Cómo afrontar un pronóstico de demanda

Para algunos de nuestros clientes, el clima tiene una influencia significativa en la demanda. Los fenómenos meteorológicos extremos de corto plazo, como incendios, sequías, olas de calor, etc., pueden tener una influencia significativa en el corto plazo sobre la demanda.

Hay dos formas de incluir el clima en un pronóstico de demanda: indirecta y directamente. La ruta indirecta es más fácil utilizando el enfoque basado en escenarios de Planificador de la demanda. El enfoque directo requiere un proyecto especial personalizado que requiere datos adicionales y modelos hechos a mano.

Contabilidad indirecta del tiempo

El modelo estándar integrado Planificador de la demanda (SDP) se adapta a los efectos climáticos de cuatro maneras:

  1. Si el mundo se está calentando, enfriando, secando o humedeciendo constantemente de maneras que impactan sus ventas, SDP detecta estas tendencias automáticamente y las incorpora a los escenarios de demanda que genera.
  2. Si tu negocio tiene un ritmo regular en el que ciertos días de la semana o ciertos meses del año tienen consistentemente una demanda mayor o menor que el promedio, SDP también detecta automáticamente esta estacionalidad y la incorpora a sus escenarios de demanda.
  3. A menudo es la aleatoriedad del clima lo que interfiere con la precisión del pronóstico. A menudo nos referimos a este efecto como "ruido". El ruido es un término general que incorpora todo tipo de problemas aleatorios. Además del clima, un estallido geopolítico, la quiebra sorpresa de un banco regional o el atascamiento de un barco en el Canal de Suez pueden agregar sorpresas a la demanda de productos, y lo han hecho. SDP evalúa la volatilidad de la demanda y la reproduce en sus escenarios de demanda.
  4. Anulaciones de gestión. La mayoría de las veces, los clientes permiten que SDP genere automáticamente decenas de miles de escenarios de demanda. Pero si los usuarios sienten la necesidad de modificar pronósticos específicos utilizando su conocimiento interno, SDP puede hacerlo mediante anulaciones de la administración.

Contabilidad directa del clima

A veces, un usuario podrá articular su experiencia en la materia vinculando factores externos a su empresa (como tasas de interés, costos de materias primas o tendencias tecnológicas) con sus propias ventas agregadas. En estas situaciones, Smart Software puede organizar proyectos especiales únicos que proporcionen modelos alternativos ("causales") para complementar nuestros modelos de pronóstico estadístico estándar. Póngase en contacto con su representante de Smart Software para analizar un posible proyecto de modelado causal.

Mientras tanto, no olvides tu paraguas.

 

 

 

Una introducción suave a dos técnicas avanzadas: Bootstrapping estadístico y simulación de Monte Carlo

Resumen

El análisis avanzado de la cadena de suministro de Smart Software explota múltiples métodos avanzados. Dos de los más importantes son el “bootstrapping estadístico” y la “simulación Monte Carlo”. Dado que ambos involucran muchos números aleatorios que vuelan, la gente a veces se confunde acerca de cuál es cuál y para qué sirven. Por eso, esta nota. En pocas palabras: el arranque estadístico genera escenarios de demanda para la previsión. La simulación de Monte Carlo utiliza los escenarios para la optimización del inventario.

arranque

Bootstrapping, también llamado "remuestreo", es un método de estadísticas computacionales que utilizamos para crear escenarios de demanda para la previsión. La esencia del problema de pronóstico es exponer los posibles futuros que su empresa podría enfrentar para que pueda averiguar cómo administrar los riesgos comerciales. Los métodos de pronóstico tradicionales se enfocan en calcular los futuros "más probables", pero no llegan a presentar el panorama completo del riesgo. Bootstrapping proporciona un número ilimitado de escenarios hipotéticos realistas.

Bootstrapping hace esto sin hacer suposiciones poco realistas sobre la demanda, es decir, que no es intermitente o que tiene una distribución de tamaños en forma de campana. Esas suposiciones son muletas para simplificar las matemáticas, pero el arranque es un procedimiento, no una ecuación, por lo que no necesita tales simplificaciones.

Para el tipo de demanda más simple, que es una aleatoriedad estable sin estacionalidad ni tendencia, el arranque es muy fácil. Para tener una idea razonable de cuál podría ser el valor de una sola demanda futura, elija una de las demandas históricas al azar. Para crear un escenario de demanda, haga múltiples selecciones aleatorias del pasado y únalas. Hecho. Es posible agregar un poco más de realismo "variando" los valores de demanda, es decir, agregando o restando un poco de aleatoriedad adicional a cada uno, pero incluso eso es simple.

La figura 1 muestra un arranque simple. La primera línea es una secuencia corta de la demanda histórica de un SKU. Las siguientes líneas muestran escenarios de demanda futura creados al seleccionar aleatoriamente valores del historial de demanda. Por ejemplo, las siguientes tres demandas pueden ser (0, 14, 6), o (2, 3, 5), etc.

Bootstrapping Estadístico y Simulación Monte Carlo 1

Figura 1: Ejemplo de escenarios de demanda generados por un arranque simple

 

Las operaciones de mayor frecuencia, como los pronósticos diarios, traen consigo patrones de demanda más complejos, como la doble estacionalidad (p. ej., día de la semana y mes del año) y/o tendencia. Esto nos desafió a inventar una nueva generación de algoritmos de arranque. Recientemente obtuvimos una patente de EE. UU. para este avance, pero la esencia es la descrita anteriormente.

Simulación del Monte Carlo

Montecarlo es famoso por sus casinos que, al igual que el bootstrapping, invocan la idea de la aleatoriedad. Los métodos de Monte Carlo se remontan a mucho tiempo atrás, pero el ímpetu moderno vino con la necesidad de hacer algunos cálculos peludos sobre dónde volarían los neutrones cuando explota una bomba atómica.

La esencia del análisis de Monte Carlo es esta: “Nuestro problema es demasiado complicado para analizarlo con ecuaciones de papel y lápiz. Entonces, escribamos un programa de computadora que codifique los pasos individuales del proceso, coloque los elementos aleatorios (por ejemplo, en qué dirección se dispara un neutrón), déle cuerda y observe cómo funciona. Dado que hay mucha aleatoriedad, ejecutemos el programa un millón de veces y promediemos los resultados”.

Al aplicar este enfoque a la gestión de inventario, tenemos un conjunto diferente de eventos que ocurren aleatoriamente: por ejemplo, una demanda de un tamaño determinado llega un día aleatorio, un reabastecimiento de un tamaño determinado llega después de un tiempo de espera aleatorio, recortamos un PO de reabastecimiento de un tamaño determinado cuando las existencias caen hasta un punto de pedido determinado o por debajo de él. Codificamos la lógica que relaciona estos eventos en un programa. Lo alimentamos con una secuencia de demanda aleatoria (consulte el arranque anterior), ejecutamos el programa durante un tiempo, digamos un año de operaciones diarias, calculamos métricas de rendimiento como Tasa de llenado y Promedio de inventario disponible, y "tiramos los dados" volviendo a ejecutar el programa muchas veces y promediando los resultados de muchos años simulados. El resultado es una buena estimación de lo que sucede cuando tomamos decisiones gerenciales clave: “Si establecemos el punto de reorden en 10 unidades y la cantidad de la orden en 15 unidades, podemos esperar obtener un nivel de servicio de 89% y un promedio disponible de 21 unidades.” Lo que la simulación está haciendo por nosotros es exponer las consecuencias de las decisiones de gestión basadas en escenarios de demanda realistas y matemáticas sólidas. Las conjeturas se han ido.

La figura 2 muestra parte del funcionamiento interno de una simulación de Monte Carlo de un sistema de inventario en cuatro paneles. El sistema utiliza una política de control de inventario Min/Max con Min=10 y Max=25. No se permiten pedidos atrasados: tienes el bien o pierdes el negocio. Los plazos de entrega del reabastecimiento suelen ser de 7 días, pero a veces de 14. Esta simulación duró un año.

El primer panel muestra un escenario complejo de demanda aleatoria en el que no hay demanda los fines de semana, pero la demanda generalmente aumenta cada día de lunes a viernes. El segundo panel muestra el número aleatorio de unidades disponibles, que sube y baja con cada ciclo de reabastecimiento. El tercer panel muestra los tamaños aleatorios y los tiempos de los pedidos de reposición que llegan del proveedor. El panel final muestra la demanda insatisfecha que pone en peligro las relaciones con los clientes. Este tipo de detalle puede ser muy útil para comprender mejor la dinámica de un sistema de inventario.

Bootstrapping estadístico y simulación Monte Carlo 2

Figura 2: Detalles de una simulación de Monte Carlo

 

La Figura 2 muestra solo una de las innumerables formas en que podría desarrollarse el año. Generalmente, queremos promediar los resultados de muchos años simulados. Después de todo, nadie lanzaría una moneda al aire una vez para decidir si era una moneda justa. La Figura 3 muestra cómo cuatro métricas de rendimiento clave (KPI) varían de un año a otro para este sistema. Algunas métricas son relativamente estables en todas las simulaciones (tasa de llenado), pero otras muestran una variabilidad más relativa (costo operativo = costo de mantenimiento + costo de pedido + costo de escasez). Observando los gráficos, podemos estimar que las opciones de Min=10, Max=25 conducen a un costo operativo promedio de alrededor de $3,000 por año, una tasa de llenado de alrededor de 90%, un nivel de servicio de alrededor de 75% y un promedio de encendido. mano de unos 10

Bootstrapping estadístico y simulación Monte Carlo 3

Figura 3: Variación en los KPI calculados durante 1000 años simulados

 

De hecho, ahora es posible responder a una pregunta de gestión de mayor nivel. Podemos ir más allá de "¿Qué pasará si hago tal y tal cosa?" a “¿Cuál es el mejor ¿Qué puedo hacer para lograr una tasa de relleno de al menos 90% para este artículo al costo más bajo posible? El matemágica  detrás de este salto hay otra tecnología clave llamada "optimización estocástica", pero nos detendremos aquí por ahora. Baste decir que el software SIO&P de Smart puede buscar en el "espacio de diseño" de los valores mínimo y máximo para encontrar automáticamente la mejor opción.

 

¿Qué es “Un buen pronóstico”?

El Blog de Smart

Recomendaciones para la planificación de la demanda,

previsión y optimización de inventario

Se pueden obtener enormes eficiencias de ahorro de costos al optimizar los niveles de existencias de inventario utilizando las mejores predicciones de la demanda futura. La familiaridad con los conceptos básicos de pronóstico es una parte importante para ser efectivo con las herramientas de software diseñadas para explotar esta eficiencia. Esta introducción concisa (la primera de una breve serie de publicaciones de blog) ofrece al profesional ocupado una introducción a las ideas básicas que debe aplicar en la elaboración de pronósticos. ¿Cómo evalúa sus esfuerzos de pronóstico y qué tan confiables son los resultados?

Un buen pronóstico es "imparcial". Captura correctamente la estructura predecible en el historial de demanda, que incluye: tendencia (un aumento o disminución regular de la demanda); estacionalidad (variación cíclica); eventos especiales (por ejemplo, promociones de ventas) que podrían afectar la demanda o tener un efecto de canibalización en otros artículos; y otros eventos macroeconómicos.

Por “imparcial” queremos decir que el pronóstico estimado no se proyecta demasiado alto o demasiado bajo; es igualmente probable que la demanda real esté por encima o por debajo de la demanda prevista. Piense en el pronóstico como su mejor estimación de lo que podría suceder en el futuro. Si ese pronóstico es "imparcial", el panorama general mostrará que las medidas de la demanda futura real "encuadrarán" los pronósticos, distribuidos en equilibrio por encima y por debajo de las predicciones por las mismas probabilidades.

Puedes pensar en esto como si fueras un oficial de artillería y tu trabajo es destruir un objetivo con tu cañón. Apuntas tu cañón ("el pronóstico") y luego disparas y miras caer los proyectiles. Si apuntó el cañón correctamente (produciendo un pronóstico "imparcial"), esos proyectiles "encerrarán" el objetivo; algunos proyectiles caerán al frente y algunos proyectiles caerán detrás, pero algunos proyectiles darán en el blanco. Las conchas que caen pueden considerarse como la "demanda real" que ocurrirá en el futuro. Si pronosticó bien (apuntó bien su cañón), entonces esos datos reales colocarán entre paréntesis los pronósticos, cayendo igualmente por encima y por debajo del pronóstico.

Una vez que haya obtenido un pronóstico "imparcial" (en otras palabras, apuntó su cañón correctamente), la pregunta es: ¿qué tan preciso fue su pronóstico? Usando el ejemplo de la artillería, ¿qué tan amplio es el rango alrededor del objetivo en el que caen sus proyectiles? Desea tener un rango lo más estrecho posible. Un buen pronóstico será uno con la mínima “difusión” posible alrededor del objetivo.

Sin embargo, el hecho de que los valores reales estén cayendo ampliamente alrededor del pronóstico no significa que tenga un mal pronóstico. Simplemente puede indicar que tiene un historial de demanda muy "volátil". Nuevamente, usando el ejemplo de la artillería, si está comenzando a disparar en un huracán, debe esperar que los proyectiles caigan alrededor del objetivo con un amplio error.

Su objetivo es obtener un pronóstico lo más preciso posible con los datos que tiene. Si esos datos son muy volátiles (estás disparando en un huracán), entonces deberías esperar un gran error. Si sus datos son estables, debe esperar un pequeño error y sus valores reales se acercarán al pronóstico: ¡está disparando en un día despejado!

Para que pueda comprender tanto la utilidad de sus pronósticos como el grado de precaución apropiado al aplicarlos, debe poder revisar y medir qué tan bien está funcionando su pronóstico. ¿Qué tan bien está estimando lo que realmente ocurre? SmartForecasts hace esto automáticamente ejecutando su "simulación deslizante" a través del historial. Simula “pronósticos” que podrían haber ocurrido en el pasado. Una parte más antigua del historial, sin los números más recientes, se aísla y se utiliza para generar pronósticos. Debido a que estos pronósticos luego "predicen" lo que podría suceder en el pasado más reciente, un período para el cual ya tiene datos de demanda reales, los pronósticos se pueden comparar con el historial real reciente.

De esta manera, SmartForecasts puede calcular empíricamente el error de pronóstico real, y esos errores son necesarios para estimar adecuadamente el inventario de seguridad. El inventario de seguridad es la cantidad de inventario adicional que debe tener para compensar el error anticipado en sus pronósticos. En un ensayo posterior, discutiré cómo usamos nuestro error de pronóstico estimado (a través de la simulación deslizante de SmartForecasts) para estimar correctamente las existencias de seguridad.

Nelson Hartunian, PhD, cofundó Smart Software, anteriormente se desempeñó como presidente y actualmente lo supervisa como presidente de la junta. Ha dirigido, en varias ocasiones, el desarrollo de software, las ventas y el servicio al cliente.

Deja un comentario

Artículos Relacionados

Escenarios de demanda diaria

Escenarios de demanda diaria

En este Videoblog explicaremos cómo la previsión de series temporales se ha convertido en una herramienta fundamental, especialmente a nivel diario, en la que Smart Software ha sido pionero desde sus inicios hace más de cuarenta años. La evolución de las prácticas comerciales de incrementos temporales anuales a incrementos temporales más refinados, como el análisis de datos mensual y ahora diario, ilustra un cambio significativo en las estrategias operativas.

Aprender de los modelos de inventario

Aprender de los modelos de inventario

En este video blog, la atención se centra en un aspecto crítico de la gestión de inventario: el análisis y la interpretación de los datos del inventario. La atención se centra específicamente en un conjunto de datos de una agencia de transporte público que detalla piezas de repuesto para autobuses.

Los métodos de previsión

Los métodos de previsión

El software de planificación de la demanda y pronóstico estadístico desempeña un papel fundamental en la gestión empresarial eficaz al incorporar funciones que mejoran significativamente la precisión de los pronósticos. Un aspecto clave implica la utilización de modelos extrapolativos o basados en suavizado, que permiten a las empresas hacer predicciones rápidamente basadas únicamente en datos históricos. Esta base basada en el desempeño pasado es crucial para comprender tendencias y patrones, especialmente en variables como las ventas o la demanda de productos. El software de pronóstico va más allá del mero análisis de datos al permitir combinar el juicio profesional con pronósticos estadísticos, reconociendo que el pronóstico no es un proceso único para todos. Esta flexibilidad permite a las empresas incorporar conocimientos humanos y de la industria en el modelo de pronóstico, lo que garantiza una predicción más matizada y precisa.

Mensajes recientes

  • Superar la incertidumbre con tecnología de optimización de servicio e inventarioSuperar la incertidumbre con tecnología de optimización de servicio e inventario
    En este blog, analizaremos el mercado impredecible y de ritmo rápido de hoy y los constantes desafíos que enfrentan las empresas para administrar su inventario y niveles de servicio de manera eficiente. El tema principal de esta discusión, arraigado en el concepto de "Optimización probabilística del inventario", se centra en cómo se puede aprovechar la tecnología moderna para lograr objetivos óptimos de servicio e inventario en medio de la incertidumbre. Este enfoque no sólo aborda los problemas tradicionales de gestión de inventario, sino que también ofrece una ventaja estratégica para afrontar las complejidades de las fluctuaciones de la demanda y las interrupciones de la cadena de suministro. […]
  • Escenarios de demanda diaria Smart 2Escenarios de demanda diaria
    En este Videoblog explicaremos cómo la previsión de series temporales se ha convertido en una herramienta fundamental, especialmente a nivel diario, en la que Smart Software ha sido pionero desde sus inicios hace más de cuarenta años. La evolución de las prácticas comerciales de incrementos temporales anuales a incrementos temporales más refinados, como el análisis de datos mensual y ahora diario, ilustra un cambio significativo en las estrategias operativas. […]
  • El costo de no hacer nada con sus sistemas de planificación de inventarioEl costo de la planificación con hojas de cálculo
    Las empresas que dependen de hojas de cálculo para la planificación de la demanda, la previsión y la gestión de inventario a menudo se ven limitadas por las limitaciones inherentes de las hojas de cálculo. Esta publicación examina los inconvenientes de los enfoques tradicionales de gestión de inventario causados por las hojas de cálculo y sus costos asociados, comparándolos con los importantes beneficios que se obtienen al adoptar tecnologías de planificación de última generación. […]
  • Aprendiendo de la IA del software de modelos de inventarioAprender de los modelos de inventario
    En este video blog, la atención se centra en un aspecto crítico de la gestión de inventario: el análisis y la interpretación de los datos del inventario. La atención se centra específicamente en un conjunto de datos de una agencia de transporte público que detalla piezas de repuesto para autobuses. […]
  • Los métodos de software de pronóstico.Los métodos de previsión
    El software de planificación de la demanda y pronóstico estadístico desempeña un papel fundamental en la gestión empresarial eficaz al incorporar funciones que mejoran significativamente la precisión de los pronósticos. Un aspecto clave implica la utilización de modelos extrapolativos o basados en suavizado, que permiten a las empresas hacer predicciones rápidamente basadas únicamente en datos históricos. Esta base basada en el desempeño pasado es crucial para comprender tendencias y patrones, especialmente en variables como las ventas o la demanda de productos. El software de pronóstico va más allá del mero análisis de datos al permitir combinar el juicio profesional con pronósticos estadísticos, reconociendo que el pronóstico no es un proceso único para todos. Esta flexibilidad permite a las empresas incorporar conocimientos humanos y de la industria en el modelo de pronóstico, lo que garantiza una predicción más matizada y precisa. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Por qué las empresas de MRO necesitan software complementario de planificación e inventario de piezas de servicioPor qué las empresas de MRO necesitan software complementario de planificación e inventario de piezas de servicio
      Las organizaciones MRO existen en una amplia gama de industrias, incluido el transporte público, los servicios eléctricos, las aguas residuales, la energía hidroeléctrica, la aviación y la minería. Para realizar su trabajo, los profesionales de MRO utilizan sistemas de gestión de activos empresariales (EAM) y planificación de recursos empresariales (ERP). Estos sistemas están diseñados para realizar muchos trabajos. Dadas sus características, costo y amplios requisitos de implementación, se supone que los sistemas EAM y ERP pueden hacerlo todo. En esta publicación, resumimos la necesidad de un software complementario que aborde análisis especializados para la optimización del inventario, la previsión y la planificación de piezas de servicio. […]
    • Previsión-de-la-demanda-de-repuestos-una-perspectiva-diferente-para-la-planificación-de-repuestos-de-servicioEl pronóstico importa, pero tal vez no como usted piensa
      Verdadero o falso: El pronóstico no importa para la gestión del inventario de repuestos. A primera vista, esta afirmación parece evidentemente falsa. Después de todo, las previsiones son cruciales para planificar los niveles de existencias, ¿verdad? Depende de lo que entiendas por “previsión”. Si te refieres a un pronóstico de un solo número de la vieja escuela (“la demanda del artículo CX218b será de 3 unidades la próxima semana y de 6 unidades la semana siguiente”), entonces no. Si se amplía el significado de pronóstico para incluir una distribución de probabilidad que tenga en cuenta las incertidumbres tanto de la demanda como de la oferta, entonces sí. […]
    • Por qué las empresas de MRO deberían preocuparse por el exceso de inventarioPor qué las empresas de MRO deberían preocuparse por el exceso de inventario
      ¿Las empresas de MRO realmente priorizan la reducción del exceso de inventario de repuestos? Desde un punto de vista organizativo, nuestra experiencia sugiere que no necesariamente. Las discusiones en las salas de juntas generalmente giran en torno a la expansión de flotas, la adquisición de nuevos clientes, el cumplimiento de acuerdos de nivel de servicio (SLA), la modernización de la infraestructura y la maximización del tiempo de actividad. En industrias donde los activos respaldados por repuestos cuestan cientos de millones o generan ingresos significativos (por ejemplo, minería o petróleo y gas), el valor del inventario simplemente no sorprende y las organizaciones tienden a pasar por alto cantidades masivas de inventario excesivo. […]
    • Principales diferencias entre la planificación de inventario para productos terminados y para MRO y repuestosPrincipales diferencias entre la planificación de inventario para productos terminados y para MRO y repuestos
      En el competitivo panorama empresarial actual, las empresas buscan constantemente formas de mejorar su eficiencia operativa y generar mayores ingresos. La optimización de la gestión de repuestos es un aspecto que a menudo se pasa por alto y que puede tener un impacto financiero significativo. Las empresas pueden mejorar la eficiencia general y generar importantes rendimientos financieros mediante la gestión eficaz del inventario de piezas de repuesto. Este artículo explorará las implicaciones económicas de la gestión optimizada de repuestos y cómo invertir en software de optimización de inventario y planificación de la demanda puede proporcionar una ventaja competitiva. […]