7 belangrijke trends in vraagplanning die de toekomst vormgeven

Vraagplanning gaat verder dan alleen het voorspellen van productbehoeften; het gaat erom ervoor te zorgen dat uw bedrijf nauwkeurig, efficiënt en kosteneffectief aan de vraag van klanten voldoet. De nieuwste technologie voor vraagplanning pakt belangrijke uitdagingen aan, zoals nauwkeurigheid van voorspellingen, voorraadbeheer en marktresponsiviteit. In deze blog introduceren we kritieke trends voor vraagplanning, waaronder datagestuurde inzichten, probabilistische voorspellingen, consensusplanning, voorspellende analyses, scenariomodellering, realtime zichtbaarheid en multilevel voorspellingen. Deze trends helpen u om voorop te blijven lopen, uw toeleveringsketen te optimaliseren, kosten te verlagen en de klanttevredenheid te verbeteren, waardoor uw bedrijf op de lange termijn succesvol wordt.

Datagestuurde inzichten

Geavanceerde analyses, machine learning en kunstmatige intelligentie (AI) worden integraal onderdeel van vraagplanning. Technologieën zoals Smart UP&O stellen bedrijven in staat om complexe datasets te analyseren, patronen te identificeren en nauwkeurigere voorspellingen te doen. Deze verschuiving naar datagestuurde inzichten helpt bedrijven om snel te reageren op marktveranderingen, voorraadtekorten te minimaliseren en overtollige voorraad te verminderen.

Probabilistic Forecasting

Probabilistische voorspellingen richten zich op het voorspellen van een reeks mogelijke uitkomsten in plaats van één enkel getal. Deze trend is met name belangrijk voor het beheren van onzekerheid en risico bij vraagplanning. Het helpt bedrijven zich voor te bereiden op verschillende vraagscenario's, het verbeteren van voorraadbeheer en het verminderen van de kans op voorraadtekorten of overvoorraad.

Consensusvoorspelling

Moderne productie beweegt richting een geïntegreerde aanpak waarbij afdelingen en belanghebbenden nauwer samenwerken. Samenwerkende prognoses omvatten het delen van inzichten in de hele toeleveringsketen, van leveranciers tot distributeurs en interne teams. Deze aanpak doorbreekt silo's en zorgt ervoor dat iedereen naar een gemeenschappelijk doel toewerkt, wat leidt tot een meer gesynchroniseerde en efficiënte toeleveringsketen.

Voorspellende en prescriptieve analyses

Predictive analytics voorspelt toekomstige uitkomsten op basis van historische data en trends, waardoor bedrijven vraagschommelingen kunnen anticiperen. Smart Demand Planner (SDP) automatiseert bijvoorbeeld prognoses om voorraad- en productieniveaus dienovereenkomstig aan te passen.

Prescriptieve analyses gaan verder door bruikbare aanbevelingen te bieden. Smart Inventory Planning and Optimization (IP&O) schrijft bijvoorbeeld optimale voorraadbeleidsregels voor op basis van serviceniveaus, kosten en risico's. Samen maken deze tools proactieve besluitvorming mogelijk, waardoor bedrijven hun reacties op toekomstige uitdagingen kunnen voorspellen en optimaliseren.

Scenariomodellering

Scenariomodellering wordt een belangrijk onderdeel van vraagplanning, waardoor bedrijven verschillende scenario's kunnen simuleren en hun impact op de bedrijfsvoering kunnen beoordelen. Deze methode helpt bedrijven aanpasbare strategieën te creëren om onzekerheden effectief aan te pakken. Smart IP&O verbetert deze mogelijkheid door Wat als scenario's waarmee gebruikers verschillende voorraadbeleidsregels kunnen testen voordat ze worden geïmplementeerd. Door variabelen zoals serviceniveaus of bestelhoeveelheden aan te passen, kunnen bedrijven de effecten op kosten en serviceniveaus visualiseren, waardoor ze de optimale strategie kunnen selecteren om risico's te minimaliseren en kosten te beheersen.

Realtime zichtbaarheid

Naarmate toeleveringsketens globaler en onderling verbonden worden, is realtime inzicht in inventaris en toeleveringsketenactiviteiten cruciaal. Verbeterde samenwerking met leveranciers en distributeurs, gecombineerd met realtimegegevens, stelt bedrijven in staat om snellere, beter geïnformeerde beslissingen te nemen. Dit helpt voorraadniveaus te optimaliseren, doorlooptijden te verkorten en de algehele veerkracht van de toeleveringsketen te verbeteren.

Meervoudige prognose

Dit omvat prognoses op verschillende niveaus van de producthiërarchie, zoals individuele items, productfamilies of zelfs hele productlijnen. Multilevel-prognoses zijn essentieel voor bedrijven met complexe productportfolio's, omdat ze ervoor zorgen dat prognoses nauwkeurig zijn op zowel micro- als macroniveau.

 

Vraagplanning is een doorslaggevend aspect van modern supply chain management, dat bedrijven de mogelijkheid biedt om de operationele efficiëntie te verbeteren, kosten te verlagen en beter te voldoen aan de vraag van klanten. Door geavanceerde platforms zoals Smart IP&O te benutten, worden de nauwkeurigheid van voorspellingen en het voorraadbeheer aanzienlijk verbeterd, waardoor snelle reacties op marktschommelingen mogelijk zijn. Geautomatiseerde statistische voorspellingen, gecombineerd met mogelijkheden zoals hiërarchievoorspellingen en voorspellingsoverschrijdingen, zorgen ervoor dat voorspellingen nauwkeurig en aanpasbaar zijn, wat leidt tot realistischere planningsbeslissingen. Bovendien kunnen bedrijven met hulpmiddelen zoals scenariomodellering verschillende vraagscenario's in hun producthiërarchie verkennen, wat geïnformeerde besluitvorming mogelijk maakt door inzicht te bieden in mogelijke uitkomsten en risico's. Deze aanpak stelt bedrijven in staat om de impact van beleidswijzigingen te anticiperen, betere beslissingen te nemen en uiteindelijk hun voorraad en algehele supply chain management te optimaliseren, waarbij ze op de hoogte blijven van belangrijke trends in het proces.

 

 

 

Beheersing van automatische prognoses voor tijdreeksgegevens

In deze blog analyseren we de automatische prognoses voor vraagprojecties in tijdreeksen, waarbij we ons concentreren op de belangrijkste technieken, uitdagingen en best practices. Er zijn meerdere methoden om de toekomstige vraag naar een artikel te voorspellen, en dit wordt complex als het om duizenden artikelen gaat, die elk een andere voorspellingstechniek vereisen vanwege hun unieke vraagpatronen. Sommige artikelen hebben een stabiele vraag, andere vertonen een stijgende of dalende trend en sommige vertonen seizoensinvloeden. Het selecteren van de juiste methode voor elk item kan overweldigend zijn. Hier onderzoeken we hoe automatische prognoses dit proces vereenvoudigen.

Automatische prognoses worden van fundamenteel belang bij het beheren van grootschalige vraagprojecties. Met duizenden items is het handmatig selecteren van een prognosemethode voor elk item onpraktisch. Automatische prognoses maken gebruik van software om deze beslissingen te nemen, waardoor nauwkeurigheid en efficiëntie in het prognoseproces worden gegarandeerd. Het belang ervan ligt in het vermogen om complexe, grootschalige prognosebehoeften efficiënt af te handelen. Het elimineert de noodzaak van handmatige selectie, waardoor tijd wordt bespaard en fouten worden verminderd. Deze aanpak is vooral nuttig in omgevingen met uiteenlopende vraagpatronen, waarbij voor elk artikel mogelijk een andere prognosemethode nodig is.

 

Belangrijke overwegingen voor effectieve prognoses

  1. Uitdagingen van handmatige prognoses:
    • Onhaalbaarheid: het handmatig kiezen van prognosemethoden voor duizenden items is onbeheersbaar.
    • Inconsistentie: Menselijke fouten kunnen leiden tot inconsistente en onnauwkeurige voorspellingen.
  2. Criteria voor methodeselectie:
    • Foutmeting: Het primaire criterium voor het selecteren van een voorspellingsmethode is de typische voorspellingsfout, gedefinieerd als het verschil tussen voorspelde en werkelijke waarden. Deze fout wordt gemiddeld over de prognosehorizon (bijvoorbeeld maandelijkse prognoses over een jaar).
    • Holdout-analyse: deze techniek simuleert het proces van wachten tot een jaar is verstreken door enkele historische gegevens te verbergen, voorspellingen te doen en vervolgens de verborgen gegevens te onthullen om fouten te berekenen. Dit helpt bij het kiezen van de beste methode in realtime.
  3. Prognose toernooi:
    • Methodevergelijking: Verschillende methoden concurreren om elk item te voorspellen, waarbij de methode de laagste gemiddelde fout oplevert.
    • Parameterafstemming: Elke methode wordt getest met verschillende parameters om de optimale instellingen te vinden. Eenvoudige exponentiële afvlakking kan bijvoorbeeld worden geprobeerd met verschillende wegingsfactoren.

 

De algoritmen achter effectieve automatische prognoses

Automatische prognoses zijn zeer rekenkundig, maar haalbaar met moderne technologie. Het proces omvat:

  • Gegevenssegmentatie: Door historische gegevens in segmenten te verdelen, kunt u verschillende aspecten van historische gegevens beheren en benutten voor nauwkeurigere prognoses. Voor een product met een seizoensgebonden vraag kunnen de gegevens bijvoorbeeld worden gesegmenteerd op basis van seizoenen om seizoensspecifieke trends en patronen vast te leggen. Door deze segmentatie kunnen voorspellers effectiever voorspellingen maken en testen.
  • Herhaalde simulaties: Het gebruik van glijdende simulaties houdt in dat voorspellingen over verschillende perioden herhaaldelijk worden getest en verfijnd. Deze methode valideert de nauwkeurigheid van voorspellingsmethoden door ze toe te passen op verschillende gegevenssegmenten. Een voorbeeld is de glijdende-venstermethode, waarbij een venster met een vaste grootte door de tijdreeksgegevens beweegt en voor elke positie voorspellingen wordt gegenereerd om de prestaties te evalueren.
  • Parameteroptimalisatie: Parameteroptimalisatie omvat het uitproberen van meerdere varianten van elke prognosemethode om de best presterende te vinden. Door parameters aan te passen, zoals de afvlakkingsfactor bij exponentiële afvlakkingsmethoden of het aantal eerdere waarnemingen in ARIMA-modellen, kunnen voorspellers modellen verfijnen om de prestaties te verbeteren.

In onze software laten we bijvoorbeeld verschillende prognosemethoden met elkaar concurreren om de beste prestaties op een bepaald item. Kennis van automatische prognoses wordt onmiddellijk overgedragen op Simple Moving Average, lineair voortschrijdend gemiddelde, Single Exponential Smoothing, Double Exponential Smoothing, Winters' Exponential Smoothing en Promo-voorspellingen. Deze competitie zorgt ervoor dat de meest geschikte methode wordt geselecteerd op basis van empirisch bewijs, en niet op basis van subjectief oordeel. De winnaar van het toernooi komt het dichtst in de buurt van het voorspellen van nieuwe gegevenswaarden uit oude gegevens. De nauwkeurigheid wordt gemeten aan de hand van de gemiddelde absolute fout (dat wil zeggen de gemiddelde fout, waarbij eventuele mintekens worden genegeerd). Het gemiddelde wordt berekend over een reeks voorspellingen, waarbij elk een deel van de gegevens gebruikt, in een proces dat bekend staat als glijdende simulatie. eerder uitgelegd in een eerdere blog.

 

Methoden die worden gebruikt bij automatische prognoses

Normaal gesproken zijn er zes extrapolatieve voorspellingsmethoden die meedoen aan het automatische voorspellingstoernooi:

  • Eenvoudig voortschrijdend gemiddelde
  • Lineair voortschrijdend gemiddelde
  • Enkele exponentiële afvlakking
  • Dubbele exponentiële afvlakking
  • Additieve versie van Winters' exponentiële afvlakking
  • Multiplicatieve versie van Winters' exponentiële afvlakking

De laatste twee methoden zijn geschikt voor seizoensreeksen; ze worden echter automatisch uitgesloten van het toernooi als er minder dan twee volledige seizoenscycli met gegevens zijn (bijvoorbeeld minder dan 24 perioden met maandelijkse gegevens of acht perioden met driemaandelijkse gegevens). Deze zes klassieke, op afvlakking gebaseerde methoden hebben bewezen gemakkelijk te begrijpen, eenvoudig te berekenen en nauwkeurig te zijn. Je kunt elk van deze methoden uitsluiten van het toernooi als je een voorkeur hebt voor sommige deelnemers en niet voor andere.

Automatische prognoses voor tijdreeksgegevens zijn essentieel voor het efficiënt en nauwkeurig beheren van grootschalige vraagprojecties. Bedrijven kunnen een betere voorspellingsnauwkeurigheid bereiken en hun planningsprocessen stroomlijnen door de selectie van voorspellingsmethoden te automatiseren en technieken zoals holdout-analyse en voorspellingstoernooien te gebruiken. Het omarmen van deze geavanceerde voorspellingstechnieken zorgt ervoor dat bedrijven voorop blijven lopen in dynamische marktomgevingen en weloverwogen beslissingen nemen op basis van betrouwbare gegevensprojecties.

 

 

 

De kosten van spreadsheetplanning

Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën.

Spreadsheets zijn weliswaar flexibel vanwege hun oneindige aanpasbaarheid, maar zijn in wezen handmatig van aard en vereisen aanzienlijk gegevensbeheer, menselijke inbreng en toezicht. Dit vergroot het risico op fouten, van eenvoudige fouten bij het invoeren van gegevens tot complexe formulefouten, die trapsgewijze effecten veroorzaken die de voorspellingen negatief beïnvloeden. Bovendien zijn spreadsheetgebaseerde processen, ondanks de vooruitgang op het gebied van samenwerkingsfuncties die meerdere gebruikers in staat stellen om met een gemeenschappelijk blad te communiceren, vaak in silo's ondergebracht. De houder van het spreadsheet houdt de gegevens vast. Wanneer dit gebeurt, ontstaan er veel bronnen van datawaarheid. Zonder het vertrouwen van een overeengekomen, zuivere en automatisch bijgewerkte gegevensbron beschikken organisaties niet over de noodzakelijke basis waarop voorspellende modellen, prognoses en analyses kunnen worden gebouwd.

Geavanceerde planningssystemen zoals Smart IP&O zijn daarentegen ontworpen om deze beperkingen te overwinnen. Dergelijke systemen zijn gebouwd om automatisch gegevens op te nemen via API of bestanden van ERP- en EAM-systemen, die gegevens te transformeren met behulp van ingebouwde ETL-tools en grote hoeveelheden gegevens efficiënt te verwerken. Hierdoor kunnen bedrijven complexe inventarisatie- en prognosetaken met grotere nauwkeurigheid en minder handmatige inspanning beheren, omdat de gegevensverzameling, aggregatie en transformatie al zijn voltooid. De overstap naar geavanceerde planningssystemen is om verschillende redenen essentieel voor het optimaliseren van resources.

Spreadsheets hebben ook een schaalprobleem. Hoe groter het bedrijf groeit, hoe groter het aantal spreadsheets, werkmappen en formules wordt. Het resultaat is een strak verweven en rigide geheel van onderlinge afhankelijkheden die log en inefficiënt worden. Gebruikers zullen moeite hebben met het omgaan met de toegenomen belasting en complexiteit, met trage verwerkingstijden en het onvermogen om grote datasets te beheren, en zullen te maken krijgen met uitdagingen bij het samenwerken tussen teams en afdelingen.

Aan de andere kant zijn geavanceerde planningssystemen voor voorraadoptimalisatie, vraagplanning en voorraadbeheer schaalbaar, ontworpen om met het bedrijf mee te groeien en zich aan te passen aan de veranderende behoeften. Deze schaalbaarheid zorgt ervoor dat bedrijven hun voorraad en prognoses effectief kunnen blijven beheren, ongeacht de omvang of complexiteit van hun activiteiten. Door over te stappen op systemen als Smart IP&O kunnen bedrijven niet alleen de nauwkeurigheid van hun voorraadbeheer en prognoses verbeteren, maar ook een concurrentievoordeel op de markt verwerven door beter te kunnen reageren op veranderingen in de vraag en efficiënter te kunnen opereren.

Voordelen van inspringen: Een elektriciteitsbedrijf had moeite om de beschikbaarheid van serviceonderdelen op peil te houden zonder een overschot aan voorraden te creëren voor meer dan 250.000 onderdelen in een divers netwerk van energieopwekkings- en distributiefaciliteiten. Het verving hun twintig jaar oude planningsproces, dat intensief gebruik maakte van spreadsheets, met Smart IP&O en een realtime integratie met hun EAM-systeem. Vóór Smart konden ze de Min/Max- en Veiligheidsvoorraadniveaus slechts zelden wijzigen. Als ze dat deden, was dat vrijwel altijd omdat er een probleem was opgetreden dat aanleiding gaf tot de beoordeling. De methoden die werden gebruikt om de kousparameters te wijzigen, waren sterk afhankelijk van het onderbuikgevoel en de gemiddelden van het historische gebruik. Het hulpprogramma maakte gebruik van de wat-als-scenario's van Smart om digitale tweelingen van alternatief voorraadbeleid te creëren en simuleerde hoe elk scenario zou presteren op belangrijke prestatie-indicatoren zoals voorraadwaarde, serviceniveaus, opvullingspercentages en tekortkosten. De software identificeerde gerichte Min/Max-verhogingen en -verlagingen die in hun EAM-systeem werden geïmplementeerd, waardoor de aanvulling van hun reserveonderdelen optimaal werd gestimuleerd. Het resultaat: een aanzienlijke voorraadreductie van $9 miljoen, waardoor contant geld en waardevolle magazijnruimte vrijkwamen, terwijl de beoogde serviceniveaus van 99%+ behouden bleven.

Prognosenauwkeurigheid beheren: Voorspellingsfouten zijn een onvermijdelijk onderdeel van voorraadbeheer, maar de meeste bedrijven houden dit niet bij. Zoals Peter Drucker zei: “Je kunt niet verbeteren wat je niet meet.” Een mondiaal hightech productiebedrijf dat een op spreadsheets gebaseerd voorspellingsproces gebruikte, moest handmatig zijn basisvoorspellingen opstellen en de nauwkeurigheid van de prognoses rapporteren. Gezien de werkdruk en de geïsoleerde processen van de planners werkten ze hun rapporten niet vaak bij, en als ze dat wel deden, moesten de resultaten handmatig worden gedistribueerd. Het bedrijf beschikte niet over een manier om te weten hoe nauwkeurig een bepaalde voorspelling was en kon de werkelijke fouten niet met enig vertrouwen per groep of onderdeel vermelden. Ze wisten ook niet of hun voorspellingen beter presteerden dan een controlemethode. Nadat Smart IP&O live ging, automatiseerde de module Demand Planning dit voor hen. Smart Demand Planner voorspelt nu automatisch de vraag elke planningscyclus opnieuw met behulp van ML-methoden en slaat nauwkeurigheidsrapporten op voor elke Part X-locatie. Alle aanpassingen die op de prognoses worden toegepast, kunnen nu automatisch worden vergeleken met de basislijn om de toegevoegde waarde van de prognose te meten – dwz of de extra inspanning om die wijzigingen door te voeren de nauwkeurigheid heeft verbeterd. Nu de mogelijkheid bestaat om de statistische basisprognoses te automatiseren en nauwkeurigheidsrapporten te produceren, beschikt dit bedrijf over een solide basis om het voorspellingsproces en de daaruit voortvloeiende voorspellingsnauwkeurigheid te verbeteren.

Doe het goed en houd het goed:  Een andere klant in de aftermarket-onderdelensector gebruikt de prognoseoplossingen van Smart sinds 2005 – bijna 20 jaar! Ze werden geconfronteerd met uitdagingen bij het voorspellen van de vraag naar onderdelen die met tussenpozen zouden worden verkocht ter ondersteuning van hun auto-aftermarket-activiteiten. Door hun op spreadsheets gebaseerde aanpak en handmatige uploads naar SAP te vervangen door statistische prognoses van de vraag en de veiligheidsvoorraad van SmartForecasts, konden ze het aantal backorders en omzetverlies aanzienlijk terugdringen, waarbij de opvullingspercentages binnen slechts drie maanden verbeterden van 93% naar 96%. De sleutel tot hun succes was het gebruik van Smart's gepatenteerde methode voor het voorspellen van de intermitterende vraag. De “Smart-Willemain” bootstrap-methode genereerde nauwkeurige schattingen van de cumulatieve vraag gedurende de doorlooptijd, waardoor een betere zichtbaarheid van de mogelijke vraag werd verzekerd.

Prognoses koppelen aan het voorraadplan: Geavanceerde planningssystemen ondersteunen op prognoses gebaseerd voorraadbeheer, wat een proactieve aanpak is die vertrouwt op vraagprognoses en simulaties om mogelijke uitkomsten en de bijbehorende kansen te voorspellen. Deze gegevens worden gebruikt om de optimale voorraadniveaus te bepalen. Op scenario's gebaseerde of probabilistische prognoses staan in contrast met de meer reactieve aard van op spreadsheets gebaseerde methoden. Een oude klant in de stoffensector, die voorheen te maken kreeg met overvoorraden en voorraadtekorten als gevolg van de intermitterende vraag naar duizenden SKU's. Ze konden op geen enkele manier weten wat de risico's van hun stock-out waren en konden dus niet proactief het beleid aanpassen om de risico's te beperken, anders dan het maken van zeer ruwe aannames die de neiging hadden om grove overvoorraden te hebben. Ze adopteerden de software voor vraag- en voorraadplanning van Smart Software om simulaties van de vraag te genereren die de optimale minimale voorraadwaarden en bestelhoeveelheden identificeerden, waardoor de productbeschikbaarheid voor onmiddellijke verzending behouden bleef, wat de voordelen van een op prognoses gebaseerde benadering van voorraadbeheer benadrukte.

Betere samenwerking:  Het delen van prognoses met belangrijke leveranciers helpt de levering te garanderen. Kratos Space, onderdeel van Kratos Defense & Security Solutions, Inc., maakte gebruik van slimme voorspellingen om hun contractfabrikanten beter inzicht te geven in de toekomstige vraag. Ze gebruikten de prognoses om toezeggingen te doen over toekomstige aankopen, waardoor de CM de materiaalkosten en doorlooptijden voor engineered-to-order-systemen kon verlagen. Deze samenwerking laat zien hoe geavanceerde voorspellingstechnieken kunnen leiden tot aanzienlijke samenwerking in de supply chain die voor beide partijen efficiëntie en kostenbesparingen oplevert.

 

Een vraagvoorspelling doorstaan

Voor sommige van onze klanten heeft het weer een grote invloed op de vraag. Extreme weersomstandigheden op de korte termijn, zoals branden, droogtes, hittegolven, enzovoort, kunnen op de korte termijn een aanzienlijke invloed hebben op de vraag.

Er zijn twee manieren om het weer mee te nemen in een vraagvoorspelling: indirect en direct. De indirecte route is eenvoudiger met behulp van de scenariogebaseerde aanpak van Smart Demand Planner. De directe aanpak vereist een speciaal project op maat dat aanvullende gegevens en handgemaakte modellen vereist.

Indirecte boekhouding voor het weer

Het standaardmodel ingebouwd Smart Demand Planner (SDP) houdt op vier manieren rekening met weerseffecten:

  1. Als de wereld gestaag warmer/kouder/droger/natter wordt op manieren die van invloed zijn op uw omzet, detecteert SDP deze trends automatisch en neemt deze op in de vraagscenario's die het genereert.
  2. Als uw bedrijf een regelmatig ritme heeft waarin bepaalde dagen van de week of bepaalde maanden van het jaar een consistent hogere of lager dan gemiddelde vraag hebben, detecteert SDP deze seizoensinvloeden ook automatisch en neemt deze op in zijn vraagscenario's.
  3. Vaak is het de vervloekte willekeur van het weer die de nauwkeurigheid van de voorspellingen in de weg staat. We noemen dit effect vaak ‘ruis’. Lawaai is een verzamelnaam die allerlei willekeurige problemen omvat. Naast het weer kunnen ook een geopolitieke opflakkering, de verrassende mislukking van een regionale bank of een schip dat vastloopt in het Suezkanaal voor verrassingen zorgen en de vraag naar producten vergroten. SDP beoordeelt de volatiliteit van de vraag en reproduceert deze in zijn vraagscenario's.
  4. Beheeroverschrijvingen. Meestal laten klanten SDP aan de slag om automatisch tienduizenden vraagscenario's te genereren. Maar als gebruikers de behoefte voelen om specifieke prognoses aan te passen met behulp van hun voorkennis, kan SDP dat mogelijk maken door managementoverrides.

Directe boekhouding voor het weer

Soms kan een gebruiker inhoudelijke expertise onder woorden brengen door factoren buiten zijn bedrijf (zoals rentetarieven of grondstofkosten of technologietrends) te koppelen aan zijn eigen totale omzet. In deze situaties kan Smart Software eenmalige speciale projecten verzorgen die alternatieve (“causale”) modellen bieden als aanvulling op onze standaard statistische voorspellingsmodellen. Neem contact op met uw Smart Software-vertegenwoordiger om een mogelijk causaal modelleringsproject te bespreken.

Vergeet intussen uw paraplu niet.

 

 

 

Waarom voorraadplanning niet uitsluitend op eenvoudige vuistregels mag vertrouwen

Voor te veel bedrijven wordt een cruciaal stukje data-feitenonderzoek – het meten van vraagonzekerheid – afgehandeld met eenvoudige maar onnauwkeurige vuistregels. Vraagplanners berekenen bijvoorbeeld vaak de veiligheidsvoorraad op basis van een door de gebruiker gedefinieerd veelvoud van de voorspelling of het historische gemiddelde. Of ze kunnen hun ERP configureren om meer te bestellen wanneer de beschikbare voorraad gedurende de doorlooptijd twee keer de gemiddelde vraag bereikt voor belangrijke artikelen en 1,5 keer voor minder belangrijke artikelen. Dit is een grote fout met kostbare gevolgen.

De keuze uit meerdere wordt uiteindelijk een raadspel. Dit komt omdat geen mens precies kan berekenen hoeveel voorraad hij moet opslaan, rekening houdend met alle onzekerheden. Veelvouden van de gemiddelde doorlooptijdvraag zijn eenvoudig te gebruiken, maar u kunt nooit weten of het gebruikte veelvoud te groot of te klein is totdat het te laat is. En als je het eenmaal weet, is alle informatie veranderd, dus je moet opnieuw raden en dan afwachten hoe de laatste gok uitpakt. Met elke nieuwe dag heeft u nieuwe vraag, nieuwe details over doorlooptijden en zijn de kosten mogelijk veranderd. De gok van gisteren, ongeacht hoe goed opgeleid, is vandaag niet langer relevant. Bij een goede voorraadplanning mag geen sprake zijn van giswerk op het gebied van inventaris en prognoses. Beslissingen moeten worden genomen op basis van onvolledige informatie, maar gissen is niet de juiste keuze.

Weten hoeveel u moet bufferen vereist een op feiten gebaseerde statistische analyse die nauwkeurig vragen kan beantwoorden zoals:

  • Hoeveel extra voorraad is er nodig om de serviceniveaus van 5% te verbeteren
  • Wat de klap op tijdige levering zal zijn als de voorraad met 5% wordt verminderd
  • Welk serviceniveaudoel is het meest winstgevend.
  • Hoe wordt het voorraadrisico beïnvloed door de willekeurige doorlooptijden waarmee we worden geconfronteerd?

Intuïtie kan deze vragen niet beantwoorden, strekt zich niet uit over duizenden onderdelen en heeft het vaak bij het verkeerde eind. Data, waarschijnlijkheidsberekeningen en moderne software zijn veel effectiever. Het is niet de weg naar duurzame uitmuntendheid.