Mejore la precisión del pronóstico mediante la gestión de errores

El Blog de Smart

 Recomendaciones para la planificación de la demanda,

previsión y optimización de inventario

Mejore la precisión de la prediccion, optimice el inventario y maximice los niveles de servicio

En este video, el Dr. Thomas Willemain, cofundador y vicepresidente sénior de investigación, habla sobre cómo mejorar la precisión de los pronósticos mediante la gestión de errores. Este video es el primero de nuestra serie sobre métodos efectivos para mejorar la precisión de los pronósticos. Comenzamos observando cómo el error de pronóstico causa dolor y el costo consecuente relacionado con él. A continuación te explicaremos los tres errores más comunes a evitar que nos pueden ayudar a aumentar los ingresos y evitar el exceso de inventario. Tom concluye revisando los métodos para mejorar la Precisión del Pronóstico, la importancia de medir el error de pronóstico y las oportunidades tecnológicas para mejorarlo.

 

El error de pronóstico puede tener consecuencias

Considere un elemento de muchos

  • Fabricar el producto X cuesta $100 y genera una ganancia neta de $50 por unidad.
  • Las ventas del Producto X resultarán ser de 1000/mes durante los próximos 12 meses.
  • Considere un elemento de muchos

¿Cuál es el costo del error de pronóstico?

  • Si el pronóstico es 10% alto, termine el año con $120,000 de exceso de inventario.
  • 100 extra/mes x 12 meses x $100/unidad
  • Si el pronóstico es 10% bajo, pierda $60,000 de ganancias.
  • 100 muy pocos/mes x 12 meses x $50/unidad

 

Tres errores a evitar

1. Ignorar el error.

  • Falta de profesionalidad, abandono del deber.
  • Desear no hará que sea así.
  • Trate la evaluación de precisión como ciencia de datos, no como un juego de culpas.

2. Tolerar más error del necesario.

  • Los métodos de pronóstico estadístico pueden mejorar la precisión a escala.
  • Mejorar las entradas de datos puede ayudar.
  • Recopilar y analizar las métricas de error de pronóstico puede identificar puntos débiles.

3. Perder tiempo y dinero yendo demasiado lejos tratando de eliminar el error.

  • Algunas combinaciones de producto/mercado son inherentemente más difíciles de pronosticar. Después de un punto, déjelos en paz (pero esté alerta a los nuevos métodos de pronóstico especializados).
  • A veces, los pasos destinados a reducir el error pueden resultar contraproducentes (por ejemplo, el ajuste).
Deja un comentario

MENSAJES RECIENTES

¿Sus pronósticos estadísticos sufren el efecto de oscilación?

¿Sus pronósticos estadísticos sufren el efecto de oscilación?

¿Qué es el efecto meneo? Es cuando su pronóstico estadístico predice incorrectamente los altibajos observados en su historial de demanda cuando realmente no hay un patrón. Es importante asegurarse de que sus pronósticos no cambien a menos que haya un patrón real. Aquí hay una transcripción de un cliente reciente donde se discutió este problema:

Cómo manejar pronósticos estadísticos de cero

Cómo manejar pronósticos estadísticos de cero

Un pronóstico estadístico de cero puede causar mucha confusión a los pronosticadores, especialmente cuando la demanda histórica no es cero. Claro, es obvio que la demanda tiene una tendencia a la baja, pero ¿debería tener una tendencia a cero?

Mensajes recientes

  • Empresario y empresaria leyendo y analizando hojas de cálculoLas 3 razones principales por las que su hoja de cálculo no funcionará para optimizar los puntos de pedido de piezas de repuesto
    A menudo nos encontramos con métodos de planificación de puntos de pedido basados en Excel. En esta publicación, detallamos un enfoque que utilizó un cliente antes de continuar con Smart. Describimos cómo funcionaba su hoja de cálculo, los enfoques estadísticos en los que se basaba, los pasos que los planificadores siguieron en cada ciclo de planificación y sus motivaciones declaradas para usar (y realmente gustarles) esta hoja de cálculo desarrollada internamente. […]
  • Grupo de negocios de estilo en trajes de negocios clásicos con binoculares y telescopios reproducen diferentes métodos de pronósticoCómo interpretar y manipular los resultados del pronóstico con diferentes métodos de pronóstico
    Este blog explica cómo funciona cada modelo de pronóstico utilizando gráficos de tiempo de datos históricos y de pronóstico. Describe cómo elegir qué modelo usar. Los ejemplos a continuación muestran el mismo historial, en rojo, pronosticado con cada método, en verde oscuro, en comparación con el método ganador elegido por Smart, en verde claro. […]
  • Ingeniero trabajador de fábrica que trabaja en la fábrica usando una tableta para verificar la tubería de agua de la caldera de mantenimiento en la fábrica.Por qué las curvas de compensación de piezas de repuesto son de misión crítica para la planificación de piezas
    Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]
  • Qué hacer cuando un pronóstico estadístico no tiene sentidoQué hacer cuando un pronóstico estadístico no tiene sentido
    A veces, un pronóstico estadístico simplemente no tiene sentido. Todos los pronosticadores han estado allí. Pueden volver a verificar que los datos se ingresaron correctamente o revisar la configuración del modelo, pero todavía se quedan pensando por qué el pronóstico se ve muy diferente al historial de demanda. Cuando el pronóstico ocasional no tiene sentido, puede erosionar la confianza en todo el proceso de pronóstico estadístico. […]
  • Retrato de una trabajadora de fábrica con casco azul sostiene una tableta y se para en el área de trabajo de repuestos. Concepto de confianza en trabajar con software de planificación de piezas de repuesto.La planificación de piezas de repuesto no es tan difícil como cree
    Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Empresario y empresaria leyendo y analizando hojas de cálculoLas 3 razones principales por las que su hoja de cálculo no funcionará para optimizar los puntos de pedido de piezas de repuesto
      A menudo nos encontramos con métodos de planificación de puntos de pedido basados en Excel. En esta publicación, detallamos un enfoque que utilizó un cliente antes de continuar con Smart. Describimos cómo funcionaba su hoja de cálculo, los enfoques estadísticos en los que se basaba, los pasos que los planificadores siguieron en cada ciclo de planificación y sus motivaciones declaradas para usar (y realmente gustarles) esta hoja de cálculo desarrollada internamente. […]
    • Ingeniero trabajador de fábrica que trabaja en la fábrica usando una tableta para verificar la tubería de agua de la caldera de mantenimiento en la fábrica.Por qué las curvas de compensación de piezas de repuesto son de misión crítica para la planificación de piezas
      Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]
    • Retrato de una trabajadora de fábrica con casco azul sostiene una tableta y se para en el área de trabajo de repuestos. Concepto de confianza en trabajar con software de planificación de piezas de repuesto.La planificación de piezas de repuesto no es tan difícil como cree
      Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]
    • Trabajador en un almacén de piezas de repuesto para automóviles que utiliza un software de planificación de inventarioPlanificación basada en el nivel de servicio para empresas de repuestos
      La planificación de piezas de servicio impulsada por el nivel de servicio es un proceso de cuatro pasos que se extiende más allá de la previsión simplificada y las existencias de seguridad de regla empírica. Proporciona a los planificadores de piezas de servicio un soporte de decisiones basado en datos y ajustado al riesgo. […]

      Cuatro formas útiles de medir el error de pronóstico

      El Blog de Smart

       Recomendaciones para la planificación de la demanda,

      previsión y optimización de inventario

      Mejore la precisión de la prediccion, optimice el inventario y maximice los niveles de servicio

      En este video, el Dr. Thomas Willemain, cofundador y vicepresidente senior de investigación, habla sobre cómo mejorar la precisión de los pronósticos midiendo el error de pronóstico. Comenzamos con una descripción general de los distintos tipos de métricas de error: error dependiente de escala, error porcentual, error relativo y métrica de error sin escala. Si bien algunos errores son inevitables, hay formas de reducirlos, y las métricas de pronóstico son ayudas necesarias para monitorear y mejorar la precisión del pronóstico. Luego explicaremos el problema especial de la demanda intermitente y los problemas de división por cero. Tom concluye explicando cómo evaluar los pronósticos de múltiples artículos y cómo a menudo tiene sentido usar promedios ponderados, ponderando los artículos de manera diferente por volumen o ingresos.

       

      Cuatro tipos generales de métricas de error 

      1. Error dependiente de la escala
      2. Error porcentual
      3. Error relativo
      4. Error sin escala

      Observación: Las métricas dependientes de la escala se expresan en las unidades de la variable pronosticada. Los otros tres se expresan como porcentajes.

       

      1. Métricas de error dependientes de la escala

      • Error absoluto medio (MAE), también conocido como desviación absoluta media (MAD)
      • Error absoluto medio (MdAE)
      • Error cuadrático medio (RMSE)
      • Estas métricas expresan el error en las unidades originales de los datos.
        • Ej: unidades, cajas, barriles, kilogramos, dólares, litros, etc.
      • Dado que los pronósticos pueden ser demasiado altos o demasiado bajos, los signos de los errores serán positivos o negativos, lo que permitirá cancelaciones no deseadas.
        • Ej: no desea que los errores de +50 y -50 se cancelen y muestren "sin error".
      • Para lidiar con el problema de la cancelación, estas métricas eliminan los signos negativos elevando al cuadrado o utilizando el valor absoluto.

       

      2. Métrica de porcentaje de error

      • Error porcentual absoluto medio (MAPE)
      • Esta métrica expresa el tamaño del error como porcentaje del valor real de la variable pronosticada.
      • La ventaja de este enfoque es que deja claro de inmediato si el error es importante o no.
      • Ej: Supongamos que el MAE es de 100 unidades. ¿Es horrible un error típico de 100 unidades? ¿OK? ¿estupendo?
      • La respuesta depende del tamaño de la variable que se pronostica. Si el valor real es 100, entonces un MAE = 100 es tan grande como lo que se pronostica. Pero si el valor real es 10,000, entonces un MAE = 100 muestra una gran precisión, ya que el MAPE es solo 1% del real.

       

      3. Métrica de error relativo

      • Error absoluto relativo mediano (MdRAE)
      • ¿Relativo a qué? A un pronóstico de referencia.
      • ¿Qué punto de referencia? Por lo general, el pronóstico "ingenuo".
      • ¿Cuál es el pronóstico ingenuo? Próximo valor de previsión = último valor real.
      • ¿Por qué utilizar el pronóstico ingenuo? Porque si no puedes vencer eso, estás en una forma difícil.

       

      4. Métrica de error sin escala

      • Error escalado relativo mediano (MdRSE)
      • Esta métrica expresa el error de pronóstico absoluto como un porcentaje del nivel natural de aleatoriedad (volatilidad) en los datos.
      • La volatilidad se mide por el tamaño promedio del cambio en la variable pronosticada de un período de tiempo al siguiente.
        • (Esto es lo mismo que el error cometido por el pronóstico ingenuo).
      • ¿En qué se diferencia esta métrica de la MdRAE anterior?
        • Ambos usan el pronóstico ingenuo, pero esta métrica usa errores al pronosticar el historial de demanda, mientras que MdRAE usa errores al pronosticar valores futuros.
        • Esto es importante porque normalmente hay muchos más valores históricos que pronósticos.
        • A su vez, eso es importante porque esta métrica "explotaría" si todos los datos fueran cero, lo que es menos probable cuando se usa el historial de demanda.

       

      Planificación de demanda intermitente y previsión de piezas

       

      El problema especial de la demanda intermitente

      • La demanda "intermitente" tiene muchas demandas cero mezcladas con demandas aleatorias distintas de cero.
      • MAPE se arruina cuando los errores se dividen por cero.
      • MdRAE también puede arruinarse.
      • Es menos probable que MdSAE se arruine.

       

      Resumen y comentarios

      • Las métricas de pronóstico son ayudas necesarias para monitorear y mejorar la precisión del pronóstico.
      • Hay dos clases principales de métricas: absolutas y relativas.
      • Las medidas absolutas (MAE, MdAE, RMSE) son opciones naturales al evaluar los pronósticos de un artículo.
      • Las medidas relativas (MAPE, MdRAE, MdSAE) son útiles al comparar la precisión entre elementos o entre pronósticos alternativos del mismo elemento o al evaluar la precisión en relación con la variabilidad natural de un elemento.
      • La demanda intermitente presenta problemas de división por cero que favorecen a MdSAE sobre MAPE.
      • Al evaluar los pronósticos de varios artículos, a menudo tiene sentido usar promedios ponderados, ponderando los artículos de manera diferente por volumen o ingresos.
      Deja un comentario

      MENSAJES RECIENTES

      ¿Sus pronósticos estadísticos sufren el efecto de oscilación?

      ¿Sus pronósticos estadísticos sufren el efecto de oscilación?

      ¿Qué es el efecto meneo? Es cuando su pronóstico estadístico predice incorrectamente los altibajos observados en su historial de demanda cuando realmente no hay un patrón. Es importante asegurarse de que sus pronósticos no cambien a menos que haya un patrón real. Aquí hay una transcripción de un cliente reciente donde se discutió este problema:

      Cómo manejar pronósticos estadísticos de cero

      Cómo manejar pronósticos estadísticos de cero

      Un pronóstico estadístico de cero puede causar mucha confusión a los pronosticadores, especialmente cuando la demanda histórica no es cero. Claro, es obvio que la demanda tiene una tendencia a la baja, pero ¿debería tener una tendencia a cero?

      Mensajes recientes

      • Empresario y empresaria leyendo y analizando hojas de cálculoLas 3 razones principales por las que su hoja de cálculo no funcionará para optimizar los puntos de pedido de piezas de repuesto
        A menudo nos encontramos con métodos de planificación de puntos de pedido basados en Excel. En esta publicación, detallamos un enfoque que utilizó un cliente antes de continuar con Smart. Describimos cómo funcionaba su hoja de cálculo, los enfoques estadísticos en los que se basaba, los pasos que los planificadores siguieron en cada ciclo de planificación y sus motivaciones declaradas para usar (y realmente gustarles) esta hoja de cálculo desarrollada internamente. […]
      • Grupo de negocios de estilo en trajes de negocios clásicos con binoculares y telescopios reproducen diferentes métodos de pronósticoCómo interpretar y manipular los resultados del pronóstico con diferentes métodos de pronóstico
        Este blog explica cómo funciona cada modelo de pronóstico utilizando gráficos de tiempo de datos históricos y de pronóstico. Describe cómo elegir qué modelo usar. Los ejemplos a continuación muestran el mismo historial, en rojo, pronosticado con cada método, en verde oscuro, en comparación con el método ganador elegido por Smart, en verde claro. […]
      • Ingeniero trabajador de fábrica que trabaja en la fábrica usando una tableta para verificar la tubería de agua de la caldera de mantenimiento en la fábrica.Por qué las curvas de compensación de piezas de repuesto son de misión crítica para la planificación de piezas
        Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]
      • Qué hacer cuando un pronóstico estadístico no tiene sentidoQué hacer cuando un pronóstico estadístico no tiene sentido
        A veces, un pronóstico estadístico simplemente no tiene sentido. Todos los pronosticadores han estado allí. Pueden volver a verificar que los datos se ingresaron correctamente o revisar la configuración del modelo, pero todavía se quedan pensando por qué el pronóstico se ve muy diferente al historial de demanda. Cuando el pronóstico ocasional no tiene sentido, puede erosionar la confianza en todo el proceso de pronóstico estadístico. […]
      • Retrato de una trabajadora de fábrica con casco azul sostiene una tableta y se para en el área de trabajo de repuestos. Concepto de confianza en trabajar con software de planificación de piezas de repuesto.La planificación de piezas de repuesto no es tan difícil como cree
        Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]

        Optimización de inventario para fabricantes, distribuidores y MRO

        • Empresario y empresaria leyendo y analizando hojas de cálculoLas 3 razones principales por las que su hoja de cálculo no funcionará para optimizar los puntos de pedido de piezas de repuesto
          A menudo nos encontramos con métodos de planificación de puntos de pedido basados en Excel. En esta publicación, detallamos un enfoque que utilizó un cliente antes de continuar con Smart. Describimos cómo funcionaba su hoja de cálculo, los enfoques estadísticos en los que se basaba, los pasos que los planificadores siguieron en cada ciclo de planificación y sus motivaciones declaradas para usar (y realmente gustarles) esta hoja de cálculo desarrollada internamente. […]
        • Ingeniero trabajador de fábrica que trabaja en la fábrica usando una tableta para verificar la tubería de agua de la caldera de mantenimiento en la fábrica.Por qué las curvas de compensación de piezas de repuesto son de misión crítica para la planificación de piezas
          Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]
        • Retrato de una trabajadora de fábrica con casco azul sostiene una tableta y se para en el área de trabajo de repuestos. Concepto de confianza en trabajar con software de planificación de piezas de repuesto.La planificación de piezas de repuesto no es tan difícil como cree
          Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]
        • Trabajador en un almacén de piezas de repuesto para automóviles que utiliza un software de planificación de inventarioPlanificación basada en el nivel de servicio para empresas de repuestos
          La planificación de piezas de servicio impulsada por el nivel de servicio es un proceso de cuatro pasos que se extiende más allá de la previsión simplificada y las existencias de seguridad de regla empírica. Proporciona a los planificadores de piezas de servicio un soporte de decisiones basado en datos y ajustado al riesgo. […]