De rol van vertrouwen in het vraagvoorspellingsproces Deel 1: Wie vertrouwt u

 

"Ongeacht hoeveel moeite er wordt gestoken in het opleiden van voorspellers en het ontwikkelen van uitgebreide ondersteuningssystemen voor prognoses, besluitvormers zullen de voorspellingen wijzigen of negeren als ze ze niet vertrouwen." — Dilek Onkal, International Journal of Forecasting 38:3 (juli-september 2022), p.802.

De hierboven geciteerde woorden trokken mijn aandacht en leidden tot dit bericht. Degenen met een nerdachtige overtuiging, zoals uw blogger, zijn geneigd prognoses als een statistisch probleem te beschouwen. Hoewel dat duidelijk waar is, begrijpen degenen van een bepaalde leeftijd, zoals uw blogger, dat prognoses ook een sociale activiteit zijn en daarom een grote menselijke component heeft.

Wie vertrouw je?

Vertrouwen is altijd tweerichtingsverkeer, maar laten we aan de kant van de vraagvoorspeller blijven. Welke kenmerken van en acties van voorspellers en vraagplanners bouwen vertrouwen op in hun werk? De hierboven geciteerde professor Onkal besprak academisch onderzoek over dit onderwerp dat teruggaat tot 2006. Ze vatte de resultaten samen van praktijkonderzoeken die belangrijke vertrouwensfactoren identificeerden met betrekking tot de kenmerken van de voorspeller, het prognoseproces en de communicatie over prognoses.

Voorspeller kenmerken

De sleutel tot het opbouwen van vertrouwen onder de gebruikers van prognoses is de perceptie van de competentie en objectiviteit van de voorspeller en vraagplanner. Competentie heeft een wiskundige component, maar veel managers verwarren computervaardigheden met analytische vaardigheden, dus gebruikers van prognosesoftware kunnen deze hindernis meestal nemen. Aangezien de twee echter niet hetzelfde zijn, loont het om de training van uw leverancier op u te nemen en niet alleen de wiskunde maar ook het jargon van uw prognosesoftware te leren. Vertrouwen kan mijns inziens ook worden vergroot door kennis te tonen van de business van het bedrijf.

Objectiviteit is ook een sleutel tot betrouwbaarheid. Het kan ongemakkelijk zijn voor de voorspeller om af en toe in afdelingsruzies terecht te komen, maar die komen naar boven en moeten met tact worden behandeld. Ruzies? Nou, silo's bestaan en kantelen in verschillende richtingen. Verkoopafdelingen geven de voorkeur aan hogere vraagprognoses die de productie verhogen, zodat ze nooit hoeven te zeggen: "Sorry, we zijn vers van dat." Voorraadbeheerders zijn op hun hoede voor prognoses met een hoge vraag, omdat "overmatig enthousiasme" ervoor kan zorgen dat ze de zak vasthouden en op een opgeblazen voorraad zitten.

Soms wordt de voorspeller een de facto scheidsrechter, en moet in deze rol openlijke tekenen van objectiviteit vertonen. Dat kan betekenen dat eerst moet worden erkend dat bij elke managementbeslissing goede dingen moeten worden afgewogen tegen andere goede dingen, bijvoorbeeld productbeschikbaarheid versus gestroomlijnde operaties, en dat de partijen vervolgens moeten worden geholpen om een pijnlijke maar aanvaardbare balans te vinden door de verbanden tussen operationele beslissingen en de belangrijkste prestatiestatistieken aan het licht te brengen. die belangrijk zijn voor mensen als Chief Financial Officers.

Het prognoseproces

Het prognoseproces kan worden beschouwd als drie fasen: gegevensinvoer, berekeningen en uitvoer. In elke fase kunnen acties worden ondernomen om het vertrouwen te vergroten.

 

Wat betreft ingangen:

Het vertrouwen kan worden vergroot als duidelijk relevante invoer op zijn minst wordt erkend als deze niet direct in berekeningen wordt gebruikt. Factoren zoals het sentiment op sociale media en het onderbuikgevoel van regionale verkoopmanagers kunnen dus legitieme onderdelen zijn van een consensusproces voor prognoses. Objectiviteit vereist echter dat deze vermeende winstvoorspellers objectief worden getoetst. Een professioneel prognoseproces kan bijvoorbeeld heel goed een subjectieve aanpassing van statistische prognoses omvatten, maar moet dan ook beoordelen of de aanpassingen uiteindelijk de nauwkeurigheid verbeteren en niet alleen dat sommige mensen zich gehoord voelen.

Wat betreft de tweede fase, berekeningen:

De voorspeller zal worden vertrouwd in de mate dat hij in staat is om meer dan één manier te gebruiken om prognoses te berekenen en vervolgens een goede reden kan verwoorden waarom hij voor de uiteindelijk gebruikte methode heeft gekozen. Daarnaast moet de voorspeller in toegankelijke taal kunnen uitleggen hoe zelfs ingewikkelde technieken hun werk doen. Het is moeilijk om vertrouwen te stellen in een 'black box'-methode die zo ondoorzichtig is dat hij ondoorgrondelijk is. Het belang van verklaarbaarheid wordt nog versterkt door het feit dat de leidinggevende van de voorspeller op zijn beurt in staat moet zijn om de keuze van de gebruikte techniek te verantwoorden. hun leidinggevende.

Exponentiële afvlakking gebruikt bijvoorbeeld deze vergelijking: S(t) = αX(t)+(1-α)S(t-1). Veel voorspellers zijn bekend met deze vergelijking, maar veel voorspellingsgebruikers niet. Er is een verhaal dat de vergelijking verklaart in termen van het gemiddelde van irrelevante "ruis" in de vraaggeschiedenis van een artikel en de noodzaak om een balans te vinden tussen het wegwerken van ruis en het vermogen om te reageren op plotselinge verschuivingen in het niveau van de vraag. De voorspeller die dat verhaal kan vertellen, zal geloofwaardiger zijn. (Mijn eigen versie van dat verhaal gebruikt uitdrukkingen uit de sport, dwz "hoofdvervalsingen" en "jukes". Het vinden van folkachtige analogen die geschikt zijn voor uw specifieke publiek, loont altijd.)

Een laatste punt: best practice vereist dat elke voorspelling vergezeld gaat van een eerlijke beoordeling van de onzekerheid ervan. Een voorspeller die vertrouwen probeert op te bouwen door te specifiek te zijn ("Verkoop volgend kwartaal zal 12.184 eenheden zijn") zal altijd falen. Een voorspeller die zegt: "De verkoop in het volgende kwartaal heeft een kans dat de 90% tussen de 12.000 en 12.300 eenheden valt", zal zowel vaker correct zijn als ook nuttiger voor besluitvormers. Per slot van rekening is prognoses in wezen een taak van risicobeheer, dus de besluitvormer is er het beste mee gediend als hij de risico's kent.

Prognose communicatie:

Overweeg ten slotte de derde fase, communicatie van prognoseresultaten. Onderzoek wijst uit dat voortdurende communicatie met prognosegebruikers vertrouwen opbouwt. Het vermijdt die afschuwelijke, leeglopende momenten waarop een mooi opgemaakt rapport wordt neergeschoten vanwege een fatale fout die had kunnen worden voorzien: "Dit is niet goed omdat je geen rekening hebt gehouden met X, Y of Z" of "We wilden echt u om resultaten opgerold te presenteren naar de top van de producthiërarchieën (of per verkoopregio of per productlijn of…)”.

Zelfs als iedereen op één lijn zit met wat er wordt verwacht, wordt het vertrouwen vergroot door resultaten te presenteren met behulp van goed gemaakte grafische afbeeldingen, met enorme numerieke tabellen als back-up, maar niet als de belangrijkste manier om resultaten te communiceren. Mijn ervaring is dat, net als een apparaat om vergaderingen te controleren, een grafiek meestal veel beter is dan een grote numerieke tabel. Bij een grafiek is ieders aandacht op hetzelfde gericht en zijn veel aspecten van de analyse direct (en letterlijk) zichtbaar. Bij een resultatentabel valt de deelnemerstafel vaak uiteen in nevengesprekken waarin elke stem zich richt op verschillende delen van de tafel.

Onkal vat het onderzoek als volgt samen: "Take-aways voor degenen die prognoses maken en degenen die ze gebruiken, komen samen rond duidelijkheid van communicatie en percepties van competentie en integriteit."

Waar vertrouw je op?

Er is een verwante dimensie van vertrouwen: niet wie vertrouw je, maar wat vertrouw je? Hiermee bedoel ik zowel data als software….  Lees hier het 2e deel van deze Blog “Wat vertrouw je”.  https://smartcorp.com/forecasting/the-role-of-trust-in-the-demand-forecasting-process-part-2-what/