Bottom Line-strategieën voor de planning van reserveonderdelen

Het beheer van reserveonderdelen brengt tal van uitdagingen met zich mee, zoals onverwachte storingen, veranderende schema's en inconsistente vraagpatronen. Traditionele prognosemethoden en handmatige benaderingen zijn niet effectief in het omgaan met deze complexiteit. Om deze uitdagingen het hoofd te bieden, schetst deze blog de belangrijkste strategieën die prioriteit geven aan serviceniveaus, probabilistische methoden gebruiken om bestelpunten te berekenen, het voorraadbeleid regelmatig aanpassen en een speciaal planningsproces implementeren om overmatige voorraad te voorkomen. Verken deze strategieën om de inventaris van reserveonderdelen te optimaliseren en de operationele efficiëntie te verbeteren.

Onder aan de streep vooraf

1. Voorraadbeheer is Risicomanagement.

2. Kan risico's niet goed of op schaal beheren subjectieve planning - Noodzaak om service versus kosten te kennen.

3. Dat is het niet variabiliteit van vraag en aanbod dat is het probleem – het is hoe je ermee omgaat.

4. Reserveonderdelen hebben periodieke vraag naar dus traditionele methoden werken niet.

5.Vuistregel benaderingen houden geen rekening met de variabiliteit van de vraag en wijzen voorraad verkeerd toe.

6.Gebruik Service Level Driven Planning  (afwegingen tussen service en kosten) om voorraadbeslissingen te stimuleren.

7.Probabilistisch benaderingen zoals Bootstrapping nauwkeurige schattingen van bestelpunten opleveren.

8.Onderdelen classificeren en wijs doelen op serviceniveau toe per klasse.

9.Kalibreer vaak opnieuw - duizenden onderdelen hebben oude, verouderde bestelpunten.

10.Herstelbare onderdelen speciale behandeling nodig hebben.

 

Concentreer u op de echte grondoorzaken

Bottom Line-strategieën voor de planning van reserveonderdelen Oorzaken

Intermittent Demand

Bottom Line-strategieën voor het plannen van reserveonderdelen met wisselende vraag

 

  • Langzaam bewegend, onregelmatig of sporadisch met een groot percentage nulwaarden.
  • Waarden die niet gelijk zijn aan nul worden willekeurig gemengd – spikes zijn groot en gevarieerd.
  • Is niet klokvormig (de vraag is niet normaal verdeeld rond het gemiddelde.)
  • Ten minste 70% van de onderdelen van een typisch nutsbedrijf wordt met tussenpozen gevraagd.

Bottom Line-strategieën voor de planning van reserveonderdelen 4

 

Normale vraag

Bottom Line-strategieën voor het plannen van reserveonderdelen met wisselende vraag

  • Zeer weinig periodes zonder vraag (uitzondering zijn seizoensgebonden onderdelen.)
  • Vertoont vaak trend-, seizoens- of cyclische patronen.
  • Lagere niveaus van vraagvariabiliteit.
  • Is klokvormig (de vraag is normaal verdeeld rond het gemiddelde.)

Bottom Line-strategieën voor de planning van reserveonderdelen 5

Ga niet af op gemiddelden

Bottom Line-strategieën voor planningsgemiddelden van reserveonderdelen

  • OK voor het bepalen van typisch gebruik gedurende langere tijd.
  • Voorspelt vaak meer "nauwkeurig" dan sommige geavanceerde methoden.
  • Maar... onvoldoende om te bepalen wat je in voorraad moet hebben.

 

Buffer niet met veelvouden van gemiddelden

Voorbeeld: twee even belangrijke onderdelen, dus laten we ze hetzelfde behandelen.
We zullen meer bestellen wanneer Voorraad ≤ 2 x Gem. Levertijd Vraag.

Bottom Line-strategieën voor het plannen van reserveonderdelen met meerdere gemiddelden

 

Gebruik Service Level-afwegingscurven om de veiligheidsvoorraad te berekenen

Bottom Line-strategieën voor het plannen van reserveonderdelen op serviceniveau

Standaard Normale Kansen

OK voor normale vraag. Werkt niet met periodieke vraag!

Bottom Line-strategieën voor het plannen van reserveonderdelen Standaardkansen

 

Gebruik geen normale (klokvormige) verdelingen

  • U krijgt de afwegingscurve verkeerd:

- u richt zich bijvoorbeeld op 95% maar bereikt 85%.

- u richt zich bijvoorbeeld op 99% maar bereikt 91%.

  • Dit is een enorme misser met kostbare implicaties:

– U slaat vaker een voorraad op dan verwacht.

– U begint met het toevoegen van subjectieve buffers ter compensatie en vervolgens met overstock.

– Gebrek aan vertrouwen/twijfelen aan output verlamt de planning.

 

Waarom traditionele methoden mislukken bij intermitterende vraag: 

Traditionele methoden zijn niet ontworpen om kernproblemen in het beheer van reserveonderdelen aan te pakken.

Behoefte: Kansverdeling (niet klokvormig) van vraag over variabele doorlooptijd.

  • Get: Voorspelling van gemiddeld vraag in elke maand, geen totaal over de doorlooptijd.
  • Get: vastgeschroefd model van variabiliteit, meestal het normale model, meestal verkeerd.

Behoefte: blootstelling van afwegingen tussen beschikbaarheid van artikelen en voorraadkosten.

  • Krijg: niets van dit alles; krijg in plaats daarvan veel inconsistente, ad-hocbeslissingen.

 

Gebruik statistische bootstrapping om de verdeling te voorspellen:

Benut vervolgens de distributie om het voorraadbeleid te optimaliseren.

Bottom Line-strategieën voor het plannen van reserveonderdelen Distributie voorspellen

 

Hoe werkt Bootstrapping?

24 maanden historische vraaggegevens.

Bottom Line-strategieën voor het plannen van reserveonderdelen Bootstrapping 1

Bootstrap-scenario's voor een doorlooptijd van 3 maanden.

Bottom Line-strategieën voor het plannen van reserveonderdelen Bootstrapping 2

Bootstrapping bereikt het doel van het serviceniveau met een nauwkeurigheid van bijna 100%!

  • Nationale opslagoperatie.

Taak: voorraadniveaus voorspellen voor 12.000 periodiek gevraagde SKU's op serviceniveaus 95% en 99%

Resultaten:

Op serviceniveau 95% was 95.23% niet op voorraad.

Op serviceniveau 99% was 98.66% niet op voorraad.

Dit betekent dat u kunt vertrouwen op output om verwachtingen te scheppen en met vertrouwen gerichte voorraadaanpassingen door te voeren die de voorraad verlagen en de service verbeteren.

 

Stel doelserviceniveaus in op basis van bestelfrequentie en -omvang

Stel beoogde serviceniveaus in op basis van de bestelfrequentie

 

Herbestelpunten regelmatig opnieuw kalibreren

  • Statische ROP's veroorzaken overschotten en tekorten.
  • Naarmate de doorlooptijd toeneemt, neemt ook de ROP toe en vice versa.
  • Naarmate het gebruik afneemt, moet de ROP dat ook doen en vice versa.
  • Hoe langer u wacht met herijken, hoe groter de onbalans.
  • Bergen onderdelen te vroeg of te laat besteld.
  • Verspilt de tijd van kopers door de verkeerde bestellingen te plaatsen.
  • Wekt wantrouwen in systemen en dwingt gegevenssilo's af.

Herbestelpunten regelmatig opnieuw kalibreren

Doe plannen draaibaar (Onderdelen repareren) Anders

Plan Rotables (onderdelen repareren) anders

 

Overzicht

1. Voorraadbeheer is Risicomanagement.

2. Kan risico's niet goed of op schaal beheren subjectieve planning - Noodzaak om service versus kosten te kennen.

3. Dat is het niet variabiliteit van vraag en aanbod dat is het probleem – het is hoe je ermee omgaat.

4. Reserveonderdelen hebben periodieke vraag naar dus traditionele methoden werken niet.

5.Vuistregel benaderingen houden geen rekening met de variabiliteit van de vraag en wijzen voorraad verkeerd toe.

6.Gebruik Service Level Driven Planning  (afwegingen tussen service en kosten) om voorraadbeslissingen te stimuleren.

7.Probabilistisch benaderingen zoals Bootstrapping nauwkeurige schattingen van bestelpunten opleveren.

8.Onderdelen classificeren en wijs doelen op serviceniveau toe per klasse.

9.Kalibreer vaak opnieuw - duizenden onderdelen hebben oude, verouderde bestelpunten.

10.Herstelbare onderdelen speciale behandeling nodig hebben.

 

Software voor planning van reserveonderdelen

De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

 

 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    Top 4 bewegingen wanneer u vermoedt dat software de voorraad opdrijft

    Er wordt ons vaak gevraagd: "Waarom drijft de software de voorraad op?" Het antwoord is dat Smart het in geen van beide richtingen stuurt - de inputs sturen het aan en die inputs worden beheerd door de gebruikers (of beheerders). Hier zijn vier dingen die u kunt doen om de resultaten te krijgen die u verwacht.

    1. Bevestig dat uw serviceniveaudoelen in overeenstemming zijn met wat u wilt voor dat artikel of die groep artikelen. Het instellen van zeer hoge doelen (95% of meer) zal waarschijnlijk de inventaris verhogen als je op een lager niveau hebt rondgereden en het goed vindt om daar te zijn. Het is mogelijk dat u het nieuwe, hogere serviceniveau nog nooit heeft bereikt, maar klanten hebben niet geklaagd. Zoek uit welk serviceniveau heeft gewerkt door historische prestatierapporten te evalueren en stel uw doelen dienovereenkomstig vast. Houd er echter rekening mee dat concurrenten u kunnen verslaan op het gebied van artikelbeschikbaarheid als u de serviceniveaudoelstellingen van uw vader blijft gebruiken.

    2. Zorg ervoor dat uw begrip van "serviceniveau" overeenkomt met de definitie van het softwaresysteem. Mogelijk meet u de prestaties op basis van hoe vaak u verzendt binnen een week na ontvangst van de bestelling van de klant, terwijl de software zich richt op bestelpunten op basis van uw vermogen om meteen te verzenden, niet binnen een week. Het is duidelijk dat de laatste meer inventaris nodig heeft om hetzelfde "serviceniveau" te bereiken. Een 75%-serviceniveau voor dezelfde dag kan bijvoorbeeld overeenkomen met een 90%-serviceniveau voor dezelfde week. In dit geval ben je echt appels met peren aan het vergelijken. Als dit de reden is voor de overtollige voorraad, bepaal dan welk serviceniveau "dezelfde dag" nodig is om u op het door u gewenste serviceniveau "dezelfde week" te krijgen en voer dat in de software in. Het gebruik van het minder strikte doel voor dezelfde dag zal de inventaris doen dalen, soms zeer aanzienlijk.

    3. Evalueer de invoer van de doorlooptijd. We hebben gevallen gezien waarin doorlooptijden waren opgeblazen om oude software te misleiden om de gewenste resultaten te produceren. Moderne software houdt de prestaties van leveranciers bij door hun werkelijke doorlooptijden over meerdere bestellingen vast te leggen, en houdt vervolgens rekening met de doorlooptijdvariabiliteit in simulaties van dagelijkse activiteiten. Pas op als uw doorlooptijden zijn vastgesteld op een waarde die in het verre verleden is bepaald en niet actueel is.

    4. Controleer uw vraagsignaal. U heeft veel historische transacties in uw ERP-systeem die op veel manieren kunnen worden gebruikt om de vraaghistorie te bepalen. Als u signalen gebruikt zoals overboekingen, of als u retouren niet uitsluit, overdrijft u mogelijk de vraag. Besteed wat tijd aan het definiëren van "vraag" op de manier die het meest logisch is voor uw situatie.

    6 observaties over succesvolle vraagvoorspellingsprocessen

    1. Voorspellen is een kunst die een combinatie van professioneel oordeel en objectieve statistische analyse vereist. Succesvolle vraagprognoses vereisen een basisvoorspelling die gebruikmaakt van statistische prognosemethoden. Eenmaal vastgesteld, kan het proces zich richten op hoe u statistische prognoses het beste kunt aanpassen op basis van uw eigen inzichten en zakelijke kennis.

    2. Het prognoseproces is meestal iteratief. Het kan zijn dat u uw aanvankelijke prognose een aantal keer moet verfijnen voordat u tevreden bent. Het is belangrijk om snel en eenvoudig alternatieve prognoses te kunnen genereren en vergelijken. Het volgen van de nauwkeurigheid van deze prognoses in de loop van de tijd, inclusief alternatieven die niet werden gebruikt, helpt het proces te informeren en te verbeteren.

    3. De geloofwaardigheid van prognoses hangt sterk af van grafische vergelijkingen met historische gegevens. Een beeld zegt meer dan duizend woorden, dus geef prognoses altijd weer via direct beschikbare grafische displays met ondersteunende numerieke rapporten.

    4. Een van de belangrijkste technische taken bij prognoses is om de keuze van de prognosetechniek af te stemmen op de aard van de gegevens. Effectieve vraagvoorspellingsprocessen maken gebruik van mogelijkheden die de juiste methode identificeren om te gebruiken. Kenmerken van een datareeks zoals trend, seizoensinvloeden of abrupte niveauverschuivingen suggereren bepaalde technieken in plaats van andere. Een automatische selectie, die automatisch de juiste prognosemethode selecteert en gebruikt, bespaart tijd en zorgt ervoor dat uw basisvoorspelling zo nauwkeurig mogelijk is.

    5. Succesvolle vraagvoorspellingsprocessen werken samen met andere bedrijfsprocessen. Prognoses kunnen bijvoorbeeld een essentiële eerste stap zijn in financiële analyse. Bovendien zijn nauwkeurige prognoses voor verkoop en productvraag fundamentele input voor de processen voor productieplanning en voorraadbeheer van een productiebedrijf.

    6. Een goed planningsproces erkent dat prognoses nooit precies kloppen. Omdat zelfs in het beste prognoseproces een fout sluipt, zijn eerlijke schattingen van de foutmarge en prognosebias een van de nuttigste aanvullingen op een prognose.

     

     

     

     

    Geef overtollige voorraad niet de schuld van "slechte" verkoop-/klantprognoses

    Verkoopprognoses zijn vaak onnauwkeurig, simpelweg omdat het verkoopteam gedwongen wordt een cijfer te geven, ook al weten ze niet echt wat de vraag van hun klanten zal zijn. Laat de verkoopteams verkopen. Doe geen moeite om het spel te spelen van het veinzen van acceptatie van deze voorspellingen als beide partijen (verkoop en toeleveringsketen) weten dat het vaak niets meer is dan een WAG. Doe dit in plaats daarvan:

    • Accepteer variabiliteit in de vraag als een feit van het leven. Ontwikkel een planningsproces dat dat wel doet een betere baan houdt rekening met de variabiliteit van de vraag.
    • Maak afspraken over een niveau van voorraadrisico dat acceptabel is voor groepen artikelen.
    • Zodra het voorraadrisico is overeengekomen, gebruikt u software om een nauwkeurige schatting te maken van de veiligheidsvoorraad die nodig is om de variabiliteit in de vraag tegen te gaan.
    • Ontvang een buy-in. Klanten moeten bereid zijn een hogere prijs per eenheid te betalen om extreem hoge serviceniveaus te kunnen leveren. Verkopers moeten accepteren dat bepaalde items meer kans hebben op backorders als ze prioriteit geven aan voorraadinvesteringen in andere items.
    • Het gebruik van een consensus #safetystock-proces zorgt ervoor dat u goed buffert en de juiste verwachtingen schept bij verkoop, klanten, financiën en toeleveringsketen.

     

    Wanneer u dit doet, verlost u alle partijen van het voorspellingsspel dat ze in de eerste plaats niet konden spelen. U krijgt betere resultaten, zoals hogere serviceniveaus met lagere voorraadkosten. En met veel minder vingerwijzen.

     

     

     

     

    Wat maakt een probabilistische voorspelling?

    Wat is al die heisa rond de term 'probabilistische prognoses'? Is het gewoon een recentere marketingterm die sommige softwareleveranciers en consultants hebben bedacht om innovatie te veinzen? Is er een echt tastbaar verschil in vergelijking met voorgaande "best passende" technieken? Zijn toch niet alle voorspellingen probabilistisch?

    Om deze vraag te beantwoorden, is het nuttig om na te denken over wat de voorspelling u werkelijk vertelt in termen van kansen. Een "goede" voorspelling moet onbevooroordeeld zijn en daarom een 50/50 waarschijnlijkheid opleveren die hoger of lager is dan de werkelijke. Een "slechte" voorspelling zal subjectieve buffers inbouwen (of de voorspelling kunstmatig verlagen) en resulteren in een hoge of lage vraag. Overweeg een verkoper die opzettelijk zijn prognose verlaagt door geen verkopen te rapporteren die hij verwacht te sluiten als 'conservatief'. Hun voorspellingen zullen een negatieve voorspellingsbias hebben, aangezien de werkelijke waarden bijna altijd hoger zullen zijn dan wat ze voorspelden. Overweeg aan de andere kant een klant die een opgeblazen prognose aan zijn fabrikant geeft. Bezorgd over stockouts, overschatten ze de vraag om hun aanbod zeker te stellen. Hun voorspelling zal een positieve bias hebben, aangezien de werkelijke waarden bijna altijd lager zullen zijn dan wat ze voorspelden. 

    Dit soort ééncijferige voorspellingen die hierboven zijn beschreven, zijn problematisch. We verwijzen naar deze voorspellingen als "puntvoorspellingen", omdat ze één punt (of een reeks punten in de tijd) vertegenwoordigen op een plot van wat er in de toekomst zou kunnen gebeuren. Ze geven geen volledig beeld, want om effectieve zakelijke beslissingen te nemen, zoals het bepalen hoeveel voorraad er moet worden opgeslagen of het aantal werknemers dat beschikbaar moet zijn om aan de vraag te voldoen, is gedetailleerde informatie vereist over hoeveel lager of hoger de werkelijke waarde zal zijn! Met andere woorden, u hebt de kansen nodig voor elke mogelijke uitkomst die zich kan voordoen. Dus op zichzelf is de puntvoorspelling niet probabilistisch.   

    Om een probabilistische voorspelling te krijgen, moet u de verdeling van mogelijke eisen rond die voorspelling kennen. Zodra u dit hebt berekend, wordt de voorspelling 'probabilistisch'. Hoe prognosesystemen en beoefenaars zoals vraagplanners, voorraadanalisten, materiaalmanagers en CFO's deze waarschijnlijkheden bepalen, is de kern van de vraag: "wat maakt een prognose probabilistisch?"     

    Normale verdelingen
    De meeste prognoses en de systemen/software die ze produceren, beginnen met een voorspelling van de vraag. Vervolgens berekenen ze het bereik van mogelijke eisen rond die voorspelling door onjuiste theoretische aannames te doen over de verdeling. Als u ooit een "betrouwbaarheidsinterval" in uw voorspellingssoftware hebt gebruikt, is dit gebaseerd op een kansverdeling rond de voorspelling. De manier waarop dit vraagbereik wordt bepaald, is door uit te gaan van een bepaald type distributie. Meestal betekent dit dat we uitgaan van een klokvormige verdeling, ook wel bekend als een normale verdeling. Wanneer de vraag intermitterend is, kunnen sommige systemen voor voorraadoptimalisatie en vraagvoorspelling aannemen dat de vraag Poisson-vormig is. 

    Nadat de prognose is gemaakt, wordt de veronderstelde verdeling rond de vraagprognose gegooid en hebt u uw schatting van kansen voor elke mogelijke vraag - dat wil zeggen, een "probabilistische prognose". Deze schattingen van de vraag en de bijbehorende waarschijnlijkheden kunnen vervolgens worden gebruikt om desgewenst extreme waarden of iets daartussenin te bepalen. De extreme waarden in de bovenste percentielen van de distributie (dwz 92%, 95%, 99%, enz.) worden meestal gebruikt als invoer voor voorraadbeheermodellen. Bestelpunten voor kritieke reserveonderdelen in een elektriciteitsbedrijf kunnen bijvoorbeeld worden gepland op basis van een 99.5%-serviceniveau of zelfs hoger. Terwijl een niet-kritiek serviceonderdeel kan worden gepland op een 85%- of 90%-serviceniveau.

    Het probleem met het maken van aannames over de verdeling is dat je deze kansen verkeerd zult interpreteren. Als de vraag bijvoorbeeld niet normaal verdeeld is, maar u een klokvormige/normale curve op de voorspelling afdwingt, hoe kan het dan dat de kansen onjuist zijn. In het bijzonder wilt u misschien het voorraadniveau weten dat nodig is om een 99%-kans te bereiken dat de voorraad niet opraakt en de normale distributie zal u vertellen om 200 eenheden in voorraad te hebben. Maar als je het vergelijkt met de daadwerkelijke vraag, kom je erachter dat 200 eenheden slechts in 40/50 waarnemingen volledig aan de vraag voldeden. Dus in plaats van een 99%-serviceniveau te krijgen, behaalde u alleen een 80%-serviceniveau! Dit is een gigantische misser die het gevolg is van het proberen een vierkante pin in een rond gat te passen. De misser zou ertoe hebben geleid dat u een onjuiste voorraadvermindering had genomen.

    Empirisch geschatte verdelingen zijn slim
    Om een slimme (lees nauwkeurige) probabilistische voorspelling te maken, moet u eerst de verdeling van de vraag empirisch schatten zonder enige naïeve aannames over de vorm van de verdeling. Smart Software doet dit door tienduizenden gesimuleerde vraag- en doorlooptijdscenario's uit te voeren. Onze oplossing maakt gebruik van gepatenteerde technieken die Monte Carlo-simulatie, statistische bootstrapping en andere methoden bevatten. De scenario's zijn ontworpen om reële onzekerheid en willekeur van zowel vraag als doorlooptijden te simuleren. Actuele historische waarnemingen worden gebruikt als de primaire invoer, maar de oplossing geeft u de mogelijkheid om ook te simuleren van niet-waargenomen waarden. Alleen al omdat 100 eenheden de historische piekvraag was, wil dat nog niet zeggen dat u in de toekomst gegarandeerd op 100 piekt. Nadat de scenario's zijn voltooid, weet u de exacte waarschijnlijkheid voor elke uitkomst. De "punt"-voorspelling wordt dan het middelpunt van die verdeling. Elke toekomstige periode in de tijd wordt uitgedrukt in termen van de kansverdeling die bij die periode hoort.

    Leiders in probabilistische prognoses
    Smart Software, Inc. was twintig jaar geleden het eerste bedrijf dat ooit statistische bootstrapping introduceerde als onderdeel van een commercieel verkrijgbaar softwaresysteem voor vraagvoorspelling. We kregen er destijds een Amerikaans patent voor en werden finalist genoemd in de APICS Corporate Awards of Excellence for Technological Innovation. Ons NSF gesponsord onderzoek die tot deze en andere ontdekkingen leidden, speelden een belangrijke rol bij het bevorderen van prognoses en voorraadoptimalisatie. Wij zetten ons in voor voortdurende innovatie, en dat kunt u ook vind hier meer informatie over ons meest recente patent.