Waarom MRO-bedrijven zich zorgen moeten maken over overtollige voorraad

Geven MRO-bedrijven echt prioriteit aan het verminderen van de overtollige voorraad reserveonderdelen? Vanuit organisatorisch oogpunt blijkt uit onze ervaring dat dit niet noodzakelijk het geval is. Discussies in de bestuurskamer gaan doorgaans over het uitbreiden van wagenparken, het verwerven van nieuwe klanten, het voldoen aan Service Level Agreements (SLA's), het moderniseren van de infrastructuur en het maximaliseren van de uptime. In bedrijfstakken waar activa die worden ondersteund door reserveonderdelen honderden miljoenen kosten of aanzienlijke inkomsten genereren (bijvoorbeeld de mijnbouw of de olie- en gassector), doet de waarde van de voorraad nauwelijks de wenkbrauwen fronsen en hebben organisaties de neiging grote hoeveelheden buitensporige voorraden over het hoofd te zien.

Denk eens aan een openbaar vervoersbedrijf. In de meeste grote steden zullen de jaarlijkse operationele budgetten de $3 miljard overschrijden. De kapitaaluitgaven voor treinen, metro's en infrastructuur kunnen jaarlijks honderden miljoenen bedragen. Bijgevolg zal een voorraad reserveonderdelen ter waarde van $150 miljoen wellicht niet de aandacht trekken van de CFO of algemeen directeur, aangezien deze een klein percentage van de balans vertegenwoordigt. Bovendien moeten in op MRO gebaseerde industrieën veel onderdelen de machineparken tien jaar of langer ondersteunen, waardoor extra voorraden een noodzakelijke troef zijn. In sommige sectoren, zoals nutsbedrijven, kan het aanhouden van extra voorraden zelfs gestimuleerd worden om ervoor te zorgen dat de apparatuur in goede staat blijft.

We hebben zorgen over overtollige voorraden zien ontstaan wanneer de magazijnruimte beperkt is. Ik herinner me dat ik aan het begin van mijn carrière getuige was van het spoorwegemplacement van een openbaar vervoersbedrijf, gevuld met verroeste assen met een waarde van meer dan $100.000 per stuk. Mij werd verteld dat de assen moesten worden blootgesteld aan de elementen vanwege onvoldoende magazijnruimte. De opportuniteitskosten die verband houden met de ruimte die wordt ingenomen door extra voorraad worden een overweging wanneer de magazijncapaciteit is uitgeput. De belangrijkste overweging die alle andere beslissingen overtroeft, is hoe de voorraad een hoog serviceniveau voor interne en externe klanten garandeert. Voorraadplanners maken zich veel meer zorgen over terugslag als gevolg van voorraadtekorten dan over overaankopen. Wanneer een ontbrekend onderdeel leidt tot een SLA-schending of het stilleggen van de productielijn, wat resulteert in miljoenen aan boetes en onherstelbare productie-output, is dat begrijpelijk.

Vermogensintensieve bedrijven missen één groot punt. Dat is de extra voorraad isoleert niet tegen stockouts; het draagt eraan bij. Hoe meer eigen risico u heeft, hoe lager uw algehele serviceniveau, omdat het geld dat nodig is om onderdelen te kopen eindig is, en geld uitgegeven aan overtollige voorraad betekent dat er geen contant geld beschikbaar is voor de onderdelen die het nodig hebben. Zelfs door de overheid gefinancierde MRO-bedrijven, zoals nutsbedrijven en transportbedrijven, erkennen nu meer dan ooit de noodzaak om de uitgaven te optimaliseren. Zoals een materiaalmanager deelde: “We kunnen problemen met zakken met contant geld uit Washington niet langer oplossen.” Ze moeten dus meer doen met minder, en zorgen voor een optimale toewijzing over de tienduizenden onderdelen die ze beheren.

Dit is waar state-of-the-art voorraadoptimalisatiesoftware van pas komt, die de benodigde voorraad voor gerichte serviceniveaus voorspelt, identificeert wanneer voorraadniveaus negatieve rendementen opleveren en herschikkingen aanbeveelt voor verbeterde algehele serviceniveaus. Smart Software helpt al tientallen jaren activa-intensieve MRO-gebaseerde bedrijven bij het optimaliseren van de bestelniveaus voor elk onderdeel. Bel ons voor meer informatie. 

 

 

Software voor planning van reserveonderdelen

De prognosesoftware voor serviceonderdelen van Smart IP&O maakt gebruik van een uniek empirisch probabilistische voorspelling nadering die is ontworpen voor intermitterende vraag. Voor verbruikbare reserveonderdelen genereert onze gepatenteerde en APICS-bekroonde methode snel tienduizenden vraagscenario's zonder te vertrouwen op de aannames over de aard van vraagverdelingen die impliciet zijn in traditionele prognosemethoden. Het resultaat zijn zeer nauwkeurige schattingen van veiligheidsvoorraad, bestelpunten en serviceniveaus, wat leidt tot hogere serviceniveaus en lagere voorraadkosten. Voor repareerbare reserveonderdelen, Smart's Reparatie- en retourmodule simuleert nauwkeurig de processen van uitval en reparatie van onderdelen. Het voorspelt downtime, serviceniveaus en voorraadkosten in verband met de huidige roterende pool van reserveonderdelen. Planners weten hoeveel reserveonderdelen ze op voorraad moeten hebben om aan de serviceniveau-eisen op korte en lange termijn te voldoen en, in operationele omstandigheden, of ze moeten wachten tot reparaties zijn voltooid en weer in gebruik moeten worden genomen of dat ze extra servicereserveonderdelen van leveranciers moeten kopen, waardoor onnodige aankopen en reparaties worden vermeden. stilstand van apparatuur.

Neem contact met ons op voor meer informatie over hoe deze functionaliteit onze klanten in de sectoren MRO, buitendienst, nutsvoorzieningen, mijnbouw en openbaar vervoer heeft geholpen hun voorraad te optimaliseren. U kunt de whitepaper hier ook downloaden.

 

 

Whitepaper: wat u moet weten over het voorspellen en plannen van service parts

 

Dit document beschrijft de gepatenteerde methodologie van Smart Software voor het voorspellen van de vraag, safety stocks en bestelpunten voor artikelen zoals service parts en componenten met een wisselende vraag, en geeft verschillende voorbeelden van klantensucces.

 

    Constructief spelen met Digital Twins

    Degenen onder u die actuele onderwerpen volgen, zullen bekend zijn met de term ‘digitale tweeling’. Degenen die het te druk hebben gehad met hun werk, willen misschien verder lezen en bijpraten.

    Wat is een digitale tweeling?

    Hoewel er verschillende definities van digital twin zijn, is er een die goed werkt:

    Een digitale tweeling is een dynamiek virtuele kopie van een fysiek bezit, proces, systeem of omgeving die er hetzelfde uitziet en zich identiek gedraagt als zijn tegenhanger in de echte wereld. Een digitale tweeling neemt gegevens op en repliceert processen dus dat kan mogelijke prestatieresultaten voorspellen en problemen die het echte product zou kunnen ondergaan. [Bron: Unity.com]. Voor meer achtergrondinformatie kunt u terecht op Mckinsey.com.

    Wat is het verschil tussen een digital twin (hierna DT) en een model? In de eerste plaats wordt een ODC verbonden met realtime gegevens om het model te behouden als een actuele weergave van het systeem waarmee u werkt.

    Onze huidige producten zouden we “slow-motion DT's” kunnen noemen, omdat ze meestal worden gebruikt met niet-realtime gegevens (maar geen verouderde gegevens, omdat deze van de ene op de andere dag worden bijgewerkt) en worden toegepast op problemen zoals het plannen van de grondstoffenaankopen voor het volgende kwartaal of het instellen van voorraadparameters voor een maand of langer.

    Gebruiken mensen digital twins in mijn branche?

    Mijn indruk is dat de penetratie van DT's wellicht het hoogst is in de lucht- en ruimtevaart- en nucleaire industrie. De meeste van onze klanten bevinden zich elders: in de productie, distributie en openbare voorzieningen zoals transport en energie. Binnenkort zullen we nieuwe producten aanbieden die dichter bij de strikte definitie van een DT komen die nauw verbonden is met het systeem dat hij vertegenwoordigt.

    DT-voorbeeld

    De meeste gebruikers van Smart Inventory Optimization (SIO) voer de applicatie periodiek uit, meestal maandelijks. SIO analyseert de huidige vraag naar voorraadartikelen en recente doorlooptijden van leveranciers en zet deze om in respectievelijk vraag- en aanbodscenario's. Vervolgens stellen gebruikers interactief (voor individuele artikelen) of automatisch (op schaal) parameters voor voorraadbeheer in die de gewenste gemiddelde prestaties op lange termijn opleveren, waarbij de concurrerende doelen van het minimaliseren van de voorraad in evenwicht worden gebracht en tegelijkertijd een voldoende niveau van artikelbeschikbaarheid wordt gegarandeerd.

    Smart Supply Planner (SSP) reageert op een directere manier op onvoorziene gebeurtenissen. Elke dag kan er een abnormale bestelling plaatsvinden die de vraag doet toenemen, bijvoorbeeld wanneer een nieuwe klant een verrassende eerste voorraadbestelling plaatst. Of een belangrijke leverancier kan een probleem ervaren in zijn fabriek en gedwongen worden de verzending van uw geplande aanvullingsorders uit te stellen. Op de lange termijn worden deze onvoorziene omstandigheden gemiddeld en rechtvaardigen ze de aanbevelingen die uit SIO komen. SSP biedt u echter een manier om op de korte termijn te reageren en kansen te grijpen of kogels te ontwijken.

    In de kern werkt SSP als SIO, in die zin dat het scenariogestuurd is. De verschillen zijn dat het korte planningshorizon gebruikt en real-time initiële omstandigheden gebruikt als basis voor zijn simulaties van de prestaties van voorraadsystemen. Vervolgens zal het realtime aanbevelingen doen voor interventies die de verstoring veroorzaakt door de onvoorziene gebeurtenissen compenseren. Dit omvat onder meer het annuleren of versnellen van aanvullingsorders.

    Overzicht

    Met Digital Twins kunt u plannen ‘in silico’ uitproberen voordat u ze in de fabriek of het magazijn implementeert. De kern bestaat uit wiskundige modellen van uw bedrijfsvoering, maar verbonden met realtime gegevens. Ze bieden een ‘digitale sandbox’ waarin u ideeën kunt uitproberen en direct voorspellingen kunt krijgen over hoe goed ze zullen werken. Veel meer dan een spreadsheet zullen DT's binnenkort het belangrijkste hulpmiddel zijn in uw gereedschapskist voor voorraadplanning.

     

    Speel jij het voorraadraadspel?

    Sommige bedrijven investeren in software om hen te helpen hun voorraad te beheren, of het nu gaat om reserveonderdelen of eindproducten. Maar een verrassend aantal anderen speelt elke dag het Inventory Guessing Game, vertrouwend op een ingebeelde “Golden Gut” of op gewoon geluk om hun inventariscontroleparameters in te stellen. Maar wat voor resultaten verwacht je met die aanpak?

    Hoe goed bent u in het aanvoelen van de juiste waarden? In deze blogpost wordt u uitgedaagd om de beste Min- en Max-waarden voor een notioneel voorraaditem te raden. We laten u de vraaggeschiedenis zien, geven u een paar relevante feiten, waarna u Min- en Max-waarden kunt kiezen en zien hoe goed ze zouden werken. Klaar?

    De uitdaging

    Figuur 1 toont de dagelijkse vraaggeschiedenis van het artikel. De gemiddelde vraag bedraagt 2 eenheden per dag. De doorlooptijd voor het aanvullen is constant 10 dagen (wat onrealistisch is maar in uw voordeel werkt). Bestellingen die niet direct uit voorraad leverbaar zijn, kunnen niet worden nabesteld en gaan verloren. U wilt minimaal een opvullingspercentage van 80% bereiken, maar niet tegen elke prijs. U wilt ook het gemiddelde aantal beschikbare eenheden minimaliseren en toch een opvullingspercentage van ten minste 80% bereiken. Welke Min- en Max-waarden zouden een 80%-opvullingspercentage opleveren met het laagste gemiddelde aantal beschikbare eenheden? [Neem uw antwoorden op, zodat u ze later kunt controleren. De oplossing staat hieronder aan het einde van het artikel.]

    Are You Playing the Inventory Guessing Game-1

    Berekening van de beste min- en max-waarden

    De manier om de beste waarden te bepalen is door een digitale tweeling te gebruiken, ook wel een Monte Carlo-simulatie genoemd. De analyse creëert een groot aantal vraagscenario's en passeert deze door de wiskundige logica van het voorraadbeheersysteem om te zien welke waarden zullen worden overgenomen door de belangrijkste prestatie-indicatoren (KPI's).

    We hebben voor dit probleem een digitale tweeling gebouwd en deze systematisch getest met 1.085 paar Min- en Max-waarden. Voor elk paar hebben we in totaal 100 keer 365 bedrijfsdagen gesimuleerd. Vervolgens hebben we het gemiddelde van de resultaten genomen om de prestaties van het Min/Max-paar te beoordelen in termen van twee KPI's: opvullingspercentage en gemiddelde voorraad.

    Figuur 2 toont de resultaten. De inherente afweging tussen voorraadomvang en opvullingspercentage is duidelijk in de figuur: als je een hoger opvullingspercentage wilt, moet je een grotere voorraad accepteren. Op elk inventarisniveau is er echter een bereik aan opvullingspercentages, dus het is de bedoeling om het Min/Max-paar te vinden dat het hoogste opvullingspercentage oplevert voor een inventaris van een bepaalde grootte.

    Een andere manier om Figuur 2 te interpreteren is door te focussen op de groene stippellijn die het beoogde 80%-opvullingspercentage aangeeft. Er zijn veel Min/Max-paren die in de buurt van het 80%-doel kunnen raken, maar ze verschillen qua voorraadgrootte van ongeveer 6 tot ongeveer 8 eenheden. Figuur 3 zoomt in op dat gebied van Figuur 2 en toont een behoorlijk aantal Min/Max-paren die competitief zijn.

    We hebben de resultaten van alle 1.085 simulaties gesorteerd om te identificeren wat economen de efficiënte grens noemen. De efficiënte grens is de reeks meest efficiënte Min/Max-paren om de wisselwerking tussen opvullingspercentage en aanwezige eenheden te benutten. Dat wil zeggen, het is een lijst met Min/Max-paren die de goedkoopste manier bieden om elk gewenst opvullingspercentage te bereiken, niet alleen 80%. Figuur 4 toont de efficiënte grens voor dit probleem. Van links naar rechts kunt u de laagste prijs aflezen die u zou moeten betalen (gemeten aan de hand van de gemiddelde voorraadgrootte) om het beoogde opvullingspercentage te bereiken. Om bijvoorbeeld een opvullingspercentage van 90% te bereiken, zou u een gemiddelde voorraad van ongeveer 10 eenheden moeten hebben.

    Figuren 2, 3 en 4 tonen resultaten voor verschillende Min/Max-paren, maar geven niet de waarden van Min en Max achter elk punt weer. Tabel 1 toont alle simulatiegegevens: de waarden van Min, Max, gemiddelde beschikbare eenheden en opvullingspercentage. Het antwoord op het raadspel is gemarkeerd in de eerste regel van de tabel: Min=7 en Max=131. Heb je het juiste antwoord gekregen, of iets dat in de buurt komt?2? Heb je misschien de efficiënte grens bereikt?

    Conclusies

    Misschien heb je geluk gehad, of misschien heb je inderdaad een Gouden Darm, maar de kans is groter dat je niet het juiste antwoord hebt gekregen, en nog waarschijnlijker dat je het niet eens hebt geprobeerd. Het vinden van het juiste antwoord is buitengewoon moeilijk zonder de digitale tweeling te gebruiken. Raden is onprofessioneel.

    Een stap verder dan raden is ‘raden en zien’, waarbij u uw gok implementeert en vervolgens een tijdje (maanden?) wacht om te zien of de resultaten u bevallen. Die tactiek is op zijn minst ‘wetenschappelijk’, maar inefficiënt.

    Denk nu eens aan de moeite om de beste (Min,Max) paren voor duizenden items te bepalen. Op die schaal is er zelfs nog minder reden om het inventarisraadspel te spelen. Het juiste antwoord is om het te spelen… Slim3.

    1 Dit antwoord heeft een bonus, omdat het een opvullingspercentage van iets meer dan 80% behaalt bij een lagere gemiddelde voorraadgrootte dan de Min/Max-combinatie die precies 80% bereikte. Met andere woorden: (7,13) bevindt zich op de efficiënte grens.

    2 Omdat deze resultaten afkomstig zijn van een simulatie in plaats van een exacte wiskundige vergelijking, is er een bepaalde foutmarge verbonden aan elk geschat opvullingspercentage en voorraadniveau. Omdat de gemiddelde resultaten echter gebaseerd waren op 100 simulaties over een periode van 365 dagen, zijn de foutmarges echter klein. Over alle experimenten heen waren de gemiddelde standaardfouten in het opvullingspercentage en de gemiddelde voorraad respectievelijk slechts 0,009% en 0,129 eenheden.

    3 Mocht je dit nog niet weten: een van de oprichters van Smart Software was … Charlie Smart.

    Are You Playing the Inventory Guessing Game-111

    Are You Playing the Inventory Guessing Game-Table 1

     

    Vind uw plek op de afwegingscurve

    Evenwichtsoefening

    Bij voorraadbeheer gaat het, net als bij alles, om het balanceren van concurrerende prioriteiten. Wilt u een lean inventaris? Ja! Wil jij kunnen zeggen “Het is op voorraad” als een klant iets wil kopen? Ja!

    Maar kun je het op beide manieren hebben? Slechts tot op zekere hoogte. Als u uw voorraad te agressief aanpast, riskeert u voorraadtekorten. Als je voorraadtekorten uitroeit, creëer je een opgeblazen voorraad. U wordt gedwongen een bevredigend evenwicht te vinden tussen de twee concurrerende doelen: een beperkte voorraad en een hoge beschikbaarheid van artikelen.

    Een balans bereiken

    Hoe breng je dat evenwicht tot stand? Te veel voorraadplanners 'schatten' hun weg naar een of ander antwoord. Of ze bedenken een keer een slim antwoord en hopen dat het een verre houdbaarheidsdatum heeft en blijven het gebruiken terwijl ze zich op andere problemen concentreren. Helaas zullen verschuivingen in de vraag en/of veranderingen in de prestaties van leveranciers en/of verschuivingen in de prioriteiten van uw eigen bedrijf oude voorraadplannen overbodig maken en u weer terugbrengen waar u begon.

    Het is onvermijdelijk dat elk plan een houdbaarheidsdatum heeft en moet worden bijgewerkt. Het is echter zeker niet de beste praktijk om de ene gok door de andere te vervangen. In plaats daarvan zou elke planningscyclus gebruik moeten maken van moderne supply chain-software om giswerk te vervangen door op feiten gebaseerde analyses met behulp van waarschijnlijkheidsberekeningen.

    Ken jezelf

    Het enige dat software niet kan, is een beste antwoord berekenen zonder uw prioriteiten te kennen. Hoeveel prioriteit geeft u aan lean inventory boven artikelbeschikbaarheid? Software voorspelt de voorraad- en beschikbaarheidsniveaus die worden veroorzaakt door de beslissingen die u neemt over het beheer van elk item in uw inventaris, maar alleen u kunt beslissen of een bepaalde reeks belangrijke prestatie-indicatoren consistent is met wat u wilt.

    Weten wat je wilt in algemene zin is gemakkelijk: je wilt alles. Maar weten wat je voorkeur heeft bij het vergelijken van specifieke scenario's is moeilijker. Het helpt om een scala aan realiseerbare mogelijkheden te kunnen zien en na te denken over wat het beste lijkt als ze naast elkaar worden gelegd.

    Zie wat het volgende is

    Supply chain-software kan u inzicht geven in de afwegingscurve. Over het algemeen weet u dat een beperkte voorraad en een hoge beschikbaarheid van artikelen elkaar tegenwerken, maar het zien van artikelspecifieke afwegingscurven verscherpt uw focus.

    Waarom is er een bocht? Omdat u keuzes heeft over hoe u elk item beheert. Als u bijvoorbeeld voortdurend de voorraadstatus controleert, welke waarden wijst u dan toe aan de Min en Max waarden die bepalen wanneer aanvullingen moeten worden besteld en hoeveel er moet worden besteld. De afwegingscurve ontstaat omdat het kiezen van verschillende Min- en Max-waarden leidt tot verschillende niveaus van bij de hand inventaris en verschillende niveaus van artikelbeschikbaarheid, bijvoorbeeld zoals gemeten door vulpercentage.

     

    Een scenario voor analyse

    Om deze ideeën te illustreren, gebruikte ik a digitale tweeling  om in te schatten hoe verschillende waarden van Min en Max in een bepaald scenario zouden presteren. Het scenario concentreerde zich op een fictief reserveonderdeel met een puur willekeurige vraag met een redelijk hoog niveau onderbreking (37% aan dagen zonder vraag). De doorlooptijden voor het aanvullen waren een fluitje van een cent tussen 7 en 14 dagen. De Min- en Max-waarden werden systematisch gevarieerd: Min van 20 tot 40 eenheden, Max van Min+1 eenheden tot 2xMin eenheden. Elk (Min,Max) paar werd in totaal 1000 keer gesimuleerd gedurende 365 dagen gebruik. Vervolgens werden de resultaten gemiddeld om zowel het gemiddelde aantal beschikbare eenheden als het vulpercentage te schatten, dat wil zeggen het percentage van de dagelijkse behoeften waaraan onmiddellijk werd voldaan vanaf voorraad. Als de voorraad niet beschikbaar was, werd deze nabesteld.

     

    Resultaten

    Het experiment leverde twee soorten resultaten op:

    • Grafieken die de relatie tonen tussen de min- en max-waarden en twee belangrijke prestatie-indicatoren: opvullingspercentage en gemiddelde beschikbare eenheden.
    • Een afwegingscurve die laat zien hoe het opvullingspercentage en de beschikbare eenheden met elkaar in evenwicht zijn.

    Figuur 1 toont de beschikbare inventaris als functie van de waarden van Min en Max. Het experiment leverde handniveaus op variërend van bijna 0 tot ongeveer 40 eenheden. Over het algemeen resulteert het constant houden van Min en het verhogen van Max in meer beschikbare eenheden. De relatie met Min is complexer: Max constant houden, Min verhogen voegt eerst de voorraad toe, maar vermindert deze op een gegeven moment.

    Figuur 2 toont het vulpercentage als functie van de waarden Min en Max. Het experiment leverde opvullingspercentages op variërend van bijna 0% tot 100%. Over het algemeen weerspiegelden de functionele relaties tussen het opvullingspercentage en de waarden van Min en Max die in Figuur 1.

    Figuur 3 maakt het belangrijkste punt duidelijk en laat zien hoe het variëren van Min en Max tot een perverse combinatie van de belangrijkste prestatie-indicatoren leidt. Over het algemeen zijn de waarden Min en Max die de beschikbaarheid van artikelen maximaliseren (opvullingspercentage) dezelfde waarden die de voorraadkosten maximaliseren (gemiddelde beschikbare eenheden). Dit algemene patroon wordt weergegeven door de blauwe curve. De experimenten leverden ook enkele uitlopers van de blauwe curve op die verband houden met slechte keuzes voor Min en Max, in de zin dat andere keuzes deze domineren door hetzelfde opvullingspercentage te produceren met een lagere voorraad.

     

    Conclusies

    Figuur 3 maakt duidelijk dat uw keuze voor het beheer van een voorraadartikel u dwingt om voorraadkosten af te wegen tegen de beschikbaarheid van artikelen. Je kunt enkele inefficiënte combinaties van Min- en Max-waarden vermijden, maar je kunt niet aan de afweging ontsnappen.

    De goede kant van deze realiteit is dat je niet hoeft te raden wat er zal gebeuren als je je huidige waarden van Min en Max naar iets anders verandert. De software vertelt u wat de verhuizing u oplevert en wat het u gaat kosten. U kunt uw Guestimator-hoed afzetten en met vertrouwen uw ding doen.

    Figure 1 On Hand Inventory as a function of Min and Max values

    Figuur 1 Voorhanden inventaris als functie van de min- en max-waarden

     

     

    Figure 2 Fill Rate as a function of Min and Max values

    Figuur 2 Vulsnelheid als functie van Min- en Max-waarden

     

     

    Figure 3 Tradeoff curve between Fill Rate and On Hand Inventory

    Figuur 3 Afwegingscurve tussen opvullingspercentage en voorhanden voorraad

     

     

     

    Rechtstreeks naar het brein van de baas – voorraadanalyse en rapportage

    Ik begin met een bekentenis: ik ben een algoritme-man. Mijn hart leeft in de ‘machinekamer’ van onze software, waar razendsnelle berekeningen heen en weer gaan door de AWS-cloud, waardoor vraag- en aanbodscenario’s worden gegenereerd die worden gebruikt als leidraad voor belangrijke beslissingen over vraagvoorspelling en voorraadbeheer.

    Maar ik erken dat het doelwit van al die mooie, woedende berekeningen het brein van de baas is, de persoon die verantwoordelijk is om ervoor te zorgen dat op de meest efficiënte en winstgevende manier aan de vraag van de klant wordt voldaan. Deze blog gaat dus over Smart Operational Analytics (SOA), waarmee rapportages voor het management worden gemaakt. Of, zoals ze in het leger worden genoemd, sit-reps.

    Alle berekeningen die door de planners met behulp van onze software worden begeleid, worden uiteindelijk gedestilleerd in de SOA-rapporten voor het management. De rapporten richten zich op vijf gebieden: voorraadanalyse, voorraadprestaties, voorraadtrends, leveranciersprestaties en vraagafwijkingen.

    Voorraadanalyse

    Deze rapporten houden de huidige voorraadniveaus in de gaten en identificeren gebieden die verbetering behoeven. De nadruk ligt op de huidige voorraadaantallen en hun status (voorhanden, onderweg, in quarantaine), voorraadwisselingen en excessen versus tekorten.

    Voorraadprestaties

    Deze rapporten houden Key Performance Indicators (KPI's) bij, zoals opvullingspercentages, serviceniveaus en voorraadkosten. De analytische berekeningen elders in de software begeleiden u bij het behalen van uw KPI-doelen door Key Performance Predictions (KPP's) te berekenen op basis van aanbevolen instellingen voor bijvoorbeeld bestelpunten en bestelhoeveelheden. Maar soms komen er verrassingen voor, of wordt het operationele beleid niet uitgevoerd zoals aanbevolen, waardoor er altijd enige discrepantie zal zijn tussen KPP's en KPI's.

    Voorraadtrends

    Weten waar de zaken er vandaag voor staan is belangrijk, maar zien waar de zaken zich ontwikkelen is ook waardevol. Deze rapporten onthullen trends in de vraag naar artikelen, voorraadgebeurtenissen, het gemiddelde aantal beschikbare dagen, de gemiddelde verzendtijd en meer.

    Prestaties van leveranciers

    Uw bedrijf kan niet optimaal presteren als uw leveranciers u naar beneden halen. Deze rapporten monitoren de prestaties van leveranciers op het gebied van de nauwkeurigheid en snelheid van het invullen van aanvullingsorders. Als u meerdere leveranciers voor hetzelfde artikel heeft, kunt u deze met elkaar vergelijken.

    Vraagafwijkingen

    Uw gehele voorraadsysteem is vraaggestuurd en alle voorraadbeheerparameters worden berekend na het modelleren van de artikelvraag. Dus als er iets vreemds gebeurt aan de vraagzijde, moet u waakzaam zijn en u voorbereiden op het herberekenen van zaken als min- en max-waarden voor artikelen die zich vreemd beginnen te gedragen.

    Overzicht

    Het eindpunt van alle enorme berekeningen in onze software is het dashboard dat het management laat zien wat er aan de hand is, wat de toekomst biedt en waar de aandacht op moet worden gevestigd. Smart Inventory Analytics is het onderdeel van ons software-ecosysteem gericht op de C-Suite van uw bedrijf.

     Smart Reporting Studio Inventory Management Supply Software

    Figuur 1: Enkele voorbeeldrapportages in grafische vorm

     

    Je moet samenwerken met de algoritmen

    Ruim veertig jaar geleden bestond Smart Software uit drie vrienden die in de kelder van een kerk een bedrijf begonnen te starten. Tegenwoordig is ons team uitgebreid en opereert vanuit meerdere locaties in Massachusetts, New Hampshire en Texas, met teamleden in Engeland, Spanje, Armenië en India. Net als velen van u in uw functie hebben wij manieren gevonden om gedistribueerde teams voor ons en voor u te laten werken.

    Deze notitie gaat over een ander soort teamwerk: de samenwerking tussen u en onze software die binnen handbereik plaatsvindt. Ik schrijf vaak over de software zelf en wat er ‘onder de motorkap’ gebeurt. Deze keer is mijn onderwerp hoe je het beste met de software kunt samenwerken.

    Onze softwaresuite, Smart Inventory Planning and Optimization (Smart IP&O™) is in staat tot zeer gedetailleerde berekeningen van de toekomstige vraag en de voorraadcontroleparameters (bijvoorbeeld bestelpunten en bestelhoeveelheden) die die vraag het meest effectief zouden beheren. Maar om al die kracht optimaal te kunnen benutten, is uw inbreng nodig. Je moet samenwerken met de algoritmen.

    Die interactie kan verschillende vormen aannemen. U kunt beginnen door simpelweg te beoordelen hoe het nu met u gaat. De rapportschrijffuncties in Smart IP&O (Smart Operational Analytics™) kunnen al uw transactiegegevens verzamelen en analyseren om uw Key Performance Indicators (KPI's) te meten, zowel financieel (bijvoorbeeld voorraadinvesteringen) als operationeel (bijvoorbeeld opvullingspercentages).

    De volgende stap zou kunnen zijn om SIO (Smart Inventory Optimization™), de inventarisanalyse binnen SIP&O, te gebruiken om ‘wat-als’-spelletjes met de software te spelen. U kunt zich bijvoorbeeld afvragen: 'Wat als we de bestelhoeveelheid voor artikel 1234 verlagen van 50 naar 40?' De software vermaalt de cijfers om u te laten weten hoe dat zou uitpakken, waarna u reageert. Dit kan handig zijn, maar wat als u 50.000 items moet overwegen? Je zou wat-als-spellen willen doen voor een paar cruciale items, maar niet voor allemaal.

    De echte kracht zit hem in het gebruik van de automatische optimalisatiemogelijkheden in SIO. Hier kunt u op grote schaal samenwerken met de algoritmen. Op basis van uw zakelijke oordeel kunt u “groepen” creëren, dat wil zeggen verzamelingen van items die enkele cruciale kenmerken gemeen hebben. U kunt bijvoorbeeld een groep maken voor 'kritieke reserveonderdelen voor klanten van elektriciteitsbedrijven', bestaande uit 1.200 onderdelen. Vervolgens kunt u, opnieuw op basis van uw zakelijk oordeel, specificeren welke standaard voor de beschikbaarheid van artikelen moet gelden voor alle artikelen in die groep (bijvoorbeeld: “minstens 95% kans dat de voorraad binnen een jaar niet op voorraad is”). Nu kan de software het overnemen en automatisch de beste bestelpunten en bestelhoeveelheden voor elk van deze artikelen berekenen om de gewenste artikelbeschikbaarheid tegen de laagst mogelijke totale kosten te bereiken. En dat, beste lezer, is krachtig teamwerk.