Geef tekorten niet de schuld aan problematische doorlooptijden.

Vertragingen in de doorlooptijd en variabiliteit in de levering zijn dagelijkse realiteit in de toeleveringsketen, maar organisaties die voorraad hebben, worden vaak verrast wanneer een leverancier te laat is. Een effectief voorraadplanningsproces omarmt dit feit en ontwikkelt beleid dat effectief rekening houdt met deze onzekerheid. Natuurlijk zullen er momenten zijn dat vertragingen in de doorlooptijd uit het niets opduiken en een tekort veroorzaken. Maar meestal zijn de tekorten het gevolg van:

  1. Het voorraadbeleid (bijv. bestelpunten, veiligheidsvoorraden en min/max-niveaus) niet vaak genoeg berekenen om veranderingen in de doorlooptijd op te vangen. 
  2. Slechte schattingen van de werkelijke doorlooptijd gebruiken, zoals alleen gemiddelden van historische ontvangsten gebruiken of vertrouwen op een offerte van een leverancier.

Kalibreer in plaats daarvan het beleid voor elk afzonderlijk onderdeel tijdens elke planningscyclus om veranderingen in de vraag en doorlooptijden op te vangen. In plaats van alleen uit te gaan van een gemiddelde doorlooptijd, simuleer je de doorlooptijden met behulp van scenario's. Op deze manier houdt het aanbevolen voorraadbeleid rekening met de waarschijnlijkheid dat doorlooptijden hoog zijn en wordt het dienovereenkomstig aangepast. Wanneer u dit doet, identificeert u de benodigde voorraadverhogingen voordat het te laat is. U genereert meer omzet en zorgt voor aanzienlijke verbeteringen in de klanttevredenheid.

Een zachte inleiding tot twee geavanceerde technieken: statistische bootstrapping en Monte Carlo-simulatie

Overzicht

De geavanceerde supply chain-analyse van Smart Software maakt gebruik van meerdere geavanceerde methoden. Twee van de belangrijkste zijn "statistische bootstrapping" en "Monte Carlo-simulatie". Omdat er bij beide veel willekeurige getallen rondvliegen, raken mensen soms in de war over wat wat is en waar ze goed voor zijn. Vandaar deze notitie. Waar het op neerkomt: statistische bootstrapping genereert vraagscenario's voor prognoses. Monte Carlo-simulatie gebruikt de scenario's voor voorraadoptimalisatie.

Opstarten

Bootstrapping, ook wel "resampling" genoemd, is een methode van computationele statistieken die we gebruiken om vraagscenario's voor prognoses te creëren. De essentie van het prognoseprobleem is het blootleggen van mogelijke toekomsten waarmee uw bedrijf te maken kan krijgen, zodat u kunt uitzoeken hoe u bedrijfsrisico's kunt beheersen. Traditionele prognosemethoden richten zich op het berekenen van de "meest waarschijnlijke" toekomst, maar ze geven niet het volledige risicobeeld weer. Bootstrapping biedt een onbeperkt aantal realistische wat-als-scenario's.

Bootstrapping doet dit zonder onrealistische aannames te doen over de vraag, dwz dat deze niet intermitterend is, of dat deze een klokvormige verdeling van groottes heeft. Die aannames zijn krukken om de wiskunde eenvoudiger te maken, maar de bootstrap is een procedure, geen vergelijking, dus dergelijke vereenvoudigingen zijn niet nodig.

Voor het eenvoudigste vraagtype, dat een stabiele willekeur is zonder seizoensgebondenheid of trend, is bootstrapping doodeenvoudig. Om een redelijk idee te krijgen van wat een enkele toekomstige vraagwaarde zou kunnen zijn, kiest u willekeurig een van de historische eisen. Om een vraagscenario te creëren, maakt u meerdere willekeurige selecties uit het verleden en rijgt u ze aan elkaar. Klaar. Het is mogelijk om wat meer realisme toe te voegen door de gevraagde waarden te "jitteren", dwz een beetje extra willekeur aan elke waarde toe te voegen of af te trekken, maar zelfs dat is eenvoudig.

Figuur 1 toont een eenvoudige bootstrap. De eerste regel is een korte reeks historische vraag naar een SKU. De volgende regels tonen scenario's van toekomstige vraag die zijn gemaakt door willekeurig waarden uit de vraaggeschiedenis te selecteren. De volgende drie eisen kunnen bijvoorbeeld zijn (0, 14, 6), of (2, 3, 5), enz.

Statistische bootstrapping en Monte Carlo-simulatie 1

Afbeelding 1: voorbeeld van vraagscenario's gegenereerd door een eenvoudige bootstrap

 

Bewerkingen met een hogere frequentie, zoals dagelijkse prognoses, brengen complexere vraagpatronen met zich mee, zoals dubbele seizoensgebondenheid (bijv. dag van de week en maand van het jaar) en/of trend. Dit daagde ons uit om een nieuwe generatie bootstrapping-algoritmen uit te vinden. We hebben onlangs een Amerikaans patent gewonnen voor deze doorbraak, maar de essentie is zoals hierboven beschreven.

Monte Carlo simulatie

Monte Carlo staat bekend om zijn casino's, die net als bootstrapping het idee van willekeur oproepen. Monte Carlo-methoden gaan ver terug, maar de moderne impuls kwam met de noodzaak om wat harige berekeningen te maken over waar neutronen zouden vliegen als een A-bom ontploft.

De essentie van Monte Carlo-analyse is deze: “Ons probleem is te ingewikkeld om te analyseren met vergelijkingen van papier en potlood. Dus, laten we een computerprogramma schrijven dat de individuele stappen van het proces codeert, de willekeurige elementen erin stoppen (bijvoorbeeld welke kant een neutron op schiet), het opwinden en kijken hoe het gaat. Aangezien er veel willekeur is, laten we het programma een ontelbaar aantal keren uitvoeren en het gemiddelde van de resultaten nemen.”

Als we deze benadering toepassen op voorraadbeheer, hebben we een andere reeks willekeurig voorkomende gebeurtenissen: een vraag van een bepaalde omvang komt bijvoorbeeld op een willekeurige dag binnen, een aanvulling van een bepaalde omvang arriveert na een willekeurige doorlooptijd, we snijden een aanvullings-PO van een bepaalde maat wanneer de voorraad daalt tot of onder een bepaald bestelpunt. We coderen de logica die deze gebeurtenissen met elkaar in verband brengt in een programma. We voeden het met een willekeurige vraagvolgorde (zie bootstrapping hierboven), voeren het programma een tijdje uit, laten we zeggen een jaar dagelijkse bewerkingen, berekenen prestatiestatistieken zoals Fill Rate en Average On Hand-inventaris, en "gooi de dobbelstenen" door het opnieuw uit te voeren het programma vele malen en het gemiddelde van de resultaten van vele gesimuleerde jaren. Het resultaat is een goede inschatting van wat er gebeurt als we belangrijke managementbeslissingen nemen: “Als we het bestelpunt op 10 eenheden zetten en de bestelhoeveelheid op 15 eenheden, kunnen we een serviceniveau verwachten van 89% en een gemiddelde beschikbaarheid van 21 eenheden.” Wat de simulatie voor ons doet, is het blootleggen van de gevolgen van managementbeslissingen op basis van realistische vraagscenario's en solide wiskunde. Het giswerk is weg.

Figuur 2 toont enkele van de innerlijke werkingen van een Monte Carlo-simulatie van een voorraadsysteem in vier panelen. Het systeem gebruikt een Min/Max voorraadbeheerbeleid met Min=10 en Max=25. Nabestellingen zijn niet toegestaan: u heeft het goed of u verliest het bedrijf. Doorlooptijden voor aanvulling zijn meestal 7 dagen, maar soms ook 14. Deze simulatie duurde een jaar.

Het eerste paneel toont een complex willekeurig vraagscenario waarin er geen vraag is in het weekend, maar de vraag over het algemeen elke dag toeneemt van maandag tot en met vrijdag. Het tweede paneel toont het willekeurige aantal beschikbare eenheden, dat ebt en vloeit met elke aanvullingscyclus. Het derde paneel toont de willekeurige groottes en tijdstippen van aanvullingsorders die binnenkomen van de leverancier. Het laatste paneel toont de onbevredigde vraag die de klantrelaties in gevaar brengt. Dit soort detail kan erg handig zijn om inzicht te krijgen in de dynamiek van een voorraadsysteem.

Statistische bootstrapping en Monte Carlo-simulatie 2

Figuur 2: Details van een Monte Carlo-simulatie

 

Figuur 2 toont slechts een van de talloze manieren waarop het jaar zou kunnen verlopen. Over het algemeen willen we de resultaten van vele gesimuleerde jaren middelen. Niemand zou tenslotte een munt opgooien om te beslissen of het een eerlijke munt was. Figuur 3 laat zien hoe vier key performance metrics (KPI's) van jaar tot jaar variëren voor dit systeem. Sommige statistieken zijn relatief stabiel in simulaties (Fill Rate), maar andere laten meer relatieve variabiliteit zien (Operating Cost = Holding Cost + Ordering Cost + Shortage Cost). Als we de grafieken bekijken, kunnen we schatten dat de keuzes van Min=10, Max=25 leiden tot gemiddelde bedrijfskosten van ongeveer $3.000 per jaar, een opvullingspercentage van ongeveer 90%, een serviceniveau van ongeveer 75% en een gemiddelde aan Hand van ongeveer 10

Statistische bootstrapping en Monte Carlo-simulatie 3

Figuur 3: Variatie in KPI's berekend over 1000 gesimuleerde jaren

 

Het is nu zelfs mogelijk om een managementvraag van een hoger niveau te beantwoorden. We kunnen verder gaan dan "Wat gebeurt er als ik zus-en-zo doe?" naar “Wat is de best wat ik kan doen om een opvullingspercentage van ten minste 90% voor dit item te bereiken tegen de laagst mogelijke kosten?” De wiskundige  achter deze sprong zit nog een andere sleuteltechnologie genaamd "stochastische optimalisatie", maar we stoppen hier voor nu. Het volstaat te zeggen dat de SIO&P-software van Smart de "ontwerpruimte" van min- en max-waarden kan doorzoeken om automatisch de beste keuze te vinden.

 

Bottom Line-strategieën voor de planning van reserveonderdelen

Het beheer van reserveonderdelen brengt tal van uitdagingen met zich mee, zoals onverwachte storingen, veranderende schema's en inconsistente vraagpatronen. Traditionele prognosemethoden en handmatige benaderingen zijn niet effectief in het omgaan met deze complexiteit. Om deze uitdagingen het hoofd te bieden, schetst deze blog de belangrijkste strategieën die prioriteit geven aan serviceniveaus, probabilistische methoden gebruiken om bestelpunten te berekenen, het voorraadbeleid regelmatig aanpassen en een speciaal planningsproces implementeren om overmatige voorraad te voorkomen. Verken deze strategieën om de inventaris van reserveonderdelen te optimaliseren en de operationele efficiëntie te verbeteren.

Onder aan de streep vooraf

1. Voorraadbeheer is Risicomanagement.

2. Kan risico's niet goed of op schaal beheren subjectieve planning - Noodzaak om service versus kosten te kennen.

3. Dat is het niet variabiliteit van vraag en aanbod dat is het probleem – het is hoe je ermee omgaat.

4. Reserveonderdelen hebben periodieke vraag naar dus traditionele methoden werken niet.

5.Vuistregel benaderingen houden geen rekening met de variabiliteit van de vraag en wijzen voorraad verkeerd toe.

6.Gebruik Service Level Driven Planning  (afwegingen tussen service en kosten) om voorraadbeslissingen te stimuleren.

7.Probabilistisch benaderingen zoals Bootstrapping nauwkeurige schattingen van bestelpunten opleveren.

8.Onderdelen classificeren en wijs doelen op serviceniveau toe per klasse.

9.Kalibreer vaak opnieuw - duizenden onderdelen hebben oude, verouderde bestelpunten.

10.Herstelbare onderdelen speciale behandeling nodig hebben.

 

Concentreer u op de echte grondoorzaken

Bottom Line-strategieën voor de planning van reserveonderdelen Oorzaken

Intermittent Demand

Bottom Line-strategieën voor het plannen van reserveonderdelen met wisselende vraag

 

  • Langzaam bewegend, onregelmatig of sporadisch met een groot percentage nulwaarden.
  • Waarden die niet gelijk zijn aan nul worden willekeurig gemengd – spikes zijn groot en gevarieerd.
  • Is niet klokvormig (de vraag is niet normaal verdeeld rond het gemiddelde.)
  • Ten minste 70% van de onderdelen van een typisch nutsbedrijf wordt met tussenpozen gevraagd.

Bottom Line-strategieën voor de planning van reserveonderdelen 4

 

Normale vraag

Bottom Line-strategieën voor het plannen van reserveonderdelen met wisselende vraag

  • Zeer weinig periodes zonder vraag (uitzondering zijn seizoensgebonden onderdelen.)
  • Vertoont vaak trend-, seizoens- of cyclische patronen.
  • Lagere niveaus van vraagvariabiliteit.
  • Is klokvormig (de vraag is normaal verdeeld rond het gemiddelde.)

Bottom Line-strategieën voor de planning van reserveonderdelen 5

Ga niet af op gemiddelden

Bottom Line-strategieën voor planningsgemiddelden van reserveonderdelen

  • OK voor het bepalen van typisch gebruik gedurende langere tijd.
  • Voorspelt vaak meer "nauwkeurig" dan sommige geavanceerde methoden.
  • Maar... onvoldoende om te bepalen wat je in voorraad moet hebben.

 

Buffer niet met veelvouden van gemiddelden

Voorbeeld: twee even belangrijke onderdelen, dus laten we ze hetzelfde behandelen.
We zullen meer bestellen wanneer Voorraad ≤ 2 x Gem. Levertijd Vraag.

Bottom Line-strategieën voor het plannen van reserveonderdelen met meerdere gemiddelden

 

Gebruik Service Level-afwegingscurven om de veiligheidsvoorraad te berekenen

Bottom Line-strategieën voor het plannen van reserveonderdelen op serviceniveau

Standaard Normale Kansen

OK voor normale vraag. Werkt niet met periodieke vraag!

Bottom Line-strategieën voor het plannen van reserveonderdelen Standaardkansen

 

Gebruik geen normale (klokvormige) verdelingen

  • U krijgt de afwegingscurve verkeerd:

- u richt zich bijvoorbeeld op 95% maar bereikt 85%.

- u richt zich bijvoorbeeld op 99% maar bereikt 91%.

  • Dit is een enorme misser met kostbare implicaties:

– U slaat vaker een voorraad op dan verwacht.

– U begint met het toevoegen van subjectieve buffers ter compensatie en vervolgens met overstock.

– Gebrek aan vertrouwen/twijfelen aan output verlamt de planning.

 

Waarom traditionele methoden mislukken bij intermitterende vraag: 

Traditionele methoden zijn niet ontworpen om kernproblemen in het beheer van reserveonderdelen aan te pakken.

Behoefte: Kansverdeling (niet klokvormig) van vraag over variabele doorlooptijd.

  • Get: Voorspelling van gemiddeld vraag in elke maand, geen totaal over de doorlooptijd.
  • Get: vastgeschroefd model van variabiliteit, meestal het normale model, meestal verkeerd.

Behoefte: blootstelling van afwegingen tussen beschikbaarheid van artikelen en voorraadkosten.

  • Krijg: niets van dit alles; krijg in plaats daarvan veel inconsistente, ad-hocbeslissingen.

 

Gebruik statistische bootstrapping om de verdeling te voorspellen:

Benut vervolgens de distributie om het voorraadbeleid te optimaliseren.

Bottom Line-strategieën voor het plannen van reserveonderdelen Distributie voorspellen

 

Hoe werkt Bootstrapping?

24 maanden historische vraaggegevens.

Bottom Line-strategieën voor het plannen van reserveonderdelen Bootstrapping 1

Bootstrap-scenario's voor een doorlooptijd van 3 maanden.

Bottom Line-strategieën voor het plannen van reserveonderdelen Bootstrapping 2

Bootstrapping bereikt het doel van het serviceniveau met een nauwkeurigheid van bijna 100%!

  • Nationale opslagoperatie.

Taak: voorraadniveaus voorspellen voor 12.000 periodiek gevraagde SKU's op serviceniveaus 95% en 99%

Resultaten:

Op serviceniveau 95% was 95.23% niet op voorraad.

Op serviceniveau 99% was 98.66% niet op voorraad.

Dit betekent dat u kunt vertrouwen op output om verwachtingen te scheppen en met vertrouwen gerichte voorraadaanpassingen door te voeren die de voorraad verlagen en de service verbeteren.

 

Stel doelserviceniveaus in op basis van bestelfrequentie en -omvang

Stel beoogde serviceniveaus in op basis van de bestelfrequentie

 

Herbestelpunten regelmatig opnieuw kalibreren

  • Statische ROP's veroorzaken overschotten en tekorten.
  • Naarmate de doorlooptijd toeneemt, neemt ook de ROP toe en vice versa.
  • Naarmate het gebruik afneemt, moet de ROP dat ook doen en vice versa.
  • Hoe langer u wacht met herijken, hoe groter de onbalans.
  • Bergen onderdelen te vroeg of te laat besteld.
  • Verspilt de tijd van kopers door de verkeerde bestellingen te plaatsen.
  • Wekt wantrouwen in systemen en dwingt gegevenssilo's af.

Herbestelpunten regelmatig opnieuw kalibreren

Doe plannen draaibaar (Onderdelen repareren) Anders

Plan Rotables (onderdelen repareren) anders

 

Overzicht

1. Voorraadbeheer is Risicomanagement.

2. Kan risico's niet goed of op schaal beheren subjectieve planning - Noodzaak om service versus kosten te kennen.

3. Dat is het niet variabiliteit van vraag en aanbod dat is het probleem – het is hoe je ermee omgaat.

4. Reserveonderdelen hebben periodieke vraag naar dus traditionele methoden werken niet.

5.Vuistregel benaderingen houden geen rekening met de variabiliteit van de vraag en wijzen voorraad verkeerd toe.

6.Gebruik Service Level Driven Planning  (afwegingen tussen service en kosten) om voorraadbeslissingen te stimuleren.

7.Probabilistisch benaderingen zoals Bootstrapping nauwkeurige schattingen van bestelpunten opleveren.

8.Onderdelen classificeren en wijs doelen op serviceniveau toe per klasse.

9.Kalibreer vaak opnieuw - duizenden onderdelen hebben oude, verouderde bestelpunten.

10.Herstelbare onderdelen speciale behandeling nodig hebben.

 

Software voor planning van reserveonderdelen

De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

 

 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    Geef overtollige voorraad niet de schuld van "slechte" verkoop-/klantprognoses

    Verkoopprognoses zijn vaak onnauwkeurig, simpelweg omdat het verkoopteam gedwongen wordt een cijfer te geven, ook al weten ze niet echt wat de vraag van hun klanten zal zijn. Laat de verkoopteams verkopen. Doe geen moeite om het spel te spelen van het veinzen van acceptatie van deze voorspellingen als beide partijen (verkoop en toeleveringsketen) weten dat het vaak niets meer is dan een WAG. Doe dit in plaats daarvan:

    • Accepteer variabiliteit in de vraag als een feit van het leven. Ontwikkel een planningsproces dat dat wel doet een betere baan houdt rekening met de variabiliteit van de vraag.
    • Maak afspraken over een niveau van voorraadrisico dat acceptabel is voor groepen artikelen.
    • Zodra het voorraadrisico is overeengekomen, gebruikt u software om een nauwkeurige schatting te maken van de veiligheidsvoorraad die nodig is om de variabiliteit in de vraag tegen te gaan.
    • Ontvang een buy-in. Klanten moeten bereid zijn een hogere prijs per eenheid te betalen om extreem hoge serviceniveaus te kunnen leveren. Verkopers moeten accepteren dat bepaalde items meer kans hebben op backorders als ze prioriteit geven aan voorraadinvesteringen in andere items.
    • Het gebruik van een consensus #safetystock-proces zorgt ervoor dat u goed buffert en de juiste verwachtingen schept bij verkoop, klanten, financiën en toeleveringsketen.

     

    Wanneer u dit doet, verlost u alle partijen van het voorspellingsspel dat ze in de eerste plaats niet konden spelen. U krijgt betere resultaten, zoals hogere serviceniveaus met lagere voorraadkosten. En met veel minder vingerwijzen.

     

     

     

     

    Smart Software kondigt patent van de volgende generatie aan

    Belmont, MA, juni 2023 – Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie, heeft vandaag de toekenning aangekondigd van het Amerikaanse patent 11,656,887, “SYSTEEM EN METHODE OM DE VRAAG TE SIMULEREN EN CONTROLEPARAMETERS VOOR EEN TECHNOLOGIEPLATFORM TE OPTIMALISEREN.”

    Het patent regelt "technische oplossingen voor het analyseren van historische vraaggegevens van middelen in een technologieplatform om het beheer van een geautomatiseerd proces in het platform te vergemakkelijken." Een belangrijke toepassing is het optimaliseren van onderdelenvoorraden.

    Aspecten van de uitvinding omvatten: geavanceerd bootstrap-proces dat een enkele waargenomen tijdreeks van de vraag naar artikelen omzet in een onbeperkt aantal realistische vraagscenario's; A prestatievoorspellingsproces dat Monte Carlo-simulaties uitvoert van een voorgesteld voorraadbeheerbeleid om de prestaties ervan te beoordelen; en een prestatieverbeteringsproces dat gebruikmaakt van het prestatievoorspellingsproces om automatisch de ruimte van alternatieve systeemontwerpen te verkennen om optimale controleparameterwaarden te identificeren, waarbij waarden worden geselecteerd die de bedrijfskosten minimaliseren en tegelijkertijd een beoogd niveau van itembeschikbaarheid garanderen.

    De nieuwe analytische technologie die in het patent wordt beschreven, zal de basis vormen voor de komende release van de volgende generatie (“Gen2”) Slimme Vraagplanner™ en Slimme IP&O™. Huidige klanten en resellers kunnen een preview van Gen2 bekijken door contact op te nemen met hun Smart Software-vertegenwoordiger.

    Het onderzoek dat ten grondslag ligt aan het patent werd door Smart zelf gefinancierd, aangevuld met concurrerende Small Business Innovation Research-subsidies van de Amerikaanse National Science Foundation.

     

    Over Smart Software, Inc.
    Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten als Disney, Arizona Public Service, Ameren en het Amerikaanse Rode Kruis. Smart's Inventory Planning & Optimization Platform, Smart IP&O, geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts, en onze website ook www.smartcorp.com.