Wat is voorraadplanning? Een kort woordenboek met voorraadgerelateerde termen

Voorraadbeheer betreft het beheer van fysieke goederen, waarbij de nadruk ligt op een nauwkeurige en actuele telling van elk item in de voorraad en waar het zich bevindt, evenals het efficiënt ophalen van items. Relevante technologieën zijn onder meer computerdatabases, streepjescodes, Radio Frequency Identification (RFID) en het gebruik van robots voor het ophalen.

Voorraadbeheer heeft tot doel het door de onderneming gedefinieerde voorraadbeleid uit te voeren. Voorraadbeheer wordt vaak uitgevoerd met behulp van ERP-systemen (Enterprise Resource Planning), die inkooporders, productieorders en rapportage genereren met informatie over de huidige voorraad die aanwezig is, binnenkomt en kan worden besteld.

Voorraadplanning stelt operationele beleidsdetails in, zoals artikelspecifieke bestelpunten en bestelhoeveelheden, en voorspelt de toekomstige vraag en doorlooptijden van leveranciers. Belangrijke componenten van een voorraadplanningsproces zijn onder meer wat-als-scenario's voor het verrekenen van voorhanden voorraad, het analyseren van de invloed van veranderingen in de vraag, doorlooptijden en voorraadbeleid op de bestellingen, en het beheren van uitzonderingen en onvoorziene gebeurtenissen.

Inventory Optimization maakt gebruik van een analytisch proces dat waarden berekent voor voorraadplanningsparameters (bijvoorbeeld bestelpunten en bestelhoeveelheden) die een numeriek doel of 'objectieve functie' optimaliseren zonder een numerieke beperking te schenden. Een objectieve functie zou bijvoorbeeld kunnen zijn om de laagst mogelijke exploitatiekosten voor de voorraad te bereiken (gedefinieerd als de som van de voorraadkosten, de bestelkosten en de tekortkosten), en de beperking zou kunnen zijn om een opvullingspercentage van ten minste 90% te bereiken. Met behulp van een wiskundig model van het voorraadsysteem en waarschijnlijkheidsvoorspellingen van de vraag naar artikelen kan voorraadoptimalisatie snel en automatisch voorstellen hoe duizenden voorraadartikelen het beste kunnen worden beheerd.

Verward over AI en Machine Learning?

Bent u in de war over wat AI is en wat machine learning is? Weet u niet zeker waarom meer weten u zal helpen bij uw werk in voorraadplanning? Wanhoop niet. Het komt wel goed met je, en we laten je zien hoe iets van wat het ook is, nuttig kan zijn.

Wat is en wat niet

Wat is AI en waarin verschilt het van ML? Wat doet iemand tegenwoordig als hij iets wil weten? Ze Googlen het. En als ze dat doen, begint de verwarring.

Eén bron zegt dat de neurale netmethodologie, deep learning genaamd, een subset is van machine learning, een subset van AI. Maar een andere bron zegt dat deep learning al een onderdeel is van AI, omdat het min of meer de manier nabootst waarop de menselijke geest werkt, terwijl machinaal leren dat niet probeert.

Eén bron zegt dat er twee soorten machinaal leren zijn: onder toezicht en zonder toezicht. Een ander zegt dat er vier zijn: onder toezicht, zonder toezicht, semi-onder toezicht en versterking.

Sommigen zeggen dat versterkend leren machinaal leren is; anderen noemen het AI.

Sommigen van ons, traditionalisten, noemen veel ervan ‘statistieken’, hoewel dat niet allemaal zo is.

Bij het benoemen van methoden is veel ruimte voor zowel emotie als verkoopvaardigheid. Als een softwareleverancier denkt dat je de term ‘AI’ wilt horen, kan het zijn dat hij/zij dat voor je zegt, alleen maar om je blij te maken.

Het is beter om je te concentreren op wat er uiteindelijk uitkomt

Je kunt een verwarrende hype vermijden als je je concentreert op het eindresultaat dat je krijgt van een analytische technologie, ongeacht het label ervan. Er zijn verschillende analytische taken die relevant zijn voor voorraadplanners en vraagplanners. Deze omvatten clustering, detectie van afwijkingen, detectie van regimeveranderingen en regressieanalyse. Alle vier de methoden worden gewoonlijk, maar niet altijd, geclassificeerd als methoden voor machinaal leren. Maar hun algoritmen kunnen rechtstreeks uit de klassieke statistiek komen.

Clustering

Clusteren betekent het groeperen van dingen die op elkaar lijken en het distantiëren ervan van dingen die niet op elkaar lijken. Soms is clusteren eenvoudig: om uw klanten geografisch te scheiden, sorteert u ze eenvoudigweg op staat of verkoopregio. Als het probleem niet zo voor de hand liggend is, kun je data- en clusteralgoritmen gebruiken om de klus automatisch te klaren, zelfs als je met enorme datasets te maken hebt.

Figuur 1 illustreert bijvoorbeeld een cluster van “vraagprofielen”, die in dit geval alle artikelen van een klant in negen clusters verdeelt, op basis van de vorm van hun cumulatieve vraagcurven. Cluster 1.1 linksboven bevat items waarvan de vraag is afgenomen, terwijl Cluster 3.1 linksonder items bevat waarvan de vraag is toegenomen. Clusteren kan ook op leveranciers. De keuze van het aantal clusters wordt doorgaans overgelaten aan het oordeel van de gebruiker, maar ML kan die keuze begeleiden. Een gebruiker kan de software bijvoorbeeld de opdracht geven om “mijn onderdelen in vier clusters op te splitsen”, maar het gebruik van ML kan aan het licht brengen dat er in werkelijkheid zes verschillende clusters zijn die de gebruiker moet analyseren. 

 

Verward over AI en Machine Learning-inventarisplanning

Figuur 1: Artikelen clusteren op basis van de vorm van hun cumulatieve vraag

Onregelmatigheidsdetectie

Vraagvoorspelling wordt traditioneel gedaan met behulp van tijdreeksextrapolatie. Eenvoudige exponentiële afvlakking werkt bijvoorbeeld om op elk moment het ‘midden’ van de vraagverdeling te vinden en dat niveau naar voren te projecteren. Als er in het recente verleden echter een plotselinge, eenmalige stijging of daling van de vraag heeft plaatsgevonden, kan die afwijkende waarde een aanzienlijk maar onwelkom effect hebben op de kortetermijnvoorspellingen. Net zo ernstig voor de voorraadplanning, kan de anomalie een buitensporig effect hebben op de schatting van de variabiliteit van de vraag, wat rechtstreeks doorgaat naar de berekening van de veiligheidsvoorraadvereisten.

Planners geven er misschien de voorkeur aan dergelijke afwijkingen op te sporen en te verwijderen (en misschien offline follow-up te doen om de reden voor de vreemdheid te achterhalen). Maar niemand die een grote klus te klaren heeft, zal duizenden vraagdiagrammen visueel willen scannen om uitschieters op te sporen, deze uit de vraaggeschiedenis te verwijderen en vervolgens alles opnieuw te berekenen. De menselijke intelligentie zou dat kunnen doen, maar het menselijk geduld zou spoedig ophouden. Algoritmen voor het detecteren van afwijkingen zouden het werk automatisch kunnen doen met behulp van relatief eenvoudige statistische methoden. Je zou dit ‘kunstmatige intelligentie’ kunnen noemen als je dat wilt.

Detectie van regimewijzigingen

Detectie van regimeveranderingen is als de grote broer van anomaliedetectie. Regimeverandering is een aanhoudende, in plaats van tijdelijke, verschuiving in een of meer aspecten van het karakter van een tijdreeks. Terwijl de detectie van afwijkingen zich gewoonlijk richt op plotselinge verschuivingen in de gemiddelde vraag, kan een regimeverandering verschuivingen in andere kenmerken van de vraag met zich meebrengen, zoals de volatiliteit of de verdelingsvorm ervan.  

Figuur 2 illustreert een extreem voorbeeld van regimeverandering. Rond dag 120 daalde de vraag naar dit artikel op de bodem. Het voorraadbeheerbeleid en de vraagvoorspellingen op basis van de oudere gegevens zouden aan het einde van de vraaggeschiedenis enorm afwijken van de basis.

Verward over AI en Machine Learning Vraagplanning

Figuur 2: Een voorbeeld van extreme regimeverandering in een artikel met een intermitterende vraag

Ook hier kunnen statistische algoritmen worden ontwikkeld om dit probleem op te lossen, en het zou eerlijk zijn om ze ‘machine learning’ of ‘kunstmatige intelligentie’ te noemen als ze daartoe gemotiveerd zijn. Door ML of AI te gebruiken om regimeveranderingen in de vraaggeschiedenis te identificeren, kan software voor vraagplanning automatisch alleen de relevante geschiedenis gebruiken bij het voorspellen, in plaats van handmatig de hoeveelheid geschiedenis te moeten kiezen die in het model moet worden geïntroduceerd. 

Regressie analyse

Regressieanalyse relateert de ene variabele aan de andere via een vergelijking. De verkoop van kozijnen in één maand kan bijvoorbeeld worden voorspeld op basis van bouwvergunningen die een paar maanden eerder zijn afgegeven. Regressieanalyse wordt al meer dan een eeuw beschouwd als onderdeel van de statistiek, maar we kunnen zeggen dat het ‘machine learning’ is, aangezien een algoritme de precieze manier uitwerkt om kennis van de ene variabele om te zetten in een voorspelling van de waarde van een andere.

Overzicht

Het is redelijk om geïnteresseerd te zijn in wat er gebeurt op het gebied van machinaal leren en kunstmatige intelligentie. Hoewel de aandacht die aan ChatGPT en zijn concurrenten wordt besteed interessant is, is deze niet relevant voor de numerieke kant van vraagplanning of voorraadbeheer. De numerieke aspecten van ML en AI zijn potentieel relevant, maar je moet proberen de wolk van hype rond deze methoden te doorzien en je te concentreren op wat ze kunnen doen. Als u de klus kunt klaren met klassieke statistische methoden, kunt u dat misschien ook doen, en vervolgens uw optie uitoefenen om het ML-label op alles wat beweegt te plakken.

 

 

Uitleggen wat 'serviceniveau' betekent in uw voorraadoptimalisatiesoftware

Klanten vragen ons vaak waarom een kousaanbeveling "zo hoog" is. Hier is een vraag die we onlangs ontvingen:

Tijdens onze laatste teamvergadering hebben we enkele items gevonden met abnormale hiaten tussen onze huidige ROP en de door Smart voorgestelde ROP op een 99%-serviceniveau. De zorg is dat het systeem aangeeft dat het bestelpunt fors omhoog zal moeten om een 99%-serviceniveau te halen. Kunt u ons helpen de berekening te begrijpen?

Toen we de gegevens bekeken, was het voor de klant duidelijk dat de door Smart berekende ROP inderdaad klopte. We concludeerden (1) wat ze echt wilden was een veel lager doel voor het serviceniveau en (2) we hadden niet goed uitgelegd wat er werkelijk werd bedoeld met 'serviceniveau'. 

Dus, wat betekent een "99%-serviceniveau" eigenlijk? 

Als het gaat om het doel dat u invoert in uw voorraadoptimalisatiesoftware, betekent dit dat het voorraadniveau voor het artikel in kwestie een kans van 99% heeft om te kunnen vullen wat de klant nodig heeft meteen.  Als u bijvoorbeeld 50 stuks op voorraad heeft, is de kans 99% dat de volgende vraag ergens in het bereik van 0 tot 50 stuks zal vallen.

Wat onze klant bedoelde was dat 99% van de keren dat een klant een bestelling plaatste, dat ook zo was volledig geleverd binnen de door de klant opgegeven levertijd. Met andere woorden, niet per se meteen maar wanneer beloofd.  

Het is duidelijk dat hoe meer tijd u uzelf geeft om aan een klant te leveren, hoe hoger uw serviceniveau zal zijn. Maar dat onderscheid wordt vaak niet expliciet begrepen wanneer nieuwe gebruikers van voorraadoptimalisatiesoftware wat-als-scenario's uitvoeren op verschillende serviceniveaus. En dat kan tot grote verwarring leiden. Het berekenen van serviceniveaus op basis van onmiddellijke voorraadbeschikbaarheid is een hogere norm: moeilijker te halen maar veel competitiever.

Onze productieklanten geven vaak serviceniveaus aan op basis van doorlooptijden aan hun klanten, dus het is niet essentieel voor hen om direct uit het schap te leveren. Onze klanten in de distributie, Maintenance Repair and Operations (MRO) en ruimtes voor reserveonderdelen moeten daarentegen normaal gesproken dezelfde dag of binnen 24 uur verzenden. Voor hen is het een competitieve noodzaak om meteen te verzenden en dit volledig te doen.

Houd bij het invoeren van beoogde serviceniveaus met uw voorraadoptimalisatiesoftware rekening met dit onderscheid. Kies het serviceniveau op basis van het percentage van de tijd dat u de volledige voorraad direct vanaf de plank wilt verzenden.  

Geef tekorten niet de schuld aan problematische doorlooptijden.

Vertragingen in de doorlooptijd en variabiliteit in de levering zijn dagelijkse realiteit in de toeleveringsketen, maar organisaties die voorraad hebben, worden vaak verrast wanneer een leverancier te laat is. Een effectief voorraadplanningsproces omarmt dit feit en ontwikkelt beleid dat effectief rekening houdt met deze onzekerheid. Natuurlijk zullen er momenten zijn dat vertragingen in de doorlooptijd uit het niets opduiken en een tekort veroorzaken. Maar meestal zijn de tekorten het gevolg van:

  1. Het voorraadbeleid (bijv. bestelpunten, veiligheidsvoorraden en min/max-niveaus) niet vaak genoeg berekenen om veranderingen in de doorlooptijd op te vangen. 
  2. Slechte schattingen van de werkelijke doorlooptijd gebruiken, zoals alleen gemiddelden van historische ontvangsten gebruiken of vertrouwen op een offerte van een leverancier.

Kalibreer in plaats daarvan het beleid voor elk afzonderlijk onderdeel tijdens elke planningscyclus om veranderingen in de vraag en doorlooptijden op te vangen. In plaats van alleen uit te gaan van een gemiddelde doorlooptijd, simuleer je de doorlooptijden met behulp van scenario's. Op deze manier houdt het aanbevolen voorraadbeleid rekening met de waarschijnlijkheid dat doorlooptijden hoog zijn en wordt het dienovereenkomstig aangepast. Wanneer u dit doet, identificeert u de benodigde voorraadverhogingen voordat het te laat is. U genereert meer omzet en zorgt voor aanzienlijke verbeteringen in de klanttevredenheid.

Smart Software kondigt patent van de volgende generatie aan

Belmont, MA, juni 2023 – Smart Software, Inc., leverancier van toonaangevende oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie, heeft vandaag de toekenning aangekondigd van het Amerikaanse patent 11,656,887, “SYSTEEM EN METHODE OM DE VRAAG TE SIMULEREN EN CONTROLEPARAMETERS VOOR EEN TECHNOLOGIEPLATFORM TE OPTIMALISEREN.”

Het patent regelt "technische oplossingen voor het analyseren van historische vraaggegevens van middelen in een technologieplatform om het beheer van een geautomatiseerd proces in het platform te vergemakkelijken." Een belangrijke toepassing is het optimaliseren van onderdelenvoorraden.

Aspecten van de uitvinding omvatten: geavanceerd bootstrap-proces dat een enkele waargenomen tijdreeks van de vraag naar artikelen omzet in een onbeperkt aantal realistische vraagscenario's; A prestatievoorspellingsproces dat Monte Carlo-simulaties uitvoert van een voorgesteld voorraadbeheerbeleid om de prestaties ervan te beoordelen; en een prestatieverbeteringsproces dat gebruikmaakt van het prestatievoorspellingsproces om automatisch de ruimte van alternatieve systeemontwerpen te verkennen om optimale controleparameterwaarden te identificeren, waarbij waarden worden geselecteerd die de bedrijfskosten minimaliseren en tegelijkertijd een beoogd niveau van itembeschikbaarheid garanderen.

De nieuwe analytische technologie die in het patent wordt beschreven, zal de basis vormen voor de komende release van de volgende generatie (“Gen2”) Slimme Vraagplanner™ en Slimme IP&O™. Huidige klanten en resellers kunnen een preview van Gen2 bekijken door contact op te nemen met hun Smart Software-vertegenwoordiger.

Het onderzoek dat ten grondslag ligt aan het patent werd door Smart zelf gefinancierd, aangevuld met concurrerende Small Business Innovation Research-subsidies van de Amerikaanse National Science Foundation.

 

Over Smart Software, Inc.
Smart Software, Inc., opgericht in 1981, is toonaangevend in het leveren van bedrijfsbrede oplossingen voor vraagvoorspelling, planning en voorraadoptimalisatie aan bedrijven. De oplossingen voor vraagvoorspelling en voorraadoptimalisatie van Smart Software hebben duizenden gebruikers over de hele wereld geholpen, waaronder klanten als Disney, Arizona Public Service, Ameren en het Amerikaanse Rode Kruis. Smart's Inventory Planning & Optimization Platform, Smart IP&O, geeft vraagplanners de tools om om te gaan met seizoensinvloeden in de verkoop, promoties, nieuwe en verouderde producten, multidimensionale hiërarchieën en af en toe gevraagde serviceonderdelen en kapitaalgoederen. Het biedt voorraadbeheerders ook nauwkeurige schattingen van de optimale voorraad en veiligheidsvoorraad die nodig is om aan toekomstige bestellingen te voldoen en de gewenste serviceniveaus te bereiken. Smart Software heeft zijn hoofdkantoor in Belmont, Massachusetts, en onze website ook www.smartcorp.com.