6 observaties over succesvolle vraagvoorspellingsprocessen

1. Voorspellen is een kunst die een combinatie van professioneel oordeel en objectieve statistische analyse vereist. Succesvolle vraagprognoses vereisen een basisvoorspelling die gebruikmaakt van statistische prognosemethoden. Eenmaal vastgesteld, kan het proces zich richten op hoe u statistische prognoses het beste kunt aanpassen op basis van uw eigen inzichten en zakelijke kennis.

2. Het prognoseproces is meestal iteratief. Het kan zijn dat u uw aanvankelijke prognose een aantal keer moet verfijnen voordat u tevreden bent. Het is belangrijk om snel en eenvoudig alternatieve prognoses te kunnen genereren en vergelijken. Het volgen van de nauwkeurigheid van deze prognoses in de loop van de tijd, inclusief alternatieven die niet werden gebruikt, helpt het proces te informeren en te verbeteren.

3. De geloofwaardigheid van prognoses hangt sterk af van grafische vergelijkingen met historische gegevens. Een beeld zegt meer dan duizend woorden, dus geef prognoses altijd weer via direct beschikbare grafische displays met ondersteunende numerieke rapporten.

4. Een van de belangrijkste technische taken bij prognoses is om de keuze van de prognosetechniek af te stemmen op de aard van de gegevens. Effectieve vraagvoorspellingsprocessen maken gebruik van mogelijkheden die de juiste methode identificeren om te gebruiken. Kenmerken van een datareeks zoals trend, seizoensinvloeden of abrupte niveauverschuivingen suggereren bepaalde technieken in plaats van andere. Een automatische selectie, die automatisch de juiste prognosemethode selecteert en gebruikt, bespaart tijd en zorgt ervoor dat uw basisvoorspelling zo nauwkeurig mogelijk is.

5. Succesvolle vraagvoorspellingsprocessen werken samen met andere bedrijfsprocessen. Prognoses kunnen bijvoorbeeld een essentiële eerste stap zijn in financiële analyse. Bovendien zijn nauwkeurige prognoses voor verkoop en productvraag fundamentele input voor de processen voor productieplanning en voorraadbeheer van een productiebedrijf.

6. Een goed planningsproces erkent dat prognoses nooit precies kloppen. Omdat zelfs in het beste prognoseproces een fout sluipt, zijn eerlijke schattingen van de foutmarge en prognosebias een van de nuttigste aanvullingen op een prognose.

 

 

 

 

Geef overtollige voorraad niet de schuld van "slechte" verkoop-/klantprognoses

Verkoopprognoses zijn vaak onnauwkeurig, simpelweg omdat het verkoopteam gedwongen wordt een cijfer te geven, ook al weten ze niet echt wat de vraag van hun klanten zal zijn. Laat de verkoopteams verkopen. Doe geen moeite om het spel te spelen van het veinzen van acceptatie van deze voorspellingen als beide partijen (verkoop en toeleveringsketen) weten dat het vaak niets meer is dan een WAG. Doe dit in plaats daarvan:

  • Accepteer variabiliteit in de vraag als een feit van het leven. Ontwikkel een planningsproces dat dat wel doet een betere baan houdt rekening met de variabiliteit van de vraag.
  • Maak afspraken over een niveau van voorraadrisico dat acceptabel is voor groepen artikelen.
  • Zodra het voorraadrisico is overeengekomen, gebruikt u software om een nauwkeurige schatting te maken van de veiligheidsvoorraad die nodig is om de variabiliteit in de vraag tegen te gaan.
  • Ontvang een buy-in. Klanten moeten bereid zijn een hogere prijs per eenheid te betalen om extreem hoge serviceniveaus te kunnen leveren. Verkopers moeten accepteren dat bepaalde items meer kans hebben op backorders als ze prioriteit geven aan voorraadinvesteringen in andere items.
  • Het gebruik van een consensus #safetystock-proces zorgt ervoor dat u goed buffert en de juiste verwachtingen schept bij verkoop, klanten, financiën en toeleveringsketen.

 

Wanneer u dit doet, verlost u alle partijen van het voorspellingsspel dat ze in de eerste plaats niet konden spelen. U krijgt betere resultaten, zoals hogere serviceniveaus met lagere voorraadkosten. En met veel minder vingerwijzen.

 

 

 

 

Wat maakt een probabilistische voorspelling?

Wat is al die heisa rond de term 'probabilistische prognoses'? Is het gewoon een recentere marketingterm die sommige softwareleveranciers en consultants hebben bedacht om innovatie te veinzen? Is er een echt tastbaar verschil in vergelijking met voorgaande "best passende" technieken? Zijn toch niet alle voorspellingen probabilistisch?

Om deze vraag te beantwoorden, is het nuttig om na te denken over wat de voorspelling u werkelijk vertelt in termen van kansen. Een "goede" voorspelling moet onbevooroordeeld zijn en daarom een 50/50 waarschijnlijkheid opleveren die hoger of lager is dan de werkelijke. Een "slechte" voorspelling zal subjectieve buffers inbouwen (of de voorspelling kunstmatig verlagen) en resulteren in een hoge of lage vraag. Overweeg een verkoper die opzettelijk zijn prognose verlaagt door geen verkopen te rapporteren die hij verwacht te sluiten als 'conservatief'. Hun voorspellingen zullen een negatieve voorspellingsbias hebben, aangezien de werkelijke waarden bijna altijd hoger zullen zijn dan wat ze voorspelden. Overweeg aan de andere kant een klant die een opgeblazen prognose aan zijn fabrikant geeft. Bezorgd over stockouts, overschatten ze de vraag om hun aanbod zeker te stellen. Hun voorspelling zal een positieve bias hebben, aangezien de werkelijke waarden bijna altijd lager zullen zijn dan wat ze voorspelden. 

Dit soort ééncijferige voorspellingen die hierboven zijn beschreven, zijn problematisch. We verwijzen naar deze voorspellingen als "puntvoorspellingen", omdat ze één punt (of een reeks punten in de tijd) vertegenwoordigen op een plot van wat er in de toekomst zou kunnen gebeuren. Ze geven geen volledig beeld, want om effectieve zakelijke beslissingen te nemen, zoals het bepalen hoeveel voorraad er moet worden opgeslagen of het aantal werknemers dat beschikbaar moet zijn om aan de vraag te voldoen, is gedetailleerde informatie vereist over hoeveel lager of hoger de werkelijke waarde zal zijn! Met andere woorden, u hebt de kansen nodig voor elke mogelijke uitkomst die zich kan voordoen. Dus op zichzelf is de puntvoorspelling niet probabilistisch.   

Om een probabilistische voorspelling te krijgen, moet u de verdeling van mogelijke eisen rond die voorspelling kennen. Zodra u dit hebt berekend, wordt de voorspelling 'probabilistisch'. Hoe prognosesystemen en beoefenaars zoals vraagplanners, voorraadanalisten, materiaalmanagers en CFO's deze waarschijnlijkheden bepalen, is de kern van de vraag: "wat maakt een prognose probabilistisch?"     

Normale verdelingen
De meeste prognoses en de systemen/software die ze produceren, beginnen met een voorspelling van de vraag. Vervolgens berekenen ze het bereik van mogelijke eisen rond die voorspelling door onjuiste theoretische aannames te doen over de verdeling. Als u ooit een "betrouwbaarheidsinterval" in uw voorspellingssoftware hebt gebruikt, is dit gebaseerd op een kansverdeling rond de voorspelling. De manier waarop dit vraagbereik wordt bepaald, is door uit te gaan van een bepaald type distributie. Meestal betekent dit dat we uitgaan van een klokvormige verdeling, ook wel bekend als een normale verdeling. Wanneer de vraag intermitterend is, kunnen sommige systemen voor voorraadoptimalisatie en vraagvoorspelling aannemen dat de vraag Poisson-vormig is. 

Nadat de prognose is gemaakt, wordt de veronderstelde verdeling rond de vraagprognose gegooid en hebt u uw schatting van kansen voor elke mogelijke vraag - dat wil zeggen, een "probabilistische prognose". Deze schattingen van de vraag en de bijbehorende waarschijnlijkheden kunnen vervolgens worden gebruikt om desgewenst extreme waarden of iets daartussenin te bepalen. De extreme waarden in de bovenste percentielen van de distributie (dwz 92%, 95%, 99%, enz.) worden meestal gebruikt als invoer voor voorraadbeheermodellen. Bestelpunten voor kritieke reserveonderdelen in een elektriciteitsbedrijf kunnen bijvoorbeeld worden gepland op basis van een 99.5%-serviceniveau of zelfs hoger. Terwijl een niet-kritiek serviceonderdeel kan worden gepland op een 85%- of 90%-serviceniveau.

Het probleem met het maken van aannames over de verdeling is dat je deze kansen verkeerd zult interpreteren. Als de vraag bijvoorbeeld niet normaal verdeeld is, maar u een klokvormige/normale curve op de voorspelling afdwingt, hoe kan het dan dat de kansen onjuist zijn. In het bijzonder wilt u misschien het voorraadniveau weten dat nodig is om een 99%-kans te bereiken dat de voorraad niet opraakt en de normale distributie zal u vertellen om 200 eenheden in voorraad te hebben. Maar als je het vergelijkt met de daadwerkelijke vraag, kom je erachter dat 200 eenheden slechts in 40/50 waarnemingen volledig aan de vraag voldeden. Dus in plaats van een 99%-serviceniveau te krijgen, behaalde u alleen een 80%-serviceniveau! Dit is een gigantische misser die het gevolg is van het proberen een vierkante pin in een rond gat te passen. De misser zou ertoe hebben geleid dat u een onjuiste voorraadvermindering had genomen.

Empirisch geschatte verdelingen zijn slim
Om een slimme (lees nauwkeurige) probabilistische voorspelling te maken, moet u eerst de verdeling van de vraag empirisch schatten zonder enige naïeve aannames over de vorm van de verdeling. Smart Software doet dit door tienduizenden gesimuleerde vraag- en doorlooptijdscenario's uit te voeren. Onze oplossing maakt gebruik van gepatenteerde technieken die Monte Carlo-simulatie, statistische bootstrapping en andere methoden bevatten. De scenario's zijn ontworpen om reële onzekerheid en willekeur van zowel vraag als doorlooptijden te simuleren. Actuele historische waarnemingen worden gebruikt als de primaire invoer, maar de oplossing geeft u de mogelijkheid om ook te simuleren van niet-waargenomen waarden. Alleen al omdat 100 eenheden de historische piekvraag was, wil dat nog niet zeggen dat u in de toekomst gegarandeerd op 100 piekt. Nadat de scenario's zijn voltooid, weet u de exacte waarschijnlijkheid voor elke uitkomst. De "punt"-voorspelling wordt dan het middelpunt van die verdeling. Elke toekomstige periode in de tijd wordt uitgedrukt in termen van de kansverdeling die bij die periode hoort.

Leiders in probabilistische prognoses
Smart Software, Inc. was twintig jaar geleden het eerste bedrijf dat ooit statistische bootstrapping introduceerde als onderdeel van een commercieel verkrijgbaar softwaresysteem voor vraagvoorspelling. We kregen er destijds een Amerikaans patent voor en werden finalist genoemd in de APICS Corporate Awards of Excellence for Technological Innovation. Ons NSF gesponsord onderzoek die tot deze en andere ontdekkingen leidden, speelden een belangrijke rol bij het bevorderen van prognoses en voorraadoptimalisatie. Wij zetten ons in voor voortdurende innovatie, en dat kunt u ook vind hier meer informatie over ons meest recente patent.

 

 

Een praktische gids voor het opzetten van een professioneel prognoseproces

Veel bedrijven die hun prognoseproces willen verbeteren, weten niet waar ze moeten beginnen. Het kan verwarrend zijn om te worstelen met het leren van nieuwe statistische methoden, ervoor zorgen dat gegevens correct zijn gestructureerd en bijgewerkt, het eens worden over wie "eigenaar" is van de prognose, definiëren wat eigendom betekent en meetnauwkeurigheid. Na meer dan veertig jaar oefenen hebben we deze blog geschreven om de belangrijkste focus te schetsen en om u aan te moedigen om het in het begin simpel te houden.

1. Objectiviteit. Begrijp en communiceer eerst dat het proces van vraagplanning en -prognose een oefening in objectiviteit is. De focus ligt op het verkrijgen van input uit verschillende bronnen (stakeholders, klanten, functioneel beheerders, databases, leveranciers, enz.) en het bepalen of die input waarde toevoegt. Als u bijvoorbeeld een statistische prognose overschrijft en 20% aan de projectie toevoegt, moet u er niet zomaar van uitgaan dat u het automatisch goed had. Wees in plaats daarvan objectief en controleer of die opheffing de prognosenauwkeurigheid heeft vergroot of verkleind. Als u merkt dat uw overrides de zaken erger hebben gemaakt, heeft u iets gewonnen: dit informeert het proces en u weet dat u in de toekomst override-beslissingen beter kunt onderzoeken.

2. Teamwerk. Erken dat prognoses en vraagplanning teamsporten zijn. Maak afspraken over wie het team zal aanvoeren. De kapitein is verantwoordelijk voor het maken van de statistische basisprognoses en het toezicht houden op het vraagplanningsproces. Maar de resultaten zijn afhankelijk van het feit of iedereen in het team een positieve bijdrage levert, gegevens verstrekt, alternatieve methoden voorstelt, aannames in twijfel trekt en aanbevolen acties uitvoert. De uiteindelijke resultaten zijn eigendom van het bedrijf en elke afzonderlijke belanghebbende.

3. Meting. Fixeer u niet op benchmarks voor de nauwkeurigheid van prognoses in de branche. Elke SKU heeft zijn eigen niveau van "voorspelbaarheid", en u kunt een aantal moeilijke items beheren. Creëer in plaats daarvan uw eigen benchmarks op basis van een reeks steeds geavanceerdere prognosemethoden. Geavanceerde statistische prognoses lijken in het begin misschien ontmoedigend ingewikkeld, dus begin eenvoudig met een basismethode, zoals het voorspellen van de historische gemiddelde vraag. Meet vervolgens hoe dicht die simpele voorspelling de werkelijk waargenomen vraag benadert. Werk van daaruit verder naar technieken die te maken hebben met complicaties zoals trend en seizoensinvloeden. Meet de voortgang met behulp van nauwkeurigheidsstatistieken die door uw software zijn berekend, zoals de gemiddelde absolute procentuele fout (MAPE). Hierdoor kan uw bedrijf elke prognosecyclus een beetje beter worden.

4. Tempo. Richt u vervolgens op het maken van prognoses tot een op zichzelf staand proces dat niet wordt gecombineerd met het complexe proces van voorraadoptimalisatie. Voorraadbeheer is gebaseerd op een solide vraagvoorspelling, maar is gericht op andere onderwerpen: wat te kopen, wanneer te kopen, minimale bestelhoeveelheden, veiligheidsvoorraden, voorraadniveaus, doorlooptijden van leveranciers, enz. Laat voorraadbeheer later verder gaan . Bouw eerst "voorspellingskracht" op door het voorspellingsproces te creëren, te herzien en te ontwikkelen om een regelmatige cadans te hebben. Wanneer uw proces voldoende volwassen is, kunt u de toenemende snelheid van het bedrijfsleven bijbenen door het tempo van uw prognoseproces te verhogen tot ten minste een maandelijks tempo.

Opmerkingen

Het herzien van het prognoseproces van een bedrijf kan een grote stap zijn. Soms gebeurt het als er personeelsverloop is, soms als er een nieuw ERP-systeem is, soms als er nieuwe prognosesoftware is. Wat de overhaaste gebeurtenis ook is, deze verandering is een kans om het proces dat je eerder had te heroverwegen en te verfijnen. Maar proberen de hele olifant in één keer op te eten is een vergissing. In deze blog hebben we enkele discrete stappen uiteengezet die u kunt nemen om een succesvolle evolutie naar een beter prognoseproces te maken.

 

 

 

 

Bereid uw reserveonderdelenplanning voor op onverwachte schokken

Wist je dat het Benjamin Franklin was die de bliksemafleider uitvond om gebouwen te beschermen tegen blikseminslag? Nu hoeven we ons niet elke dag zorgen te maken over blikseminslagen, maar in het onvoorspelbare zakenklimaat van vandaag moeten we ons wel zorgen maken over verstoringen in de toeleveringsketen, lange doorlooptijden, stijgende rentetarieven en een volatiele vraag. Met al deze uitdagingen is het voor organisaties nog nooit zo belangrijk geweest om het gebruik van onderdelen en voorraadniveaus nauwkeurig te voorspellen en het bevoorradingsbeleid, zoals bestelpunten, veiligheidsvoorraden en bestelhoeveelheden, te optimaliseren. In deze blog onderzoeken we hoe bedrijven gebruik kunnen maken van innovatieve oplossingen, zoals voorraadoptimalisatie en software voor het voorspellen van onderdelen die gebruikmaken van machine learning-algoritmen, probabilistische prognoses en analyses om voorop te blijven lopen en hun toeleveringsketens te beschermen tegen onverwachte schokken.

Planningsoplossingen voor reserveonderdelen
Optimalisatie van reserveonderdelen is een belangrijk aspect van supply chain management voor veel industrieën. Het omvat het beheer van de inventaris van reserveonderdelen om ervoor te zorgen dat ze beschikbaar zijn wanneer dat nodig is, zonder overtollige voorraad die kapitaal en ruimte in beslag kan nemen. Het optimaliseren van de inventaris van reserveonderdelen is een complex proces dat een grondige kennis van gebruikspatronen, doorlooptijden van leveranciers en de kritieke waarde van elk onderdeel voor het bedrijf vereist.

In deze blog zal onze primaire nadruk liggen op het cruciale aspect van voorraadoptimalisatie en vraagvoorspelling. Andere hieronder beschreven benaderingen voor het optimaliseren van reserveonderdelen, zoals voorspellend onderhoud en 3D-printen, Master Data Management en gezamenlijke planning, moeten echter worden onderzocht en waar nodig worden toegepast.

  1. Voorspellend onderhoud: Voorspellende analyses gebruiken om te anticiperen wanneer een onderdeel waarschijnlijk defect raakt en het proactief te vervangen, in plaats van te wachten tot het kapot gaat. Deze aanpak kan bedrijven helpen downtime en onderhoudskosten te verminderen en de algehele effectiviteit van apparatuur te verbeteren.
  2. 3d printen: Dankzij de vooruitgang in de 3D-printtechnologie kunnen bedrijven reserveonderdelen op aanvraag produceren, waardoor er minder voorraad nodig is. Dit bespaart niet alleen ruimte en kosten, maar zorgt er ook voor dat onderdelen beschikbaar zijn wanneer dat nodig is.
  3. Beheer van stamgegevens: Gegevensbeheerplatforms zorgen ervoor dat onderdeelgegevens correct worden geïdentificeerd, gecatalogiseerd, opgeschoond en georganiseerd. Maar al te vaak hebben MRO-organisaties hetzelfde onderdeelnummer onder verschillende SKU's. Deze dubbele onderdelen dienen hetzelfde doel, maar hebben verschillende SKU-nummers nodig om naleving van de regelgeving of veiligheid te garanderen. Een onderdeel dat wordt gebruikt ter ondersteuning van een overheidscontract, kan bijvoorbeeld nodig zijn van een Amerikaanse fabrikant om te blijven voldoen aan de "Buy America"-regelgeving. Het is van cruciaal belang dat deze onderdeelnummers worden geïdentificeerd en, indien mogelijk, worden geconsolideerd in één SKU om voorraadinvesteringen binnen de perken te houden.
  4. Gezamenlijke planning: Door samen te werken met leveranciers en klanten om gegevens, prognoses en vraagplanning te delen, kunnen bedrijven doorlooptijden verkorten, de nauwkeurigheid verbeteren en voorraadniveaus verlagen. Prognoses spelen een essentiële rol in samenwerking, aangezien het delen van inzichten over aankopen, vraag en koopgedrag ervoor zorgt dat leveranciers over de informatie beschikken die ze nodig hebben om ervoor te zorgen dat de voorraad voor klanten beschikbaar is.

Inventory Optimization
Abraham Lincoln werd ooit als volgt geciteerd: "Geef me zes uur om een boom om te hakken, en ik zal de eerste vier uur besteden aan het slijpen van de bijl"? Lincoln wist dat voorbereiding en optimalisatie de sleutel tot succes waren, net zoals organisaties over de juiste tools moeten beschikken, zoals software voor voorraadoptimalisatie, om hun toeleveringsketen te optimaliseren en voorop te blijven lopen in de markt. Met software voor voorraadoptimalisatie kunnen organisaties hun prognosenauwkeurigheid verbeteren, voorraadkosten verlagen, serviceniveaus verbeteren en doorlooptijden verkorten. Lincoln wist dat het slijpen van de bijl nodig was om de klus effectief te klaren zonder overmatige inspanning. Voorraadoptimalisatie zorgt ervoor dat voorraaddollars effectief worden toegewezen aan duizenden onderdelen, waardoor serviceniveaus worden gegarandeerd en overtollige voorraad wordt geminimaliseerd.

Reserveonderdelen spelen een doorslaggevende rol bij het handhaven van de operationele efficiëntie, en het ontbreken van kritieke onderdelen kan leiden tot uitvaltijd en verminderde productiviteit. Door de sporadische aard van de vraag naar reserveonderdelen is het moeilijk te voorspellen wanneer een specifiek onderdeel nodig zal zijn, wat resulteert in het risico van over- of onderbevoorrading, die beide kosten kunnen opleveren voor de organisatie. Bovendien brengt het beheren van doorlooptijden voor reserveonderdelen zijn eigen uitdagingen met zich mee. Sommige onderdelen kunnen lange levertijden hebben, waardoor het nodig is om voldoende voorraad aan te houden om tekorten te voorkomen. Het meenemen van overtollige voorraad kan echter kostbaar zijn en kapitaal en opslagruimte in beslag nemen.

Gezien de talloze uitdagingen waarmee materiaalbeheerafdelingen en planners van reserveonderdelen worden geconfronteerd, is het plannen van de vraag, voorraadniveaus en aanvulling van reserveonderdelen zonder een effectieve oplossing voor voorraadoptimalisatie vergelijkbaar met een poging om een boom om te hakken met een zeer botte bijl! Hoe scherper de bijl, hoe beter uw organisatie deze uitdagingen het hoofd kan bieden.

De bijl van Smart Software is de scherpste
Slimme software voor voorraadoptimalisatie en vraagplanning maakt gebruik van een unieke empirische probabilistische prognosebenadering die resulteert in nauwkeurige prognoses van voorraadbehoeften, zelfs wanneer de vraag met tussenpozen is. Aangezien bijna 90% aan reserve- en serviceonderdelen met tussenpozen is, is een nauwkeurige oplossing vereist om aan dit soort vraag te voldoen. De oplossing van Smart werd gepatenteerd in 2001 en aanvullende innovaties werden onlangs gepatenteerd in mei 2023 (aankondigingen volgen binnenkort!). De oplossing werd bekroond als finalist in de APICS Technological Innovation Category voor zijn rol bij het helpen transformeren van de resource management-industrie.

De rol van intermitterende vraag
Intermitterende vraag komt niet overeen met een simpele normale of klokvormige verdeling die het onmogelijk maakt om nauwkeurig te voorspellen met traditionele, op afvlakking gebaseerde prognosemethoden. Onderdelen en items met intermitterende vraag – ook wel bekend als klonterige, volatiele, variabele of onvoorspelbare vraag – hebben veel nul- of laagvolumewaarden afgewisseld met willekeurige pieken in de vraag die vaak vele malen groter zijn dan het gemiddelde. Dit probleem doet zich vooral voor bij bedrijven die grote voorraden van service- en reserveonderdelen beheren in sectoren zoals luchtvaart, ruimtevaart, energie- en watervoorziening en nutsbedrijven, automobielindustrie, beheer van zware activa, hightech, evenals in MRO (Maintenance, Repair, en revisie).

Scenario analyse
De gepatenteerde en bekroonde technologie van Smart genereert snel tienduizenden mogelijke scenario's van toekomstige vraagreeksen en cumulatieve vraagwaarden over de doorlooptijd van een artikel. Deze scenario's zijn statistisch vergelijkbaar met de geobserveerde gegevens van het artikel en ze leggen de relevante details vast van de intermitterende vraag zonder te vertrouwen op de aannames die gewoonlijk worden gedaan over de aard van vraagverdelingen door traditionele prognosemethoden. Het resultaat is een uiterst nauwkeurige voorspelling van de volledige verdeling van de cumulatieve vraag over de doorlooptijd van een artikel. Het komt erop neer dat bedrijven met de informatie die deze vraagdistributies bieden, eenvoudig veiligheidsvoorraad en voorraadvereisten op serviceniveau kunnen plannen voor duizenden periodiek gevraagde artikelen met een nauwkeurigheid van bijna 100%.

Benefits
Door innovatieve oplossingen van Smart Software te implementeren, zoals SmartForecasts voor statistische prognoses, Demand Planner voor consensusplanning van onderdelen en Inventory Optimization voor het ontwikkelen van nauwkeurige aanvullingsfactoren zoals min/max en veiligheidsvoorraadniveaus, krijgen vooruitstrevende leidinggevenden en planners betere controle over hun bedrijfsvoering van de organisatie. Het zal resulteren in de volgende voordelen:

  1. Verbeterde prognosenauwkeurigheid: Nauwkeurige vraagprognoses zijn van fundamenteel belang voor elke organisatie die zich bezighoudt met voorraadbeheer van reserveonderdelen. Voorraadoptimalisatiesoftware maakt gebruik van geavanceerde algoritmen om historische gebruikspatronen te analyseren, trends te identificeren en toekomstige vraag met een hoge mate van nauwkeurigheid te voorspellen. Met dit niveau van precisie bij prognoses kunnen organisaties het risico van over- of onderbevoorrading van hun reserveonderdelenvoorraad vermijden.
  2. Lagere voorraadkosten: Een grote uitdaging waarmee leiders in de toeleveringsketen worden geconfronteerd bij het beheer van de voorraad van reserveonderdelen, zijn de kosten die gepaard gaan met het te allen tijde aanhouden van een optimale voorraad reserveonderdelen. Door voorraadniveaus te optimaliseren met behulp van moderne technologiesystemen zoals kunstmatige intelligentie (AI), machine learning (ML) en voorspellende analyses, kunnen organisaties de transportkosten verlagen en er tegelijkertijd voor zorgen dat ze voldoende voorraden beschikbaar hebben wanneer dat nodig is.
  3. Verbeterde serviceniveaus: Als het gaat om reparatie- en onderhoudsdiensten, is tijd geld! Downtime als gevolg van de onbeschikbaarheid van kritieke reserveonderdelen kan leiden tot verloren productiviteit en inkomsten voor bedrijven in verschillende sectoren, zoals fabrieken, energieopwekkingsfaciliteiten of datacenters die IT-infrastructuurapparatuur beheren. Het optimaliseren van uw reserveonderdelenvoorraad zorgt ervoor dat u altijd de juiste hoeveelheid bij de hand hebt, waardoor de uitvaltijd die wordt veroorzaakt door het wachten op leveringen van leveranciers wordt verminderd.
  4. Kortere doorlooptijden: Een ander voordeel dat voortvloeit uit nauwkeurige vraagprognoses door middel van moderne magazijntechnologieën, is een kortere doorlooptijd bij levering, wat leidt tot een betere klanttevredenheid, aangezien klanten hun bestellingen sneller zullen ontvangen dan voorheen, waardoor de merkloyaliteit wordt verbeterd. Daarom creëert de toepassing van nieuwe strategieën die worden aangestuurd door AI/ML-tools waarde binnen supply chain-operaties, wat leidt tot meer efficiëntie, niet alleen beperkte reductiekosten, maar ook stroomlijning van processen met betrekking tot onder andere productieplanning en logistieke transportplanning

Conclusie
Door gebruik te maken van software voor voorraadoptimalisatie en vraagplanning kunnen organisaties verschillende uitdagingen overwinnen, zoals verstoringen in de toeleveringsketen, stijgende rentetarieven en volatiele vraag. Hierdoor kunnen ze de kosten verlagen die gepaard gaan met overtollige opslagruimte en verouderde inventarisitems. Door gebruik te maken van geavanceerde algoritmen, verbetert software voor voorraadoptimalisatie de nauwkeurigheid van prognoses, waardoor organisaties kunnen voorkomen dat ze te veel of te weinig voorraad hebben in hun voorraad reserveonderdelen. Bovendien helpt het de voorraadkosten te verlagen door niveaus te optimaliseren en technologieën zoals kunstmatige intelligentie (AI), machine learning (ML) en voorspellende analyses te gebruiken. Verbeterde serviceniveaus worden bereikt doordat organisaties de juiste hoeveelheid reserveonderdelen direct beschikbaar hebben, waardoor downtime als gevolg van het wachten op leveringen wordt verminderd. Bovendien leidt nauwkeurige vraagprognose tot kortere doorlooptijden, waardoor de klanttevredenheid toeneemt en merkloyaliteit wordt bevorderd. Het toepassen van dergelijke strategieën, aangestuurd door AI/ML-tools, verlaagt niet alleen de kosten, maar stroomlijnt ook processen, waaronder productieplanning en logistieke transportplanning, waardoor uiteindelijk de efficiëntiewinst binnen de toeleveringsketen toeneemt.

 

Wit papier:

Wat u moet weten over prognoses en planning van serviceonderdelen

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.