Dagelijkse vraagscenario's

In deze videoblog leggen we uit hoe tijdreeksvoorspellingen naar voren zijn gekomen als een cruciaal hulpmiddel, vooral op dagelijks niveau, waarmee Smart Software sinds de oprichting ruim veertig jaar geleden pionierde. De evolutie van bedrijfspraktijken van jaarlijkse naar meer verfijnde temporele stappen zoals maandelijkse en nu dagelijkse data-analyse illustreert een significante verschuiving in operationele strategieën.

Aanvankelijk, in de jaren tachtig, werd de gebruikelijke praktijk van het gebruik van jaarlijkse gegevens voor prognoses en de introductie van maandelijkse gegevens als innovatief beschouwd. Deze periode markeerde het begin van een trend in de richting van het verhogen van de resolutie van data-analyse, waardoor bedrijven snellere verschuivingen in de marktdynamiek kunnen opvangen en hierop kunnen reageren. Naarmate we verder kwamen in de jaren 2000, was de norm van maandelijkse data-analyse ingeburgerd, maar de 'cool kids' – vernieuwers aan de rand van business analytics – begonnen te experimenteren met wekelijkse data. Deze verschuiving werd gedreven door de noodzaak om de bedrijfsactiviteiten te synchroniseren met de steeds volatielere marktomstandigheden en het consumentengedrag dat snellere reacties vergde dan maandelijkse cycli konden bieden. Tegenwoordig, in de jaren 2020, is de grens weliswaar nog steeds gebruikelijk, maar is de grens opnieuw verschoven, dit keer naar dagelijkse data-analyse, waarbij sommige pioniers zich zelfs aan uuranalyses wagen.

De echte kracht van dagelijkse data-analyse ligt in het vermogen om een gedetailleerd beeld te geven van de bedrijfsvoering, waarbij dagelijkse schommelingen worden vastgelegd die door maandelijkse of wekelijkse gegevens over het hoofd kunnen worden gezien. De complexiteit van dagelijkse gegevens vereist echter geavanceerde analytische benaderingen om betekenisvolle inzichten te verkrijgen. Op dit niveau vereist het begrijpen van de vraag het worstelen met concepten als wisselvalligheid, seizoensinvloeden, trends en volatiliteit. Intermittentie, of het optreden van dagen zonder vraag, wordt duidelijker bij een dagelijkse granulariteit en vereist gespecialiseerde voorspellingstechnieken zoals de methode van Croston voor nauwkeurige voorspellingen. Seizoensgebondenheid op dagelijks niveau kan meerdere patronen aan het licht brengen, zoals hogere verkopen in het weekend of op feestdagen, die maandelijkse gegevens zouden maskeren. Trends kunnen worden waargenomen als stijgingen of dalingen van de vraag op de korte termijn, waardoor flexibele aanpassingsstrategieën nodig zijn. Ten slotte wordt de volatiliteit op dagelijks niveau geaccentueerd, wat significantere schommelingen in de vraag laat zien dan uit maandelijkse of wekelijkse analyses blijkt, wat van invloed kan zijn op de voorraadbeheerstrategieën en de behoefte aan buffervoorraden. Dit niveau van complexiteit onderstreept de behoefte aan geavanceerde analytische hulpmiddelen en expertise op het gebied van dagelijkse data-analyse.

Kortom, de evolutie van minder frequente naar dagelijkse tijdreeksvoorspellingen markeert een substantiële verschuiving in de manier waarop bedrijven data-analyse benaderen. Deze transitie weerspiegelt niet alleen het steeds snellere tempo van het bedrijfsleven, maar onderstreept ook de behoefte aan tools die een grotere granulariteit van de gegevens aankunnen. De toewijding van Smart Software aan het verfijnen van de analytische mogelijkheden voor het beheren van dagelijkse gegevens benadrukt de bredere beweging van de sector naar meer dynamische, responsieve en datagestuurde besluitvorming. Deze verschuiving gaat niet alleen over het bijhouden van de tijd, maar over het benutten van gedetailleerde inzichten om concurrentievoordelen te creëren in een steeds veranderende zakelijke omgeving.

 

Vind uw plek op de voorraadafwegingscurve

Deze videoblog bevat essentiële inzichten voor degenen die werken met de complexiteit van voorraadbeheer. De sessie richt zich op het vinden van het juiste evenwicht binnen de voorraadafwegingscurve en nodigt kijkers uit om het diepgewortelde belang van dit evenwicht te begrijpen. Als u ooit aandelen heeft moeten beheren, weet u dat dit een beetje touwtrekken is. Aan de ene kant streeft u naar minder voorraad, wat geweldig is om geld te besparen, maar uw klanten ook gerust kan stellen. Aan de andere kant overweegt u meer voorraad, wat uw klanten tevreden houdt, maar een last voor uw budget kan zijn. Om een slimme keuze te kunnen maken in dit aanhoudende getouwtrek, moet u begrijpen waar uw huidige voorraadbeslissingen u op deze afwegingscurve plaatsen. Ben je op een punt waar je de druk aankunt, of moet je verder schuifelen naar een comfortabelere plek?

Als u deze vraag niet kunt beantwoorden, betekent dit dat u nog steeds vertrouwt op verouderde methoden, waardoor u het risico loopt op overtollige voorraad of onvervulde klantbehoeften. Bekijk de video zodat u precies kunt zien waar u zich op deze curve bevindt en beter begrijpt of u op uw plaats wilt blijven of naar een meer optimale positie wilt gaan.

 

En als u besluit te verhuizen, hebben wij de tools om u te begeleiden. Dankzij de geavanceerde 'wat-als'-analyse van Smart IP&O kunnen bedrijven nauwkeurig de impact evalueren van verschillende voorraadstrategieën, zoals aanpassingen aan de veiligheidsvoorraden of veranderingen in bestelpunten, op hun evenwicht tussen opslagkosten en serviceniveaus. Door vraagscenario's en voorraadbeleid te simuleren, biedt Smart IP&O een duidelijke visualisatie van potentiële financiële resultaten en implicaties voor het serviceniveau, waardoor datagestuurde strategische beslissingen mogelijk worden. Deze krachtige tool zorgt ervoor dat bedrijven een optimaal evenwicht kunnen bereiken, waardoor overtollige voorraad en de daarmee samenhangende kosten worden geminimaliseerd en tegelijkertijd een hoog serviceniveau wordt gehandhaafd om efficiënt aan de vraag van de klant te voldoen.  

 

 

De drie soorten supply chain-analyses

In deze videoblog verkennen we de cruciale rollen van Descriptive, Predictive en Prescriptive Analytics in voorraadbeheer, waarbij we hun essentiële bijdragen aan het stimuleren van supply chain-optimalisatie benadrukken door middel van strategische vooruitziendheid en inzichtelijke data-analyse.

 

Deze analyses bevorderen een dynamisch, responsief en efficiënt ecosysteem voor voorraadbeheer door voorraadbeheerders in staat te stellen de huidige activiteiten te monitoren, te anticiperen op toekomstige ontwikkelingen en optimale antwoorden te formuleren. We laten u zien hoe Descriptive Analytics u op de hoogte houdt van de huidige activiteiten, Predictive Analytics u helpt te anticiperen op toekomstige eisen en Prescriptive Analytics uw strategische beslissingen begeleidt voor maximale efficiëntie en kosteneffectiviteit.

Aan het einde van de video heeft u een goed inzicht in hoe u deze analyses kunt gebruiken om uw voorraadbeheerstrategieën te verbeteren. Dit zijn niet zomaar tools, maar een nieuwe manier van denken over en benaderen van voorraadoptimalisatie met ondersteuning van moderne software.

 

 

Waarschuwingssignalen dat er sprake is van een tekort aan supply chain-analyse

“Zakendoen is oorlog” is misschien een overdreven metafoor, maar het is niet zonder geldigheid. Net als de ‘Bomber Gap’ en de ‘Missile Gap’ liggen de zorgen om achterop te raken bij de concurrentie, en de daaruit voortvloeiende dreiging van vernietiging, altijd op de loer in de hoofden van bedrijfsleiders. Als ze dat niet doen, moeten ze dat doen, want niet alle gaten zijn denkbeeldig (de Bomber Gap en de Missile Gap bleken niet te bestaan tussen de VS en de USSR, maar de kloof tussen de Japanse en Amerikaanse productiviteit in de jaren tachtig was maar al te reëel). Het verschil tussen paranoia en gerechtvaardigde bezorgdheid is het omzetten van angst in feiten. Dit bericht gaat over het organiseren van uw aandacht voor mogelijke hiaten in de supply chain-analyses van uw bedrijf.

Hiaten in het toezicht

Het Amerikaanse leger heeft een gezegde: “Tijd besteed aan verkenning is nooit verspilde tijd.” Zo nu en dan, onze Slimme voorspeller blog heeft een bericht waarmee je je hoofd op een draai kunt zetten om te zien wat er om je heen gebeurt. Een voorbeeld is ons bericht op digitale tweelingen, een hot topic in de technische wereld. Samenvattend: het gebruik van vraag- en aanbodsimulaties om zwakke punten in uw voorraadplan op te sporen is een vorm van supply chain-verkenning. Door deze gaten in het toezicht te dichten, kunnen bedrijven corrigerende maatregelen nemen voordat zich een daadwerkelijk probleem voordoet.

Situationele bewustzijnsverschillen

Een militaire commandant moet bijhouden wat er beschikbaar is voor gebruik en hoe goed het wordt gebruikt. De rapporten beschikbaar in Smart Operational Analytics houdt u op de hoogte van uw voorraadaantallen, de nauwkeurigheid van uw prognoses, het reactievermogen van uw leveranciers en trends op deze en andere operationele gebieden. U weet precies waar u staat op het gebied van diverse supply chain-KPI's, zoals serviceniveau, opvullingspercentages en voorraadomloop. U weet of de werkelijke prestaties overeenkomen met de geplande prestaties en of het voorraadplan (dat wil zeggen wat u moet bestellen, wanneer, bij wie en waarom) wordt nageleefd of genegeerd.

Behendigheidsverschillen

De zakelijke omgeving kan snel veranderen. Het enige dat nodig is, is een tanker die zijdelings vastzit in het Suezkanaal, een paar ballistische anti-scheepsraketten in de Rode Zee, of een weersgebeurtenis in de hele regio. Deze catastrofes kunnen net zo goed op de hoofden van uw concurrenten terechtkomen als op die van u, maar wie van u is wendbaar genoeg om als eerste te reageren? Uitzonderingsrapportage in Vraagplanner en slimme operationele analyses kan grote veranderingen in de aard van de vraag detecteren, zodat u snel verouderde vraaggegevens eruit kunt filteren voordat deze al uw berekeningen voor vraagprognoses of voorraadoptimalisatie vergiftigen. Smart Demand Planner kan vooraf waarschuwen voor een aanstaande stijging of daling van de vraag. Smart Inventory Optimization kan u helpen uw tactieken voor het aanvullen van uw voorraad aan te passen aan deze verschuivingen in de vraag.

 

Innovatiehiaten

Of je nu naar je concurrentie verwijst als ‘The Other Guys’ of ‘Everybody Else’ of iets dat niet kan worden afgedrukt, degenen waar je je zorgen over moet maken, zijn degenen die altijd op zoek zijn naar een voorsprong. Wanneer u Smart als uw partner kiest, geven wij u die voorsprong met innovatieve maar in de praktijk bewezen voorspellende oplossingen. Smart Software innoveert al sinds de geboorte, meer dan 40 jaar geleden, voorspellende modellen.

  • Onze eerste producten introduceerden meerdere technische innovaties: beoordeling van de voorspelde kwaliteit door naar de toekomst te kijken en niet naar het verleden; automatische selectie van de beste uit een reeks concurrerende methodologieën, waarbij gebruik wordt gemaakt van de graphics op de eerste pc's om eenvoudige beheeroverschrijvingen van statistische voorspellingen mogelijk te maken.
  • Later hebben we een radicaal andere benadering bedacht en gepatenteerd voor het voorspellen van de intermitterende vraag die kenmerkend is voor zowel reserveonderdelen als dure duurzame goederen. Onze technologie is gepatenteerd en heeft meerdere prijzen ontvangen voor de dramatische verbetering van het voorraadbeheer. De oplossing is nu een in de praktijk bewezen aanpak die wordt gebruikt door veel toonaangevende bedrijven op het gebied van serviceonderdelen, MRO, aftermarket-onderdelen en buitendienst.
  • Meer recentelijk neemt het cloudplatform van Smart voor vraagvoorspelling, voorspellende modellering, voorraadoptimalisatie en analyse alle relevante gegevens die anders opgesloten zitten in uw ERP- of EAM-systemen, externe bestanden en andere ongelijksoortige gegevensbronnen, en organiseert deze in de Slimme datapijplijn, structureert het in onze gemeenschappelijk datamodel, en verwerkt deze in onze AWS-wolk. Smart maakt gebruik van de kracht van ons gepatenteerd probabilistische vraagsimulaties in Smart Inventory Optimization om de regels die u gebruikt om elk van uw voorraaditems te beheren, te stresstesten en te optimaliseren.

Het is mijn taak, samen met mijn medeoprichter Dr. Nelson Hartunian, ons data science-team en academische consultants, om de grenzen van supply chain-analyses te blijven verleggen en de voordelen voor u terug te brengen door voortdurend nieuwe versies van onze producten uit te rollen, zodat u zorg ervoor dat u niet blijft steken in een innovatiekloof – of in een van de andere.

 

Head to Head: welk voorraadbeleid voor serviceonderdelen is het beste?

Onze klanten hebben doorgaans gekozen voor één manier om hun voorraad serviceonderdelen te beheren. De professor in mij zou graag willen denken dat het gekozen voorraadbeleid een beredeneerde keuze was uit de weloverwogen alternatieven, maar het is waarschijnlijker dat het gewoon zo is gebeurd. Misschien had de inventarishoncho van lang geleden een favoriet en bleef die keuze hangen. Misschien gebruikte iemand een EAM- of ERP-systeem dat maar één keuze bood. Misschien zijn er enkele gissingen gedaan, gebaseerd op de toenmalige omstandigheden.

De concurrenten

Het komt maar zelden voor dat bedrijven deze keuzes op lukrake manieren maken. Maar met moderne planningssoftware voor serviceonderdelen kunt u systematischer uw keuzes maken. Dit bericht demonstreert deze stelling door objectieve vergelijkingen te maken tussen drie populaire voorraadbeleidslijnen: Bestel tot aan, Bestelpunt/Bestelhoeveelheid en Min/Max. Ik heb elk van deze beleidsmaatregelen hierin besproken videoblog.

  • Bestel tot. Dit is een periodiek beoordelingsbeleid waarbij elke T dagen de voorhanden voorraad wordt opgeteld en een bestelling van willekeurige grootte wordt geplaatst om het voorraadniveau weer op S-eenheden te brengen.
  • Q, R of bestelpunt/bestelhoeveelheid. Q, R is een continu beoordelingsbeleid waarbij de voorraad elke dag wordt opgeteld. Als er Q of minder eenheden beschikbaar zijn, wordt een bestelling van vaste grootte geplaatst voor R meer eenheden.
  • Min, Max is een ander continu beoordelingsbeleid waarbij de inventaris elke dag wordt opgeteld. Als er Min of minder eenheden beschikbaar zijn, wordt er een bestelling geplaatst om het voorraadniveau weer op Max eenheden te brengen.

Volgens de inventaristheorie worden deze keuzes gerangschikt in oplopende volgorde van effectiviteit. De eerste optie, Order Up To, is duidelijk de eenvoudigste en goedkoopste om te implementeren, maar sluit de ogen voor wat er gedurende langere tijd gebeurt. Het opleggen van een bepaald tijdsverloop tussen bestellingen maakt het in theorie minder flexibel. De twee continue beoordelingsopties houden daarentegen voortdurend in de gaten wat er gebeurt, zodat ze sneller kunnen reageren op mogelijke voorraadtekorten. De Min/Max-optie is in theorie flexibeler dan de optie die gebruikmaakt van een vast bestelaantal, omdat de omvang van de bestelling dynamisch verandert om aan de vraag te voldoen.

Dat is de theorie. Dit artikel onderzoekt bewijsmateriaal uit onderlinge vergelijkingen om de theorie te controleren en concrete cijfers te geven over de relatieve prestaties van de drie beleidsmaatregelen.

De betekenis van “Beste”

Hoe moeten we de score bijhouden in dit toernooi? Als u een regelmatige lezer bent van dit Smart Forecaster-blog, weet u dat de kern van voorraadplanning een touwtrekken is tussen twee tegengestelde doelstellingen: de voorraad beperkt houden versus de beschikbaarheidsstatistieken van artikelen, zoals het serviceniveau, hoog houden.

Om de zaken te vereenvoudigen, zullen we ‘één getal berekenen dat alles regelt’: de gemiddelde bedrijfskosten. Het winnende beleid zal het beleid zijn met het laagste gemiddelde.

Dit gemiddelde is de som van drie componenten: de kosten van het aanhouden van voorraad (“voorraadkosten”), de kosten van het bestellen van aanvullingseenheden (“bestelkosten”) en de kosten van het mislopen van een verkoop (“tekortkosten”). Om het concreet te maken zijn we uitgegaan van de volgende aannames:

  • Elk serviceonderdeel heeft een waarde van $1.000.
  • De jaarlijkse bewaarkosten bedragen 10% van de artikelwaarde, of $100 per jaar per eenheid.
  • Het verwerken van elke aanvulorder kost $20 per bestelling.
  • Elke gevraagde maar niet geleverde eenheid kost de waarde van het onderdeel, $1.000.

Voor de eenvoud zullen we naar de gemiddelde bedrijfskosten verwijzen als eenvoudigweg “de kosten”.

Uiteraard kunnen de laagste gemiddelde kosten worden bereikt door uit het bedrijf te stappen. De concurrentie vereiste dus een prestatiebeperking op het gebied van de beschikbaarheid van artikelen: elke optie moest een opvullingspercentage van minimaal 99% behalen.

De alternatieven: laat het achterwege

Een belangrijk contextelement is of stockouts resulteren in verliezen of nabestellingen. Ervan uitgaande dat het betreffende serviceonderdeel cruciaal is, zijn we ervan uitgegaan dat niet-uitgevoerde bestellingen verloren gaan, wat betekent dat een concurrent de bestelling vervult. In een MRO-omgeving betekent dit extra downtime als gevolg van voorraadtekorten.

Om de alternatieven te vergelijken, hebben we onze voorspellende modelleringsengine gebruikt om er een groot aantal uit te voeren Monte Carlo-simulaties. Elke simulatie omvatte het specificeren van de parameterwaarden van elk beleid (bijvoorbeeld de Min- en Max-waarden), het genereren van een vraagscenario, het invoeren daarvan in de logica van het beleid en het meten van de resulterende kosten, gemiddeld over 365 dagen gebruik. Door dit proces 1000 keer te herhalen en het gemiddelde te nemen van de 1000 resulterende kosten, ontstond het eindresultaat voor elke polis.  

Om de vergelijking eerlijk te maken, moest elk alternatief worden ontworpen voor de beste prestaties. Daarom doorzochten we de ‘ontwerpruimte’ van elke polis om het ontwerp met de laagste kosten te vinden. Dit vereiste het herhalen van het proces dat in de vorige paragraaf is beschreven voor veel paren parameterwaarden en het identificeren van het paar dat de verloren gemiddelde jaarlijkse bedrijfskosten opleverde.

Met behulp van de algoritmen in Smart Inventory Optimization (SIOTM) hebben we onderlinge vergelijkingen gemaakt op basis van de volgende aannames over vraag en aanbod:

  • Er werd aangenomen dat de vraag naar artikelen intermitterend en zeer variabel was, maar relatief eenvoudig omdat er geen sprake was van trends of seizoensinvloeden, zoals vaak het geval is voor serviceonderdelen. De dagelijkse gemiddelde vraag bedroeg 5 eenheden met een grote standaardafwijking van 13 eenheden. Figuur 1 toont een voorbeeld van de vraag over een jaar. We hebben gekozen voor een zeer uitdagend vraagpatroon, waarbij op sommige dagen de vraag 10 tot zelfs 20 keer zo groot is als de gemiddelde vraag.

Er werd aangenomen dat de dagelijkse vraag naar onderdelen intermitterend en zeer piekerig was.

Figuur 1: Er werd aangenomen dat de dagelijkse vraag naar onderdelen intermitterend en zeer piekerig was.

​​

  • De levertijden van leveranciers bedroegen destijds 14 dagen (75%) en anders 21 dagen. Dit weerspiegelt het feit dat er altijd onzekerheid bestaat in de toeleveringsketen.

 

En de winnaar is…

Klopte de theorie? Soort van'.

Tabel 1 toont de resultaten van de simulatie-experimenten. Voor elk van de drie concurrerende beleidsmaatregelen worden de gemiddelde jaarlijkse bedrijfskosten, de foutmarge (technisch gezien een betrouwbaarheidsinterval van ongeveer 95% voor de gemiddelde kosten) en de ogenschijnlijk beste keuzes voor parameterwaarden weergegeven.

Resultaten van de gesimuleerde vergelijkingen

Tabel 1: Resultaten van de gesimuleerde vergelijkingen

De gemiddelde kosten voor de (T,S)-polis wanneer T op 30 dagen is vastgesteld, bedroegen bijvoorbeeld $41.680. Maar de Plus/Minus houdt in dat de resultaten verenigbaar zijn met de “echte” kosten (dwz de schatting op basis van een oneindig aantal simulaties) van ergens tussen $39.890 en $43.650. De reden dat er zoveel statistische onzekerheid is, is de extreem piekerige aard van de vraag in dit voorbeeld.

Tabel 1 laat zien dat in dit voorbeeld de drie beleidsmaatregelen in lijn zijn met de verwachtingen. Nuttigere conclusies zouden echter zijn:

  1. Wat de gemiddelde kosten betreft, zijn de drie polissen opmerkelijk vergelijkbaar. Door een slimme keuze van parameterwaarden kan men goede resultaten behalen met elk van de drie beleidsmaatregelen.
  2. Niet weergegeven in Tabel 1, maar duidelijk uit de gedetailleerde simulatieresultaten, is dat slechte keuzes voor parameterwaarden rampzalig kunnen zijn voor elk beleid.
  3. Het is vermeldenswaard dat het beleid voor periodieke beoordeling (T,S) niet mocht optimaliseren ten opzichte van mogelijke waarden van T. We hebben T op 30 vastgesteld om na te bootsen wat in de praktijk gebruikelijk is, maar degenen die het beleid voor periodieke beoordeling gebruiken, moeten andere beoordelingen overwegen. periodes. Een aanvullend experiment stelde de beoordelingsperiode vast op T = 7 dagen. De gemiddelde kosten in dit scenario werden geminimaliseerd op $36.551 ± $1.668 met S = 343. Dit resultaat is beter dan dat met T = 30 dagen.
  4. We moeten voorzichtig zijn met het overgeneraliseren van deze resultaten. Ze zijn afhankelijk van de veronderstelde waarden van de drie kostenparameters (vasthouden, bestellen en tekort) en het karakter van het vraagproces.
  5. Het is mogelijk om experimenten zoals hier weergegeven automatisch uit te voeren Smart Inventory Optimization. Dit betekent dat ook jij ontwerpkeuzes op een rigoureuze manier kunt onderzoeken.