experiencia en la materia para producir resultados que marcan la diferencia entre el éxito y el fracaso. Para hacer su trabajo, el software no puede detenerse en matemáticas de sexto grado; necesita probabilidad, estadística y teoría de optimización.

Depende de nosotros, los proveedores de software, empaquetar las matemáticas de tal manera que lo que entra en los cálculos sea todo lo que sea relevante, incluso si es complicado; y que lo que sale sea claro, relevante para la toma de decisiones y defendible cuando deba justificar sus recomendaciones a la alta dirección.

Las matemáticas de sexto grado no pueden advertirle cuándo la forma en que propone administrar una pieza de repuesto crítica significará una probabilidad de 70% de no alcanzar su objetivo de disponibilidad. No puede decirle cuál es la mejor manera de ajustar sus puntos de pedido cuando un proveedor llama y dice: "Tenemos un problema de entrega". No puede salvar su pellejo cuando hay un pedido sorprendentemente grande y tiene que descubrir rápidamente la mejor manera de configurar algunos pedidos especiales acelerados sin romper el presupuesto operativo.

Por lo tanto, respete la sabiduría popular y no traiga un cuchillo a un tiroteo.

 

 

Planificación de piezas de servicio: gestión de las piezas consumibles frente a las piezas reparables

Al decidir los parámetros correctos de almacenamiento de repuestos y piezas de servicio, es importante distinguir entre piezas de servicio consumibles y reparables. Estas diferencias a menudo son pasadas por alto por el servicio software de planificación de piezas y puede resultar en errores estimaciones de los requisitos de almacenaje. Se requieren diferentes enfoques al planificar los consumibles frente a las piezas de repuesto reparables.

Primero, definamos estos dos tipos de repuestos.

  • Partes consumibles son repuestos contenidos dentro del equipo que se reemplazan en lugar de repararse cuando fallan. Los ejemplos de piezas consumibles incluyen baterías, filtros de aceite, tornillos, pastillas de freno, etc. Las piezas de repuesto consumibles tienden a ser piezas de menor costo para las cuales el reemplazo es más barato que la reparación o la reparación puede no ser posible.
  • Partes reparables son piezas que se pueden reparar y volver a poner en servicio después de fallar debido a causas como desgaste, daños o corrosión. Las piezas de servicio reparables tienden a ser más caras que las piezas consumibles, por lo que la reparación suele ser preferible al reemplazo. Los ejemplos de piezas reparables incluyen motores de tracción en vagones de ferrocarril, motores a reacción, fotocopiadoras, etc.

El software tradicional de planificación de piezas de repuesto no cumple con los requisitos

El software tradicional de planificación de piezas no está bien adaptado para lidiar con la aleatoriedad tanto en el lado de la demanda como en el lado de la oferta de las operaciones de MRO.

Aleatoriedad del lado de la demanda
La planificación de repuestos consumibles requiere el cálculo de parámetros de control de inventario (como puntos de pedido y cantidades de pedido, niveles mínimo y máximo y existencias de seguridad). La planificación para administrar las piezas de servicio reparables requiere el cálculo de la cantidad correcta de repuestos. En ambos casos, el análisis debe basarse en modelos de probabilidad del uso aleatorio de consumibles o la avería aleatoria de piezas reparables. Para más de 90% de estas partes, la demanda es “intermitente” (a veces llamado "érratica"). Los métodos tradicionales de previsión de repuestos no se desarrollaron para hacer frente a la demanda intermitente. Confiar en los métodos tradicionales conduce a costosos errores de planificación. Para los consumibles, esto significa desabastecimientos evitables, costos excesivos de mantenimiento y mayor obsolescencia del inventario. Para las piezas reparables, esto significa un tiempo de inactividad excesivo del equipo y los costos correspondientes por un rendimiento poco confiable y la interrupción de las operaciones.

Aleatoriedad del lado de la oferta
La planificación de piezas de repuesto consumibles debe tener en cuenta la aleatoriedad en el reabastecimiento de los plazos de entrega de los proveedores. La planificación de piezas reparables debe tener en cuenta la aleatoriedad en los procesos de reparación y devolución, ya sea que de los que se proporcionen internamente o se contraten. Los planificadores que gestionan estos artículos a menudo ignoran los datos de interés dentro de la empresa. En cambio, pueden cruzar los dedos y esperar que todo salga bien, o pueden invocar su instinto para "selecionar a ojo" y luego esperar que todo salga bien. Esperar y adivinar no puede vencer al modelo de probabilidad adecuado. Desperdicia millones anualmente en inversiones de capital innecesarias y tiempo de inactividad evitable del equipo.

Soluciones de software para la planificación de repuestos

El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

 

 

Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

 

Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

 

    Cuatro errores comunes al planificar los objetivos de reposición

    Ya sea que esté utilizando 'Mín./Máx.' o 'punto de pedido' y 'cantidad de pedido' para determinar cuándo y cuánto reabastecer, su enfoque puede generar o negar grandes eficiencias. Errores clave a evitar:

     

    1. No recalibrar regularmente
    2. Si se revisa solo el Min/Max, hay un problema
    3. El uso de métodos de pronóstico no está a la altura de la tarea
    4. Asumir que los datos son demasiado lentos o impredecibles

     

    Tenemos más de 150.000 combinaciones SKU x Ubicación. Nuestra demanda es intermitente. Dado que se mueve lentamente, no necesitamos volver a calcular nuestros puntos de pedido con frecuencia. Lo hacemos tal vez una vez al año, pero revisamos los puntos de pedido cada vez que hay un problema”. – Gerente de Materiales.

     

    Este enfoque reactivo conducirá a millones en exceso de existencias, roturas de existencias y mucho tiempo perdido revisando datos cuando "algo sale mal". Sin embargo, he escuchado este mismo estribillo a muchos profesionales de inventario a lo largo de los años. Claramente, necesitamos compartir porqué este pensamiento es totalmente erróneo.

    Es cierto que para muchas partes, un recálculo de los puntos de pedido con datos históricos actualizados y plazos de entrega podría no cambiar mucho, especialmente si hay patrones como la tendencia o la estacionalidad. Sin embargo, muchas partes se beneficiarán de un recálculo, especialmente si los plazos de entrega o la demanda reciente han cambiado. Además, la probabilidad de un cambio significativo que requiera un nuevo cálculo aumenta cuanto más espere. Finalmente, esos meses con nula demanda también influyen en las probabilidades y no deben ser ignorados. Sin embargo, el punto clave es que es imposible saber qué cambiará o no cambiará en su pronóstico, por lo que es mejor recalibrar regularmente.

     

      Calcular el software de objetivos de reabastecimiento de planificación

    Este caso de datos real ilustra un escenario donde brilla la recalibración regular y automatizada: los beneficios de las respuestas rápidas a patrones de demanda cambiantes y como estos se suman rápidamente. En el ejemplo anterior, el eje X representa los días y el eje Y representa la demanda. Si tuviera que esperar varios meses entre recalibrar sus puntos de pedido, sin duda haría el pedido demasiado pronto. Al recalibrar su punto de reorden con mucha más frecuencia, captará el cambio en la demanda y permitirá pedidos mucho más precisos.

     

    En lugar de esperar hasta que tenga un problema, vuelva a recalibrar todas las piezas en cada ciclo de planificación al menos una vez al mes. Al hacerlo, aprovecha los datos más recientes y ajusta proactivamente la política de almacenamiento, evitando así problemas que causarían revisiones manuales y escasez o exceso de inventario.

    La naturaleza de sus datos (potencialmente variados) también debe combinarse con las herramientas de pronóstico adecuadas. Si los registros de algunas partes muestran tendencias o patrones estacionales, el uso de métodos de pronóstico de objetivos para adaptarse a estos patrones puede marcar una gran diferencia. De manera similar, si los datos muestran valores cero frecuentes (demanda intermitente), los métodos de pronóstico que no se basan en este caso especial pueden arrojar fácilmente resultados poco confiables.

    Automatice, recalibre y revise las excepciones. El software especialmente diseñado lo hará automáticamente. Piénselo de otra manera: ¿es mejor depositar una gran cantidad de dinero en el inversiones una vez al año o en el "costo promedio en euros" depositando cantidades más pequeñas en que sector en el que decida invertir en fracciones mensuales? Recalibrar las políticas con regularidad generará rendimientos máximos con el tiempo, tal como lo hará el promedio del costo en euros para su cartera de inversiones.

    ¿Con qué frecuencia recalibra sus políticas de almacenamiento? ¿Por qué?