FAQ: Slimme IP&O voor beter voorraadbeheer.

Effectief supply chain- en voorraadbeheer zijn essentieel voor het bereiken van operationele efficiëntie en klanttevredenheid. Deze blog biedt duidelijke en beknopte antwoorden op enkele basisvragen en andere veelvoorkomende vragen van onze Smart IP&O-klanten, en biedt praktische inzichten om typische uitdagingen te overwinnen en uw voorraadbeheerpraktijken te verbeteren. Met de focus op deze belangrijke gebieden helpen we u complexe voorraadproblemen om te zetten in strategische, beheersbare acties die kosten verlagen en de algehele prestaties verbeteren met Smart IP&O.

1. Wat is de doorlooptijdvraag?
De vraag zal naar verwachting optreden gedurende de aanvultijd. De vraag tijdens de aanvoertijd wordt bepaald door De voorspellingsmethoden van Smart. 

2. Wat is de Min en hoe wordt deze berekend?
De Min wordt weergegeven in het drivers-gedeelte van SIO is het bestelpunt en is de som van de doorlooptijdvraag en de veiligheidsvoorraad. Wanneer de voorraad onder het minimum zakt vanwege de vraag, moet u meer bestellen. Smart heeft ook een "min" in het veld "bestelregels" van SIO, dit is de minimale bestelhoeveelheid die u bij een leverancier kunt plaatsen. 

3. Wat is de Max en hoe wordt deze berekend?
Het maximum is de grootste hoeveelheid voorraad die op de plank zal liggen als u zich aan het bestelbeleid houdt. De Max is de som van de Min (herorderpunt) plus de gedefinieerde OQ. 

4. Hoe bepaal je de bestelhoeveelheid (OQ)?
De bestelhoeveelheid wordt in eerste instantie geïmporteerd uit uw ERP-systeem. Deze kan worden gewijzigd op basis van een aantal door de gebruiker gedefinieerde keuzes, waaronder:

Vraag naar meerdere doorlooptijden
Meerdere maandelijkse of wekelijkse vraag
Aanbevolen OQ van Smart

5. Wat is de economische bestelhoeveelheid?
Het is de volgorde hoeveelheid die zal minimaliseren de totale kosten, rekening houdend met de kosten voor het aanhouden en bestellen van de voorraad. 

6. Wat is de “aanbevolen OQ” die Smart berekent?
Het betreft de economische bestelhoeveelheid plus een aanpassing indien nodig om ervoor te zorgen dat de omvang van de bestelling groter is dan of gelijk is aan de vraag gedurende de doorlooptijd.

7. Waarom voorspelt het systeem dat we een lage Service Level?
Smart voorspelt het serviceniveau dat zal resulteren uit het opgegeven voorraadbeleid (Min/Max of Reorder Point/Order Quantity), ervan uitgaande dat dat beleid wordt nageleefd. Wanneer het voorspelde serviceniveau laag is, kan dit betekenen dat de verwachte vraag gedurende de doorlooptijd groter is dan het reorder point (Min). Wanneer de vraag gedurende de replenishment lead time groter is dan het reorder point, is de kans groter dat uw voorraad op is, wat resulteert in een laag serviceniveau. Het kan ook zijn dat uw lead time voor replenishment niet nauwkeurig is ingevoerd. Als de ingevoerde lead time langer is dan de werkelijkheid, dekt het reorder point mogelijk niet de vraag gedurende de doorlooptijd. Controleer uw lead time inputs.

8. Waarom wordt het serviceniveau weergegeven als nul, terwijl het bestelpunt (of minimum) niet nul is?
Smart voorspelt het serviceniveau die het gevolg zal zijn van het opgegeven voorraadbeleid (Min/Max of bestelpunt/bestelhoeveelheid), ervan uitgaande dat dit beleid wordt nageleefd. Wanneer het voorspelde serviceniveau laag is, kan dit betekenen dat de verwachte vraag gedurende de doorlooptijd groter is dan het bestelpunt (Min), soms vele malen groter, wat vrijwel zeker een voorraadtekort zou garanderen. Wanneer de vraag gedurende de aanvuldoorlooptijd groter is dan het bestelpunt, is de kans op voorraadtekort groter, wat resulteert in een laag serviceniveau. Het kan ook zijn dat uw doorlooptijd voor aanvulling niet nauwkeurig is ingevoerd. Als de ingevoerde doorlooptijd langer is dan de werkelijkheid, dekt het bestelpunt mogelijk niet de vraag gedurende de doorlooptijd. Controleer uw invoer voor de doorlooptijd.

9. Maar mijn werkelijke serviceniveau is niet zo laag als Smart voorspelt. Hoe kan dat?
Dat kan waar zijn omdat Smart uw serviceniveau voorspelt als u zich aan het beleid houdt. Het is mogelijk dat u zich niet aan het beleid houdt. het beleid waarop de voorspelling van het serviceniveau is gebaseerd.  Als uw on-hand inventory hoger is dan uw Max-hoeveelheid, houdt u zich niet aan het beleid. Controleer uw invoerveronderstellingen voor doorlooptijd. Uw werkelijke doorlooptijden kunnen veel korter zijn dan ingevoerd, wat resulteert in een voorspeld serviceniveau dat lager is dan u verwacht.

10. Smart lijkt te veel voorraad aan te bevelen, of in ieder geval meer dan ik zou verwachten. Waarom?
U moet overwegen om de inputs te evalueren, zoals serviceniveau en doorlooptijden. Misschien zijn uw werkelijke doorlooptijden niet zo lang als de doorlooptijd die Smart gebruikt. We hebben situaties gezien waarin leveranciers hun geoffreerde doorlooptijden kunstmatig opblazen om ervoor te zorgen dat ze altijd op tijd zijn. Als u die doorlooptijd gebruikt bij het berekenen van uw veiligheidsvoorraden, zult u onvermijdelijk te veel voorraad hebben. Bekijk daarom uw werkelijke doorlooptijdgeschiedenis (Smart levert hiervoor het leveranciersprestatierapport) om een idee te krijgen van de werkelijke doorlooptijden en pas deze dienovereenkomstig aan. Of het is mogelijk dat u vraagt om een zeer hoog serviceniveau dat verder kan worden verergerd door een zeer volatiel artikel met verschillende significante pieken in de vraag. Wanneer de vraag aanzienlijk fluctueert ten opzichte van het gemiddelde, zal het gebruik van een hoge serviceniveaudoelstelling (98%+) resulteren in voorraadbeleid dat is ontworpen om zelfs zeer grote pieken te dekken. Probeer een lagere serviceniveaudoelstelling of verkort de doorlooptijd (ervan uitgaande dat de opgegeven doorlooptijd niet langer realistisch is) en uw voorraad zal afnemen, soms zeer substantieel.

11. Smart maakt gebruik van pieken in de vraag. Ik wil niet dat het rekening houdt met de vraag en het vergroot de voorraad. Hoe kan ik dit oplossen?
Als u zeker weet dat de piek niet opnieuw zal optreden, kunt u deze verwijderen uit de historische gegevens via een override met behulp van Smart Demand Planner. U moet het prognoseproject openen dat dat item bevat, de geschiedenis aanpassen en de aangepaste geschiedenis opslaan. U kunt contact opnemen met de technische ondersteuning om u te helpen dit in te stellen. Als de pieken deel uitmaken van de normale willekeur die soms kan optreden, is het het beste om het met rust te laten. Overweeg in plaats daarvan een lagere serviceniveaudoelstelling. De lagere doelstelling betekent dat de bestelpunten niet zo vaak de extreme waarden hoeven te dekken, wat resulteert in een lagere voorraad.

12. Wanneer ik de bestelhoeveelheid of het maximum wijzig, veranderen mijn cyclusserviceniveaus niet. Waarom?
Smart rapporteert over "cycle service level" en "service level". Wanneer u uw bestelhoeveelheden en maximale hoeveelheden wijzigt, heeft dit geen invloed op het "cycle service level", omdat cycle service levels alleen rapporteren over prestaties tijdens de aanvullingsperiode. Dit komt omdat het enige dat u beschermt tegen een voorraadtekort nadat de bestelling is geplaatst (en u moet wachten tot de bestelling arriveert voor de aanvulling) het bestelpunt of Min is. Het wijzigen van de grootte van de bestelhoeveelheid of Max on hand (tot niveaus) heeft geen invloed op uw cycle service levels. Cycle service level wordt alleen beïnvloed door de grootte van de bestelpunten en de hoeveelheid veiligheidsvoorraad die wordt toegevoegd, terwijl het "service level" van Smart verandert wanneer u zowel bestelpunten als bestelhoeveelheden wijzigt.

13. Mijn voorspelling lijkt onjuist. Er worden geen ups en downs weergegeven die in de geschiedenis zijn waargenomen, waarom?
Een goede voorspelling is het getal dat het dichtst bij de werkelijkheid ligt in vergelijking met andere getallen die voorspeld hadden kunnen worden. Wanneer de historische ups en downs niet in voorspelbare intervallen plaatsvinden, is de beste voorspelling er vaak een die deze historische ups en downs gemiddeld of gladstrijkt. Een voorspelling die toekomstige ups en downs voorspelt die historisch gezien niet in duidelijke patronen voorkomen, is waarschijnlijk minder nauwkeurig dan een voorspelling die alleen een rechte lijn of trendlijn voorspelt.

14. Wat is optimalisatie? Hoe werkt het?
Optimalisatie is een optie voor het instellen van voorraadbeleid waarbij de software het voorraadbeleid kiest dat de laagste totale operationele kosten oplevert. Als een artikel bijvoorbeeld erg duur is om te bewaren, zou een beleid met meer stockouts, maar minder voorraad, lagere totale kosten opleveren dan een beleid met minder stockouts en meer voorraad. Aan de andere kant, als het artikel hoge stockout-kosten heeft, zou een beleid dat minder stockouts oplevert maar meer voorraad vereist, meer financieel voordeel opleveren dan een beleid met minder voorraad maar meer stockouts. Bij gebruik van de optimalisatiefunctie moet de gebruiker de service level floor (het minimale serviceniveau) opgeven. De software zal dan beslissen of een hoger serviceniveau een beter rendement oplevert. Als dat het geval is, zal het herorderbeleid zich richten op het hogere serviceniveau. Als dat niet het geval is, zal het herorderbeleid standaard de door de gebruiker gedefinieerde service level floor gebruiken. Deze webinar biedt details en uitleg over de wiskunde achter optimalisatie.  https://www.screencast.com/t/3CfKJoMe2Uj

15. Wat is een what-if-scenario?
Met what-if-scenario's kunt u verschillende door de gebruiker gedefinieerde keuzes van voorraadbeleid uitproberen en de voorspelde impact op statistieken zoals serviceniveaus, vulpercentages en voorraadwaarde testen. Om deze scenario's te verkennen, klikt u op het tabblad Drivers, op het samenvattingsniveau of op het niveau 'Artikelen', en voert u de gewenste aanpassingen in. U kunt vervolgens opnieuw berekenen hoe deze wijzigingen uw algehele voorraadprestaties zouden beïnvloeden. Hiermee kunt u verschillende strategieën vergelijken en de meest kosteneffectieve en efficiënte aanpak voor uw toeleveringsketen selecteren.

Door veelvoorkomende vragen en uitdagingen aan te pakken, hebben we bruikbare inzichten geboden om u te helpen uw voorraadbeheerpraktijken te verbeteren. Met Smart IP&O beschikt u over de tools die u nodig hebt om weloverwogen voorraadbeslissingen te nemen, kosten te verlagen en de algehele prestaties te verbeteren.

Het belang van duidelijke definities van serviceniveaus bij voorraadbeheer

 

Voorraadoptimalisatiesoftware die 'wat als'-analyse ondersteunt, legt de afweging tussen voorraadtekorten en extra kosten van verschillende serviceniveaudoelen bloot. Maar eerst is het belangrijk om te identificeren hoe ‘serviceniveaus’ worden geïnterpreteerd, gemeten en gerapporteerd. Dit voorkomt miscommunicatie en het valse gevoel van veiligheid dat kan ontstaan als er minder strenge definities worden gebruikt. Als u duidelijk definieert hoe het serviceniveau wordt berekend, staan alle belanghebbenden op één lijn. Dit vergemakkelijkt een betere besluitvorming.

Er zijn veel verschillen in wat bedrijven bedoelen als ze hun ‘serviceniveaus’ noemen. Dit kan variëren van bedrijf tot bedrijf en zelfs van afdeling tot afdeling binnen een bedrijf. Hier zijn twee voorbeelden:

 

  1. Serviceniveau gemeten ‘vanaf de plank’ versus een door de klant opgegeven doorlooptijd.
    Serviceniveau gemeten “uit het schap” betekent het percentage bestelde eenheden dat onmiddellijk uit voorraad leverbaar is. Wanneer een klant een bestelling plaatst, wordt deze echter vaak niet direct verzonden. De klantenservice of verkoopafdeling geven aan wanneer de bestelling wordt verzonden. Als de klant akkoord gaat met de beloofde verzenddatum en de bestelling op die datum wordt verzonden, wordt aangenomen dat aan het serviceniveau is voldaan. De serviceniveaus zullen duidelijk hoger zijn als ze worden berekend over de door de klant opgegeven doorlooptijd versus ‘vanaf de plank’.
  1. Serviceniveau gemeten over de vaste versus variabele, door de klant opgegeven doorlooptijd.
    Hoge serviceniveaus zijn vaak scheef omdat de door de klant opgegeven doorlooptijden later worden aangepast, zodat bijna elke bestelling “op tijd en volledig” kan worden uitgevoerd. Dit gebeurt wanneer de initiële doorlooptijd niet kan worden gehaald, maar de klant ermee instemt de bestelling later aan te nemen, en het door de klant opgegeven doorlooptijdveld dat wordt gebruikt om het serviceniveau bij te houden, wordt aangepast door de verkoopafdeling of de klantenservice.

Het verduidelijken van de manier waarop ‘serviceniveaus’ worden gedefinieerd, gemeten en gerapporteerd is essentieel voor het op één lijn brengen van organisaties en het verbeteren van de besluitvorming, wat resulteert in effectievere voorraadbeheerpraktijken.

 

De kosten van spreadsheetplanning

Bedrijven die afhankelijk zijn van spreadsheets voor vraagplanning, prognoses en voorraadbeheer worden vaak beperkt door de inherente beperkingen van de spreadsheet. Dit artikel onderzoekt de nadelen van traditionele voorraadbeheerbenaderingen veroorzaakt door spreadsheets en de daarmee samenhangende kosten, en contrasteert deze met de aanzienlijke voordelen die worden behaald door het omarmen van de modernste planningstechnologieën.

Spreadsheets zijn weliswaar flexibel vanwege hun oneindige aanpasbaarheid, maar zijn in wezen handmatig van aard en vereisen aanzienlijk gegevensbeheer, menselijke inbreng en toezicht. Dit vergroot het risico op fouten, van eenvoudige fouten bij het invoeren van gegevens tot complexe formulefouten, die trapsgewijze effecten veroorzaken die de voorspellingen negatief beïnvloeden. Bovendien zijn spreadsheetgebaseerde processen, ondanks de vooruitgang op het gebied van samenwerkingsfuncties die meerdere gebruikers in staat stellen om met een gemeenschappelijk blad te communiceren, vaak in silo's ondergebracht. De houder van het spreadsheet houdt de gegevens vast. Wanneer dit gebeurt, ontstaan er veel bronnen van datawaarheid. Zonder het vertrouwen van een overeengekomen, zuivere en automatisch bijgewerkte gegevensbron beschikken organisaties niet over de noodzakelijke basis waarop voorspellende modellen, prognoses en analyses kunnen worden gebouwd.

Geavanceerde planningssystemen zoals Smart IP&O zijn daarentegen ontworpen om deze beperkingen te overwinnen. Dergelijke systemen zijn gebouwd om automatisch gegevens op te nemen via API of bestanden van ERP- en EAM-systemen, die gegevens te transformeren met behulp van ingebouwde ETL-tools en grote hoeveelheden gegevens efficiënt te verwerken. Hierdoor kunnen bedrijven complexe inventarisatie- en prognosetaken met grotere nauwkeurigheid en minder handmatige inspanning beheren, omdat de gegevensverzameling, aggregatie en transformatie al zijn voltooid. De overstap naar geavanceerde planningssystemen is om verschillende redenen essentieel voor het optimaliseren van resources.

Spreadsheets hebben ook een schaalprobleem. Hoe groter het bedrijf groeit, hoe groter het aantal spreadsheets, werkmappen en formules wordt. Het resultaat is een strak verweven en rigide geheel van onderlinge afhankelijkheden die log en inefficiënt worden. Gebruikers zullen moeite hebben met het omgaan met de toegenomen belasting en complexiteit, met trage verwerkingstijden en het onvermogen om grote datasets te beheren, en zullen te maken krijgen met uitdagingen bij het samenwerken tussen teams en afdelingen.

Aan de andere kant zijn geavanceerde planningssystemen voor voorraadoptimalisatie, vraagplanning en voorraadbeheer schaalbaar, ontworpen om met het bedrijf mee te groeien en zich aan te passen aan de veranderende behoeften. Deze schaalbaarheid zorgt ervoor dat bedrijven hun voorraad en prognoses effectief kunnen blijven beheren, ongeacht de omvang of complexiteit van hun activiteiten. Door over te stappen op systemen als Smart IP&O kunnen bedrijven niet alleen de nauwkeurigheid van hun voorraadbeheer en prognoses verbeteren, maar ook een concurrentievoordeel op de markt verwerven door beter te kunnen reageren op veranderingen in de vraag en efficiënter te kunnen opereren.

Voordelen van inspringen: Een elektriciteitsbedrijf had moeite om de beschikbaarheid van serviceonderdelen op peil te houden zonder een overschot aan voorraden te creëren voor meer dan 250.000 onderdelen in een divers netwerk van energieopwekkings- en distributiefaciliteiten. Het verving hun twintig jaar oude planningsproces, dat intensief gebruik maakte van spreadsheets, met Smart IP&O en een realtime integratie met hun EAM-systeem. Vóór Smart konden ze de Min/Max- en Veiligheidsvoorraadniveaus slechts zelden wijzigen. Als ze dat deden, was dat vrijwel altijd omdat er een probleem was opgetreden dat aanleiding gaf tot de beoordeling. De methoden die werden gebruikt om de kousparameters te wijzigen, waren sterk afhankelijk van het onderbuikgevoel en de gemiddelden van het historische gebruik. Het hulpprogramma maakte gebruik van de wat-als-scenario's van Smart om digitale tweelingen van alternatief voorraadbeleid te creëren en simuleerde hoe elk scenario zou presteren op belangrijke prestatie-indicatoren zoals voorraadwaarde, serviceniveaus, opvullingspercentages en tekortkosten. De software identificeerde gerichte Min/Max-verhogingen en -verlagingen die in hun EAM-systeem werden geïmplementeerd, waardoor de aanvulling van hun reserveonderdelen optimaal werd gestimuleerd. Het resultaat: een aanzienlijke voorraadreductie van $9 miljoen, waardoor contant geld en waardevolle magazijnruimte vrijkwamen, terwijl de beoogde serviceniveaus van 99%+ behouden bleven.

Prognosenauwkeurigheid beheren: Voorspellingsfouten zijn een onvermijdelijk onderdeel van voorraadbeheer, maar de meeste bedrijven houden dit niet bij. Zoals Peter Drucker zei: “Je kunt niet verbeteren wat je niet meet.” Een mondiaal hightech productiebedrijf dat een op spreadsheets gebaseerd voorspellingsproces gebruikte, moest handmatig zijn basisvoorspellingen opstellen en de nauwkeurigheid van de prognoses rapporteren. Gezien de werkdruk en de geïsoleerde processen van de planners werkten ze hun rapporten niet vaak bij, en als ze dat wel deden, moesten de resultaten handmatig worden gedistribueerd. Het bedrijf beschikte niet over een manier om te weten hoe nauwkeurig een bepaalde voorspelling was en kon de werkelijke fouten niet met enig vertrouwen per groep of onderdeel vermelden. Ze wisten ook niet of hun voorspellingen beter presteerden dan een controlemethode. Nadat Smart IP&O live ging, automatiseerde de module Demand Planning dit voor hen. Smart Demand Planner voorspelt nu automatisch de vraag elke planningscyclus opnieuw met behulp van ML-methoden en slaat nauwkeurigheidsrapporten op voor elke Part X-locatie. Alle aanpassingen die op de prognoses worden toegepast, kunnen nu automatisch worden vergeleken met de basislijn om de toegevoegde waarde van de prognose te meten – dwz of de extra inspanning om die wijzigingen door te voeren de nauwkeurigheid heeft verbeterd. Nu de mogelijkheid bestaat om de statistische basisprognoses te automatiseren en nauwkeurigheidsrapporten te produceren, beschikt dit bedrijf over een solide basis om het voorspellingsproces en de daaruit voortvloeiende voorspellingsnauwkeurigheid te verbeteren.

Doe het goed en houd het goed:  Een andere klant in de aftermarket-onderdelensector gebruikt de prognoseoplossingen van Smart sinds 2005 – bijna 20 jaar! Ze werden geconfronteerd met uitdagingen bij het voorspellen van de vraag naar onderdelen die met tussenpozen zouden worden verkocht ter ondersteuning van hun auto-aftermarket-activiteiten. Door hun op spreadsheets gebaseerde aanpak en handmatige uploads naar SAP te vervangen door statistische prognoses van de vraag en de veiligheidsvoorraad van SmartForecasts, konden ze het aantal backorders en omzetverlies aanzienlijk terugdringen, waarbij de opvullingspercentages binnen slechts drie maanden verbeterden van 93% naar 96%. De sleutel tot hun succes was het gebruik van Smart's gepatenteerde methode voor het voorspellen van de intermitterende vraag. De “Smart-Willemain” bootstrap-methode genereerde nauwkeurige schattingen van de cumulatieve vraag gedurende de doorlooptijd, waardoor een betere zichtbaarheid van de mogelijke vraag werd verzekerd.

Prognoses koppelen aan het voorraadplan: Geavanceerde planningssystemen ondersteunen op prognoses gebaseerd voorraadbeheer, wat een proactieve aanpak is die vertrouwt op vraagprognoses en simulaties om mogelijke uitkomsten en de bijbehorende kansen te voorspellen. Deze gegevens worden gebruikt om de optimale voorraadniveaus te bepalen. Op scenario's gebaseerde of probabilistische prognoses staan in contrast met de meer reactieve aard van op spreadsheets gebaseerde methoden. Een oude klant in de stoffensector, die voorheen te maken kreeg met overvoorraden en voorraadtekorten als gevolg van de intermitterende vraag naar duizenden SKU's. Ze konden op geen enkele manier weten wat de risico's van hun stock-out waren en konden dus niet proactief het beleid aanpassen om de risico's te beperken, anders dan het maken van zeer ruwe aannames die de neiging hadden om grove overvoorraden te hebben. Ze adopteerden de software voor vraag- en voorraadplanning van Smart Software om simulaties van de vraag te genereren die de optimale minimale voorraadwaarden en bestelhoeveelheden identificeerden, waardoor de productbeschikbaarheid voor onmiddellijke verzending behouden bleef, wat de voordelen van een op prognoses gebaseerde benadering van voorraadbeheer benadrukte.

Betere samenwerking:  Het delen van prognoses met belangrijke leveranciers helpt de levering te garanderen. Kratos Space, onderdeel van Kratos Defense & Security Solutions, Inc., maakte gebruik van slimme voorspellingen om hun contractfabrikanten beter inzicht te geven in de toekomstige vraag. Ze gebruikten de prognoses om toezeggingen te doen over toekomstige aankopen, waardoor de CM de materiaalkosten en doorlooptijden voor engineered-to-order-systemen kon verlagen. Deze samenwerking laat zien hoe geavanceerde voorspellingstechnieken kunnen leiden tot aanzienlijke samenwerking in de supply chain die voor beide partijen efficiëntie en kostenbesparingen oplevert.

 

Waarom voorraadplanning niet uitsluitend op eenvoudige vuistregels mag vertrouwen

Voor te veel bedrijven wordt een cruciaal stukje data-feitenonderzoek – het meten van vraagonzekerheid – afgehandeld met eenvoudige maar onnauwkeurige vuistregels. Vraagplanners berekenen bijvoorbeeld vaak de veiligheidsvoorraad op basis van een door de gebruiker gedefinieerd veelvoud van de voorspelling of het historische gemiddelde. Of ze kunnen hun ERP configureren om meer te bestellen wanneer de beschikbare voorraad gedurende de doorlooptijd twee keer de gemiddelde vraag bereikt voor belangrijke artikelen en 1,5 keer voor minder belangrijke artikelen. Dit is een grote fout met kostbare gevolgen.

De keuze uit meerdere wordt uiteindelijk een raadspel. Dit komt omdat geen mens precies kan berekenen hoeveel voorraad hij moet opslaan, rekening houdend met alle onzekerheden. Veelvouden van de gemiddelde doorlooptijdvraag zijn eenvoudig te gebruiken, maar u kunt nooit weten of het gebruikte veelvoud te groot of te klein is totdat het te laat is. En als je het eenmaal weet, is alle informatie veranderd, dus je moet opnieuw raden en dan afwachten hoe de laatste gok uitpakt. Met elke nieuwe dag heeft u nieuwe vraag, nieuwe details over doorlooptijden en zijn de kosten mogelijk veranderd. De gok van gisteren, ongeacht hoe goed opgeleid, is vandaag niet langer relevant. Bij een goede voorraadplanning mag geen sprake zijn van giswerk op het gebied van inventaris en prognoses. Beslissingen moeten worden genomen op basis van onvolledige informatie, maar gissen is niet de juiste keuze.

Weten hoeveel u moet bufferen vereist een op feiten gebaseerde statistische analyse die nauwkeurig vragen kan beantwoorden zoals:

  • Hoeveel extra voorraad is er nodig om de serviceniveaus van 5% te verbeteren
  • Wat de klap op tijdige levering zal zijn als de voorraad met 5% wordt verminderd
  • Welk serviceniveaudoel is het meest winstgevend.
  • Hoe wordt het voorraadrisico beïnvloed door de willekeurige doorlooptijden waarmee we worden geconfronteerd?

Intuïtie kan deze vragen niet beantwoorden, strekt zich niet uit over duizenden onderdelen en heeft het vaak bij het verkeerde eind. Data, waarschijnlijkheidsberekeningen en moderne software zijn veel effectiever. Het is niet de weg naar duurzame uitmuntendheid.

 

Het gebruik van belangrijke prestatievoorspellingen om het voorraadbeleid te plannen

Ik kan me niet voorstellen dat ik een voorraadplanner ben op het gebied van reserveonderdelen, distributie of productie en dat ik veiligheidsvoorraden, bestelpunten en bestelsuggesties moet creëren zonder gebruik te maken van belangrijke prestatievoorspellingen van serviceniveaus, opvullingspercentages en voorraadkosten:

Belangrijke prestatievoorspellingen gebruiken om voorraadbeleid te plannen

De Inventory Optimization-oplossing van Smart genereert kant-en-klare belangrijke prestatievoorspellingen die op dynamische wijze simuleren hoe uw huidige voorraadbeleid zal presteren ten opzichte van mogelijke toekomstige eisen. Het rapporteert hoe vaak u voorraad opslaat, de omvang van de voorraad, de waarde van uw voorraad, opslagkosten en meer. Hiermee kunt u problemen proactief identificeren voordat ze zich voordoen, zodat u op korte termijn corrigerende maatregelen kunt nemen. U kunt 'wat-als'-scenario's creëren door doelgerichte serviceniveaus in te stellen en doorlooptijden aan te passen, zodat u de voorspelde impact van deze wijzigingen kunt zien voordat u zich ertoe verbindt.

Bijvoorbeeld,

  • U kunt zien of een voorgestelde overstap van het huidige serviceniveau van 90% naar een gericht serviceniveau van 97% financieel voordelig is
  • U kunt automatisch vaststellen of een ander serviceniveaudoel nog winstgevender is voor uw bedrijf dan het voorgestelde doel.
  • U kunt precies zien hoeveel u nodig heeft om uw herbestelpunten te verhogen om een langere doorlooptijd mogelijk te maken.

 

Als u planners niet van de juiste tools voorziet, worden ze gedwongen voorraadbeleid en veiligheidsvoorraadniveaus in te stellen en vraagprognoses te maken in Excel of met verouderde ERP-functionaliteit. Als u niet weet hoe het beleid naar verwachting zal presteren, is uw bedrijf slecht uitgerust om de voorraad correct toe te wijzen. Neem vandaag nog contact met ons op en ontdek hoe wij u kunnen helpen!