Wat te doen als een statistische prognose geen steek houdt

Soms slaat een statistische prognose gewoon nergens op. Elke voorspeller is er geweest. Ze kunnen dubbel controleren of de gegevens correct zijn ingevoerd of de modelinstellingen bekijken, maar ze blijven zich afvragen waarom de voorspelling er zo anders uitziet dan de vraaggeschiedenis. Wanneer de incidentele voorspelling nergens op slaat, kan dit het vertrouwen in het hele statistische prognoseproces aantasten.

Deze blog zal een leek helpen begrijpen wat de slimme statistische modellen zijn en hoe ze automatisch worden gekozen. Er wordt ingegaan op hoe die keuze soms mislukt, hoe u kunt weten of dat zo is en wat u kunt doen om ervoor te zorgen dat de prognoses altijd gerechtvaardigd kunnen worden. Het is belangrijk om te weten wat u kunt verwachten en hoe u de uitzonderingen kunt opvangen, zodat u kunt vertrouwen op uw prognosesysteem.

 

Hoe methoden automatisch worden gekozen

De criteria om automatisch één statistische methode uit een set te kiezen, zijn gebaseerd op welke methode het dichtst bij het correct voorspellen van de achtergehouden geschiedenis kwam. De eerdere geschiedenis wordt aan elke methode doorgegeven en het resultaat wordt vergeleken met de werkelijke waarden om de methode te vinden die er het dichtst bij in de buurt kwam. Die automatisch gekozen methode krijgt dan alle geschiedenis om de voorspelling te produceren. Bekijk deze blog voor meer informatie over de modelselectie https://smartcorp.com/uncategorized/statistical-forecasting-how-automatic-method-selection-works/

Voor de meeste tijdreeksen kan dit proces trends, seizoensgebondenheid en gemiddeld volume nauwkeurig vastleggen. Maar soms komt een gekozen methode wiskundig het dichtst in de buurt van het voorspellen van de achtergehouden geschiedenis, maar projecteert deze niet op een logische manier. Dat betekent dat de door het systeem geselecteerde methode niet de beste is en voor sommigen "moeilijk te voorspellen"

 

Moeilijk te voorspellen items

Moeilijk te voorspellen items kunnen grote, onvoorspelbare pieken in de vraag hebben, of meestal geen vraag maar willekeurige onregelmatige pieken, of ongebruikelijke recente activiteit. Ruis in de gegevens dwaalt soms willekeurig omhoog of omlaag, en de geautomatiseerde best-pick-methode kan een op hol geslagen trend of een nulpunt voorspellen. Het zal het slechter doen dan gezond verstand en in een klein percentage van een redelijk gevarieerde groep items. U moet deze gevallen dus identificeren en reageren door de prognose te negeren of de invoer van de prognose te wijzigen.

 

Hoe de uitzonderingen te vinden

De beste werkwijze is om de voorspelde items te filteren of te sorteren om de items te identificeren waarvan de som van de prognose voor het volgende jaar aanzienlijk afwijkt van de overeenkomstige geschiedenis van vorig jaar. De prognosesom kan veel lager zijn dan de historie of andersom. Gebruik de meegeleverde statistieken om deze items te identificeren; vervolgens kunt u ervoor kiezen om overschrijvingen toe te passen op de prognose of de prognose-instellingen te wijzigen.

 

Hoe de uitzonderingen op te lossen

Wanneer de voorspelling vreemd lijkt, zal een middelingsmethode, zoals Single Exponential Smoothing of zelfs een eenvoudig gemiddelde met behulp van Freestyle, vaak een redelijkere voorspelling opleveren. Als de trend mogelijk geldig is, kunt u alleen seizoensmethoden verwijderen om een onjuist seizoensresultaat te voorkomen. Of doe het tegenovergestelde en gebruik alleen seizoensmethoden als seizoensgebondenheid wordt verwacht maar niet was geprojecteerd in de standaardprognose. U kunt de wat-als-functies gebruiken om een onbeperkt aantal prognoses te maken, te evalueren en te vergelijken en de instellingen verder te verfijnen totdat u vertrouwd bent met de prognose.

Het opschonen van de geschiedenis, met of zonder wijziging van de automatische methodeselectie, is ook effectief bij het produceren van redelijke voorspellingen. U kunt prognoseparameters insluiten om de hoeveelheid geschiedenis die wordt gebruikt om die items te voorspellen of het aantal perioden dat aan het algoritme is doorgegeven, te verminderen, zodat eerdere, verouderde geschiedenis niet langer in aanmerking wordt genomen. U kunt pieken of dalen in de vraaggeschiedenis bewerken die bekende afwijkingen zijn, zodat ze de uitkomst niet beïnvloeden. U kunt ook samenwerken met het Smart-team om automatische detectie en verwijdering van uitschieters te implementeren, zodat gegevens voordat ze worden voorspeld al zijn opgeschoond van deze afwijkingen.

Als de vraag echt intermitterend is, wordt het bijna onmogelijk om "nauwkeurig" per periode te voorspellen. Als een level-loading-gemiddelde niet acceptabel is, kan het effectief zijn om het artikel af te handelen door een voorraadbeleid in te stellen met een doorlooptijdprognose. U kunt er ook voor kiezen om 'hetzelfde als vorig jaar'-modellen te gebruiken die, hoewel ze niet gevoelig zijn voor nauwkeurigheid, algemeen worden geaccepteerd door het bedrijf gezien de alternatieve prognoses.

Ten slotte, als het item zo recent is geïntroduceerd dat de algoritmen niet genoeg input hebben om nauwkeurig te voorspellen, is een eenvoudige gemiddelde of handmatige voorspelling wellicht het beste. U kunt nieuwe items identificeren door te filteren op het aantal historische perioden.

 

Handmatige selectie van methoden

Zodra u rijen hebt geïdentificeerd waar de prognose niet logisch is voor het menselijk oog, kunt u een kleinere subset van alle methoden kiezen om de prognoserun toe te laten en te vergelijken met de geschiedenis. Met Smart kunt u een beperkte set methoden gebruiken voor slechts één prognoserun of de beperkte set insluiten om te gebruiken voor alle prognoseruns in de toekomst. Verschillende methoden zullen de geschiedenis op verschillende manieren in de toekomst projecteren. Als u een idee heeft van hoe elk werkt, kunt u kiezen welke u wilt toestaan.

 

Vertrouw op uw prognosetool

Hoe meer u Slimme periode-over-periode gebruikt om uw beslissingen over hoe te voorspellen en welke historische gegevens u in overweging moet nemen, vast te leggen, hoe minder vaak u uitzonderingen zult tegenkomen, zoals beschreven in deze blog. Het invoeren van prognoseparameters is een beheersbare taak wanneer u begint met kritieke items of items met een hoge impact. Zelfs als u geen handmatige beslissingen over prognosemethoden insluit, wordt de prognose elke periode opnieuw uitgevoerd met nieuwe gegevens. Dus een item met een oneven resultaat vandaag kan in de loop van de tijd gemakkelijk voorspelbaar worden.

 

 

De rol van vertrouwen in het vraagvoorspellingsproces Deel 2: Wat vertrouwt u

"Ongeacht hoeveel moeite er wordt gestoken in het opleiden van voorspellers en het ontwikkelen van uitgebreide ondersteuningssystemen voor prognoses, besluitvormers zullen de voorspellingen wijzigen of negeren als ze ze niet vertrouwen." — Dilek Onkal, International Journal of Forecasting 38:3 (juli-september 2022), p.802.

De hierboven geciteerde woorden trokken mijn aandacht en leidden tot dit bericht. Degenen met een nerdachtige overtuiging, zoals uw blogger, zijn geneigd prognoses als een statistisch probleem te beschouwen. Hoewel dat duidelijk waar is, begrijpen degenen van een bepaalde leeftijd, zoals uw blogger, dat prognoses ook een sociale activiteit zijn en daarom een grote menselijke component heeft.

Waar vertrouw je op?

Er is een verwante dimensie van vertrouwen: niet wie vertrouw je, maar wat vertrouw je? Hiermee bedoel ik zowel data als software.

Vertrouw op gegevens

Vertrouwen in data ondersteunt het vertrouwen in de voorspeller die de data gebruikt. De meeste van onze klanten hebben hun gegevens in een ERP-systeem staan. Deze gegevens moeten worden begrepen als een belangrijk bedrijfsmiddel. Om de gegevens betrouwbaar te laten zijn, moeten ze de "drie C's" hebben, dwz ze moeten correct, volledig en actueel zijn.

Correctheid is uiteraard fundamenteel. We hadden eens een klant die een nieuw, sterk prognoseproces aan het implementeren was, maar vond dat de resultaten volledig haaks stonden op hun gevoel voor wat er in het bedrijf gebeurde. Het bleek dat verschillende van hun datastromen een factor twee onjuist waren, wat een enorme fout is. Dit vertraagde natuurlijk het implementatieproces totdat ze alle grove fouten in hun vraaggegevens konden identificeren en corrigeren.

Er is een minder voor de hand liggend punt over correctheid. Dat wil zeggen, gegevens zijn willekeurig, dus wat u nu ziet, is waarschijnlijk niet wat u hierna ziet. Het plannen van de productie op basis van de veronderstelling dat de vraag van volgende week precies hetzelfde zal zijn als de vraag van deze week is duidelijk dwaas, maar klassieke op formules gebaseerde voorspellingsmodellen zoals de hierboven genoemde exponentiële afvlakking zullen hetzelfde aantal projecteren over de hele prognosehorizon. Dit is waar op scenario's gebaseerde planning is essentieel om het hoofd te bieden aan de onvermijdelijke fluctuaties in belangrijke variabelen zoals de eisen van klanten en de doorlooptijden van leveranciers.

Volledigheid is de tweede vereiste om gegevens te kunnen vertrouwen. Onze software haalt uiteindelijk veel van zijn waarde uit het blootleggen van de verbanden tussen operationele beslissingen (bijvoorbeeld het selecteren van bestelpunten voor het aanvullen van voorraad) en bedrijfsgerelateerde statistieken zoals voorraadkosten. Toch loopt de implementatie van prognosesoftware vaak vertraging op omdat ergens vraaginformatie beschikbaar is, maar voorraad-, bestel- en/of tekortkosten niet. Of, om nog een recent voorbeeld te noemen: een klant kon slechts de helft van zijn voorraad reserveonderdelen voor repareerbare onderdelen op de juiste maat houden, omdat niemand had bijgehouden wanneer de andere helft kapot ging, wat betekent dat er geen informatie was over de gemiddelde tijd vóór storing (MTBF). , wat betekent dat het niet mogelijk was om het pechgedrag van de helft van de vloot van repareerbare reserveonderdelen te modelleren.

Ten slotte is de valuta van gegevens van belang. Naarmate de snelheid van zakendoen toeneemt en bedrijfsplanningscycli afnemen van een driemaandelijks of maandelijks tempo naar een wekelijks of dagelijks tempo, wordt het wenselijk om de flexibiliteit te benutten die wordt geboden door 's nachts uploads van dagelijkse transactiegegevens naar de cloud. Dit maakt hoogfrequente aanpassingen van prognoses en/of voorraadbeheerparameters mogelijk voor artikelen met een hoge volatiliteit en plotselinge verschuivingen in de vraag. Hoe verser de gegevens, hoe betrouwbaarder de analyse.

Vertrouw op software voor vraagvoorspelling

Zelfs met gegevens van hoge kwaliteit moeten voorspellers nog steeds vertrouwen op de analytische software die de gegevens verwerkt. Dit vertrouwen moet zich uitstrekken tot zowel de software zelf als de computationele omgeving waarin deze functioneert.

Als voorspellers lokale software gebruiken, moeten ze vertrouwen op hun eigen IT-afdelingen om de gegevens te beschermen en beschikbaar te houden voor gebruik. Als ze in plaats daarvan de kracht van cloudgebaseerde analyses willen benutten, moeten klanten hun vertrouwelijke informatie toevertrouwen aan hun softwareleveranciers. Software op professioneel niveau, zoals de onze, rechtvaardigt het vertrouwen van klanten door middel van SOC 2-certificering. SOC 2-certificering is ontwikkeld door het American Institute of CPA's en definieert criteria voor het beheer van klantgegevens op basis van vijf "trustservice-principes": beveiliging, beschikbaarheid, verwerkingsintegriteit, vertrouwelijkheid en privacy.

Hoe zit het met de software zelf? Wat is er nodig om het betrouwbaar te maken? De belangrijkste criteria hierbij zijn de juistheid van algoritmen en functionele betrouwbaarheid. Als de leverancier een professioneel programma-ontwikkelingsproces heeft, is de kans klein dat de software door een programmeerfout uiteindelijk de verkeerde cijfers berekent. En als de leverancier een rigoureus kwaliteitsborgingsproces heeft, is de kans klein dat de software crasht net wanneer de voorspeller een deadline heeft of een pop-upanalyse voor een speciale situatie moet verwerken.

Overzicht

Om bruikbaar te zijn, moeten voorspellers en hun voorspellingen worden vertrouwd door besluitvormers. Dat vertrouwen is afhankelijk van kenmerken van voorspellers en hun processen en communicatie. Het hangt ook af van de kwaliteit van de gegevens en software die worden gebruikt bij het maken van de prognoses.

 

Lees hier het 1e deel van deze Blog “Who do you Trust”: https://smartcorp.com/forecasting/the-role-of-trust-in-the-demand-forecasting-process-part-1-who/

 

 

 

De rol van vertrouwen in het vraagvoorspellingsproces Deel 1: Wie vertrouwt u

 

"Ongeacht hoeveel moeite er wordt gestoken in het opleiden van voorspellers en het ontwikkelen van uitgebreide ondersteuningssystemen voor prognoses, besluitvormers zullen de voorspellingen wijzigen of negeren als ze ze niet vertrouwen." — Dilek Onkal, International Journal of Forecasting 38:3 (juli-september 2022), p.802.

De hierboven geciteerde woorden trokken mijn aandacht en leidden tot dit bericht. Degenen met een nerdachtige overtuiging, zoals uw blogger, zijn geneigd prognoses als een statistisch probleem te beschouwen. Hoewel dat duidelijk waar is, begrijpen degenen van een bepaalde leeftijd, zoals uw blogger, dat prognoses ook een sociale activiteit zijn en daarom een grote menselijke component heeft.

Wie vertrouw je?

Vertrouwen is altijd tweerichtingsverkeer, maar laten we aan de kant van de vraagvoorspeller blijven. Welke kenmerken van en acties van voorspellers en vraagplanners bouwen vertrouwen op in hun werk? De hierboven geciteerde professor Onkal besprak academisch onderzoek over dit onderwerp dat teruggaat tot 2006. Ze vatte de resultaten samen van praktijkonderzoeken die belangrijke vertrouwensfactoren identificeerden met betrekking tot de kenmerken van de voorspeller, het prognoseproces en de communicatie over prognoses.

Voorspeller kenmerken

De sleutel tot het opbouwen van vertrouwen onder de gebruikers van prognoses is de perceptie van de competentie en objectiviteit van de voorspeller en vraagplanner. Competentie heeft een wiskundige component, maar veel managers verwarren computervaardigheden met analytische vaardigheden, dus gebruikers van prognosesoftware kunnen deze hindernis meestal nemen. Aangezien de twee echter niet hetzelfde zijn, loont het om de training van uw leverancier op u te nemen en niet alleen de wiskunde maar ook het jargon van uw prognosesoftware te leren. Vertrouwen kan mijns inziens ook worden vergroot door kennis te tonen van de business van het bedrijf.

Objectiviteit is ook een sleutel tot betrouwbaarheid. Het kan ongemakkelijk zijn voor de voorspeller om af en toe in afdelingsruzies terecht te komen, maar die komen naar boven en moeten met tact worden behandeld. Ruzies? Nou, silo's bestaan en kantelen in verschillende richtingen. Verkoopafdelingen geven de voorkeur aan hogere vraagprognoses die de productie verhogen, zodat ze nooit hoeven te zeggen: "Sorry, we zijn vers van dat." Voorraadbeheerders zijn op hun hoede voor prognoses met een hoge vraag, omdat "overmatig enthousiasme" ervoor kan zorgen dat ze de zak vasthouden en op een opgeblazen voorraad zitten.

Soms wordt de voorspeller een de facto scheidsrechter, en moet in deze rol openlijke tekenen van objectiviteit vertonen. Dat kan betekenen dat eerst moet worden erkend dat bij elke managementbeslissing goede dingen moeten worden afgewogen tegen andere goede dingen, bijvoorbeeld productbeschikbaarheid versus gestroomlijnde operaties, en dat de partijen vervolgens moeten worden geholpen om een pijnlijke maar aanvaardbare balans te vinden door de verbanden tussen operationele beslissingen en de belangrijkste prestatiestatistieken aan het licht te brengen. die belangrijk zijn voor mensen als Chief Financial Officers.

Het prognoseproces

Het prognoseproces kan worden beschouwd als drie fasen: gegevensinvoer, berekeningen en uitvoer. In elke fase kunnen acties worden ondernomen om het vertrouwen te vergroten.

 

Wat betreft ingangen:

Het vertrouwen kan worden vergroot als duidelijk relevante invoer op zijn minst wordt erkend als deze niet direct in berekeningen wordt gebruikt. Factoren zoals het sentiment op sociale media en het onderbuikgevoel van regionale verkoopmanagers kunnen dus legitieme onderdelen zijn van een consensusproces voor prognoses. Objectiviteit vereist echter dat deze vermeende winstvoorspellers objectief worden getoetst. Een professioneel prognoseproces kan bijvoorbeeld heel goed een subjectieve aanpassing van statistische prognoses omvatten, maar moet dan ook beoordelen of de aanpassingen uiteindelijk de nauwkeurigheid verbeteren en niet alleen dat sommige mensen zich gehoord voelen.

Wat betreft de tweede fase, berekeningen:

De voorspeller zal worden vertrouwd in de mate dat hij in staat is om meer dan één manier te gebruiken om prognoses te berekenen en vervolgens een goede reden kan verwoorden waarom hij voor de uiteindelijk gebruikte methode heeft gekozen. Daarnaast moet de voorspeller in toegankelijke taal kunnen uitleggen hoe zelfs ingewikkelde technieken hun werk doen. Het is moeilijk om vertrouwen te stellen in een 'black box'-methode die zo ondoorzichtig is dat hij ondoorgrondelijk is. Het belang van verklaarbaarheid wordt nog versterkt door het feit dat de leidinggevende van de voorspeller op zijn beurt in staat moet zijn om de keuze van de gebruikte techniek te verantwoorden. hun leidinggevende.

Exponentiële afvlakking gebruikt bijvoorbeeld deze vergelijking: S(t) = αX(t)+(1-α)S(t-1). Veel voorspellers zijn bekend met deze vergelijking, maar veel voorspellingsgebruikers niet. Er is een verhaal dat de vergelijking verklaart in termen van het gemiddelde van irrelevante "ruis" in de vraaggeschiedenis van een artikel en de noodzaak om een balans te vinden tussen het wegwerken van ruis en het vermogen om te reageren op plotselinge verschuivingen in het niveau van de vraag. De voorspeller die dat verhaal kan vertellen, zal geloofwaardiger zijn. (Mijn eigen versie van dat verhaal gebruikt uitdrukkingen uit de sport, dwz "hoofdvervalsingen" en "jukes". Het vinden van folkachtige analogen die geschikt zijn voor uw specifieke publiek, loont altijd.)

Een laatste punt: best practice vereist dat elke voorspelling vergezeld gaat van een eerlijke beoordeling van de onzekerheid ervan. Een voorspeller die vertrouwen probeert op te bouwen door te specifiek te zijn ("Verkoop volgend kwartaal zal 12.184 eenheden zijn") zal altijd falen. Een voorspeller die zegt: "De verkoop in het volgende kwartaal heeft een kans dat de 90% tussen de 12.000 en 12.300 eenheden valt", zal zowel vaker correct zijn als ook nuttiger voor besluitvormers. Per slot van rekening is prognoses in wezen een taak van risicobeheer, dus de besluitvormer is er het beste mee gediend als hij de risico's kent.

Prognose communicatie:

Overweeg ten slotte de derde fase, communicatie van prognoseresultaten. Onderzoek wijst uit dat voortdurende communicatie met prognosegebruikers vertrouwen opbouwt. Het vermijdt die afschuwelijke, leeglopende momenten waarop een mooi opgemaakt rapport wordt neergeschoten vanwege een fatale fout die had kunnen worden voorzien: "Dit is niet goed omdat je geen rekening hebt gehouden met X, Y of Z" of "We wilden echt u om resultaten opgerold te presenteren naar de top van de producthiërarchieën (of per verkoopregio of per productlijn of…)”.

Zelfs als iedereen op één lijn zit met wat er wordt verwacht, wordt het vertrouwen vergroot door resultaten te presenteren met behulp van goed gemaakte grafische afbeeldingen, met enorme numerieke tabellen als back-up, maar niet als de belangrijkste manier om resultaten te communiceren. Mijn ervaring is dat, net als een apparaat om vergaderingen te controleren, een grafiek meestal veel beter is dan een grote numerieke tabel. Bij een grafiek is ieders aandacht op hetzelfde gericht en zijn veel aspecten van de analyse direct (en letterlijk) zichtbaar. Bij een resultatentabel valt de deelnemerstafel vaak uiteen in nevengesprekken waarin elke stem zich richt op verschillende delen van de tafel.

Onkal vat het onderzoek als volgt samen: "Take-aways voor degenen die prognoses maken en degenen die ze gebruiken, komen samen rond duidelijkheid van communicatie en percepties van competentie en integriteit."

Waar vertrouw je op?

Er is een verwante dimensie van vertrouwen: niet wie vertrouw je, maar wat vertrouw je? Hiermee bedoel ik zowel data als software….  Lees hier het 2e deel van deze Blog “Wat vertrouw je”.  https://smartcorp.com/forecasting/the-role-of-trust-in-the-demand-forecasting-process-part-2-what/

 

 

 

 

Statistische prognoses: hoe automatische methodeselectie werkt in Smart IP&O

Smart IP&O biedt geautomatiseerde statistische prognoses die de juiste prognosemethode selecteren die de gegevens het beste voorspelt. Het doet dit voor elke tijdreeks in de dataset. Deze blog zal leken helpen begrijpen hoe de voorspellingsmethoden automatisch worden gekozen.

Smart stelt vele methoden beschikbaar, waaronder enkele en dubbele exponentiële afvlakking, lineair en eenvoudig voortschrijdend gemiddelde, en Winters-modellen. Elk model is ontworpen om een ander soort patroon vast te leggen. De criteria om automatisch één statistische methode uit een reeks keuzes te kiezen, zijn gebaseerd op welke methode het dichtst bij het correct voorspellen van de achtergehouden geschiedenis kwam.

Eerdere vraaggeschiedenis wordt aan elke methode doorgegeven en het resultaat wordt vergeleken met de werkelijke waarden om de methode te vinden die er in het algemeen het dichtst bij kwam. Die "winnende" automatisch gekozen methode krijgt dan alle geschiedenis voor dat item om de prognose te produceren.

De algehele aard van het vraagpatroon voor het item wordt vastgelegd door verschillende delen van de geschiedenis vast te houden, zodat een incidentele uitbijter de keuze van de methode niet onnodig beïnvloedt. U kunt het visualiseren met behulp van het onderstaande diagram, waarin elke rij een 3-periodevoorspelling in de uitgehouden geschiedenis vertegenwoordigt, gebaseerd op verschillende hoeveelheden van de rode eerdere geschiedenis. De varianties van elke pass worden samen gemiddeld om de algemene rangschikking van de methode ten opzichte van alle andere methoden te bepalen.

App voor automatische prognoses en statistische prognoses

Voor de meeste tijdreeksen kan dit proces nauwkeurig trends, seizoensinvloeden en gemiddeld volume vastleggen. Maar soms komt een gekozen methode wiskundig het dichtst in de buurt van het voorspellen van de achtergehouden geschiedenis, maar projecteert deze niet op een logische manier.

Gebruikers kunnen dit corrigeren door de uitzonderingsrapporten en filterfuncties van het systeem te gebruiken om items te identificeren die een beoordeling verdienen. Vervolgens kunnen ze de automatische prognosemethoden configureren waarmee ze voor dat item in aanmerking willen komen.

 

 

Hoeveel tijd zou het kosten om statistische prognoses te berekenen?
De belangrijkste factoren die van invloed zijn op de snelheid van uw prognose-engine 

Hoe lang moet het duren voordat een vraagprognose wordt berekend met behulp van statistische methoden? Deze vraag wordt vaak gesteld door klanten en prospects. Het antwoord hangt er echt van af. Voorspellingsresultaten voor een enkel item kunnen in een oogwenk worden berekend, in slechts enkele honderdsten van een seconde, maar soms kan het zelfs vijf seconden duren. Om de verschillen te begrijpen, is het belangrijk om te begrijpen dat er meer bij komt kijken dan alleen de rekenkundige berekeningen zelf door te spitten. Hier zijn zes factoren die de snelheid van uw prognose-engine beïnvloeden.

1) Prognosemethode.  Traditionele tijdreeks-extrapolatieve technieken (zoals exponentiële afvlakking en voortschrijdend-gemiddeldemethoden) zijn, mits slim gecodeerd, razendsnel. De automatische prognose-engine Smart Forecast, die gebruikmaakt van deze technieken en onze software voor vraagplanning en voorraadoptimalisatie aandrijft, kan bijvoorbeeld in 1 seconde statistische prognoses voor 1000 artikelen genereren! Extrapolatieve methoden produceren een verwachte voorspelling en een samenvattende maatstaf voor de voorspellingsonzekerheid. Complexere modellen in ons platform die probabilistische vraagscenario's genereren, duren echter veel langer bij dezelfde computerbronnen. Dit komt deels omdat ze een veel groter outputvolume creëren, meestal duizenden plausibele toekomstige vraagreeksen. Meer tijd, ja, maar geen tijdverspilling, aangezien deze resultaten veel vollediger zijn en de basis vormen voor downstream-optimalisatie van voorraadbeheerparameters.

2) Computerbronnen.  Hoe meer bronnen u naar de berekening gooit, hoe sneller het zal zijn. Middelen kosten echter geld en het is misschien niet economisch om in deze middelen te investeren. Om bijvoorbeeld bepaalde soorten op machine learning gebaseerde prognoses te laten werken, moet het systeem multithread-berekeningen over meerdere servers uitvoeren om snel resultaten te leveren. Zorg er dus voor dat u de veronderstelde rekenresources en bijbehorende kosten begrijpt. Onze berekeningen vinden plaats in de Amazon Web Services-cloud, dus het is mogelijk om desgewenst voor een groot deel van de parallelle berekeningen te betalen.

3) Aantal tijdreeksen.  Moet u slechts een paar honderd artikelen op één locatie of vele duizenden artikelen op tientallen locaties voorspellen? Hoe groter het aantal combinaties van SKU x Locatie, hoe langer de benodigde tijd. Het is echter mogelijk om de tijd om vraagprognoses te krijgen te verkorten door een betere vraagclassificatie. Het is bijvoorbeeld niet belangrijk om elke combinatie van SKU x Locatie te voorspellen. Moderne software voor vraagplanning kan de gegevens eerst subsetten op basis van volume-/frequentieclassificaties voordat de prognose-engine wordt uitgevoerd. We hebben situaties waargenomen waarin meer dan een miljoen combinaties van SKU x Locatie bestonden, maar waar slechts tien procent vraag naar had in de voorgaande twaalf maanden.

4) Historisch emmeren. Maakt u prognoses met behulp van dagelijkse, wekelijkse of maandelijkse tijdsintervallen? Hoe gedetailleerder de bucketing, hoe meer tijd het kost om statistische prognoses te berekenen. Veel bedrijven zullen zich afvragen: "Waarom zou iemand dagelijks prognoses willen maken?" State-of-the-art software voor vraagvoorspelling kan echter gebruikmaken van dagelijkse gegevens om gelijktijdige dag-van-week- en week-van-maandpatronen te detecteren die anders zouden worden verdoezeld met traditionele maandelijkse vraagbuckets. En de snelheid van zaken blijft toenemen, wat de concurrentiekracht van het traditionele maandelijkse planningstempo bedreigt.

5) Hoeveelheid geschiedenis. Beperkt u het model door alleen de meest recente vraaghistorie in te voeren, of voert u alle beschikbare historie in de vraagvoorspellingssoftware? Hoe meer historie u het model voedt, hoe meer gegevens er moeten worden geanalyseerd en hoe langer het gaat duren.

6) Aanvullende analytische verwerking.  Tot nu toe hebben we ons voorgesteld om de vraaggeschiedenis van items in te voeren en prognoses te krijgen. Maar het proces kan ook aanvullende analytische stappen omvatten die de resultaten kunnen verbeteren. Voorbeelden zijn onder meer:

a) Uitbijterdetectie en -verwijdering om de vervorming te minimaliseren die wordt veroorzaakt door eenmalige gebeurtenissen zoals stormschade.

b) Machine learning dat beslist hoeveel geschiedenis moet worden gebruikt voor elk item door verandering van regime te detecteren.

c) Causale modellering die identificeert hoe veranderingen in vraagbepalende factoren (zoals prijs, rentevoet, klantensentiment, enz.) de toekomstige vraag beïnvloeden.

d) Melding van uitzonderingen die data-analyse gebruikt om ongebruikelijke situaties te identificeren die nadere beoordeling door het management verdienen.

 

De rest van het verhaal. Het is ook van cruciaal belang om te begrijpen dat de tijd om een antwoord te krijgen meer inhoudt dan de snelheid van het voorspellen van berekeningen per se. Gegevens moeten in het geheugen worden geladen voordat de berekening kan beginnen. Zodra de prognoses zijn berekend, moet uw browser de resultaten laden zodat ze op het scherm kunnen worden weergegeven zodat u ermee kunt werken. Als u een product opnieuw voorspelt, kunt u ervoor kiezen om de resultaten op te slaan. Als u werkt met producthiërarchieën (het samenvoegen van artikelprognoses tot productfamilies, families tot productlijnen, enz.), zal de nieuwe prognose de hiërarchie beïnvloeden en moet alles op elkaar worden afgestemd. Dit kost allemaal tijd.

Snel genoeg voor jou? Wanneer u software evalueert om te zien of aan uw behoefte aan snelheid zal worden voldaan, kan dit allemaal worden getest als onderdeel van een proof of concept of proef aangeboden door leveranciers van software voor vraagplanning. Test het uit, en zorg ervoor dat de berekenen, laden en opslaan tijden zijn acceptabel gezien de hoeveelheid gegevens en prognosemethoden die u wilt gebruiken om uw proces te ondersteunen.