Hoe u reserveonderdelen kunt voorspellen die weinig worden gebruikt

Wat doet u wanneer u een periodiek gevraagd artikel, zoals een reserveonderdeel, voorspelt met een gemiddelde vraag van minder dan één eenheid per maand? Meestal is de vraag nul, maar het onderdeel is zakelijk significant; het kan niet worden genegeerd en moet worden voorspeld om er zeker van te zijn dat u voldoende voorraad heeft.

Uw keuzes zijn meestal gecentreerd rond een paar opties:

Optie 1: Rond elke maand af naar 1, dus uw jaarprognose is 12.

Optie 2: Rond elke maand naar beneden af op 0, zodat uw jaarprognose 0 is.

Optie 3: Prognose "hetzelfde als dezelfde maand vorig jaar", zodat de prognose overeenkomt met de werkelijke waarde van vorig jaar.

Er zijn duidelijke nadelen aan elke optie en niet veel voordeel aan een van hen. Optie 1 resulteert vaak in een forse overprognose. Optie 2 resulteert vaak in een aanzienlijke ondervoorspelling. Optie 3 resulteert in een prognose die bijna gegarandeerd de werkelijke aanzienlijk zal missen, aangezien het niet waarschijnlijk is dat de vraag in exact dezelfde periode een piek zal bereiken. Als u het item MOET voorspellen, raden we normaal gesproken optie 3 aan, aangezien dit het meest waarschijnlijke antwoord is dat de rest van het bedrijf zal begrijpen. 

Maar een betere manier is om het helemaal niet te voorspellen in de gebruikelijke zin en in plaats daarvan een "voorspellend bestelpunt" te gebruiken dat is afgestemd op het door u gewenste serviceniveau. Om een voorspellend bestelpunt te berekenen, kunt u het gepatenteerde Markov-bootstrap-algoritme van Smart Software gebruiken om alle mogelijke eisen die tijdens de doorlooptijd kunnen optreden te simuleren en vervolgens het bestelpunt te identificeren dat uw beoogde serviceniveau zal opleveren.

Vervolgens kunt u uw ERP-systeem configureren om meer te bestellen wanneer de voorhanden voorraad het bestelpunt overschrijdt in plaats van wanneer u naar verwachting nul bereikt (of welke veiligheidsvoorraadbuffer dan ook wordt ingevoerd). 

Dit zorgt voor meer logische bestellingen zonder de onnodige aannames die nodig zijn om een af en toe gevraagd onderdeel met een laag volume te voorspellen.

 

Software voor planning van reserveonderdelen

De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

 

 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    Hoe om te gaan met statistische prognoses van nul

    Een statistische voorspelling van nul kan voor veel verwarring zorgen bij voorspellers, vooral wanneer de historische vraag niet nul is. Natuurlijk, het is duidelijk dat de vraag naar beneden neigt, maar moet deze naar nul evolueren? Wanneer de oudere vraag veel groter is dan de meer recente vraag en de meer recente vraag een zeer laag volume is (dwz 1,2,3 gevraagde eenheden), is het antwoord, statistisch gezien, ja. Dit komt echter mogelijk niet overeen met de zakelijke kennis van de planner en het verwachte minimale vraagniveau. Dus, wat moet een voorspeller doen om dit te corrigeren? Hier zijn drie suggesties:

     

    1. Beperk de historische gegevens die aan het model worden ingevoerd. In een neerwaartse trendsituatie zijn de oudere gegevens dat vaak veel groter dan de recente gegevens. Wanneer de oudere, veel hogere volumevraag wordt genegeerd, zal de neerwaartse trend lang niet zo significant zijn. U voorspelt nog steeds een neerwaartse trend, maar de resultaten zullen eerder in lijn zijn met de zakelijke verwachtingen.
    1. Probeer trenddemping. Smart Demand Planner heeft een functie genaamd "trendhedging" waarmee gebruikers kunnen definiëren hoe een trend in de loop van de tijd moet verdwijnen. Hoe hoger het percentage trendhedge (0-100%), hoe sterker de trenddemping. Dit betekent dat een voorspelde trend zich niet gedurende de hele prognosehorizon zal voortzetten. Dit betekent dat de vraagprognose begint af te vlakken voordat deze nul bereikt bij een neerwaartse trend.
    1. Wijzig het prognosemodel. Schakel over van een trendingmethode zoals Double Exponential Smoothing of Linear Moving Average naar een niet-trendingmethode zoals Single Exponential Smoothing of Simple Moving Average. U voorspelt geen neerwaartse trend, maar uw voorspelling zal in ieder geval niet nul zijn en dus waarschijnlijker door het bedrijf worden geaccepteerd.