Realidad y fantasía en la optimización de Inventarios multi-escalón

Para la mayoría de los pequeños y medianos fabricantes y distribuidores, la optimización del inventario de un solo nivel o de un solo escalón está a la vanguardia de la práctica logística. La optimización de inventario de niveles múltiples ("MEIO") implica jugar el juego a un nivel aún más alto y, por lo tanto, es mucho menos común. Este blog es el primero de dos. Su objetivo es explicar qué es MEIO, por qué fallan las teorías estándar de MEIO y cómo el modelado probabilístico a través de la simulación de escenarios puede restaurar la realidad del proceso MEIO. El segundo blog mostrará un ejemplo particular.

 

Definición de optimización de inventario

Un sistema de inventario se basa en un conjunto de opciones de diseño.

La primera opción es la política para responder a los desabastecimientos: ¿simplemente pierde la venta ante un competidor o puede convencer al cliente para que acepte un pedido pendiente? Lo primero es más común con los distribuidores que con los fabricantes, pero esto puede no ser una gran elección ya que los clientes pueden dictar la respuesta.

La segunda opción es la política de inventario. Estas se dividen en políticas de “revisión continua” y “revisión periódica”, con varias opciones dentro de cada tipo. Puede enlazar a un video tutorial que describe varias políticas de inventario comunes aquí. Quizás el más eficiente sea conocido por los profesionales como "Min/Max" y por los académicos como (s, s) o “pequeña S, gran S”. Utilizamos esta política en las siguientes simulaciones de escenarios. Funciona de la siguiente manera: cuando el inventario disponible cae por debajo del mínimo (s), se realiza un pedido de reposición. El tamaño del pedido es la brecha entre el inventario disponible y el Max (S), por lo que si Min es 10, Max es 25 y disponible es 8, es hora de hacer un pedido de 25-8 = 17 unidades.

La tercera opción es decidir sobre los mejores valores de los "parámetros" de la política de inventario, por ejemplo, los valores que se utilizarán para Min y Max. Antes de asignar números a Min y Max, necesita claridad sobre lo que significa "mejor" para usted. Por lo general, lo mejor significa opciones que minimizan los costos operativos de inventario sujetos a un piso en la disponibilidad del artículo, expresado como Nivel de servicio o Tasa de llenado. En términos matemáticos, este es un "problema de optimización de enteros con restricciones bidimensional". "Bidimensional" porque tienes que elegir dos números: Min y Max. "Entero" porque Min y Max tienen que ser números enteros. "Restringido" porque debe elegir valores mínimos y máximos que brinden un nivel lo suficientemente alto de disponibilidad de artículos, como niveles de servicio y tasas de llenado. “Optimización” porque desea llegar allí con el costo operativo más bajo (el costo operativo combina los costos de mantenimiento, pedido y escasez).

 

Sistemas de inventario de varios niveles

El problema de optimización se vuelve más difícil en sistemas de múltiples escalones. En un sistema de un solo escalón, cada elemento del inventario se puede analizar de forma aislada: un par de valores Mín./Máx. por SKU. Debido a que hay más partes en un sistema de varios niveles, existe un problema computacional mayor.

La Figura 1 muestra un sistema simple de dos niveles para administrar un solo SKU. En el nivel inferior, las demandas llegan a varios almacenes. Cuando están en peligro de agotarse, se reabastecen desde un centro de distribución (DC). Cuando el propio DC está en peligro de agotarse, lo suministra una fuente externa, como el fabricante del artículo.

El problema de diseño aquí es multidimensional: necesitamos valores mínimos y máximos para 4 almacenes y para el CD, por lo que la optimización ocurre en 4×2+1×2=10 dimensiones. El análisis debe tener en cuenta una multitud de factores contextuales:

  • El nivel promedio y la volatilidad de la demanda que ingresa a cada almacén.
  • El promedio y la variabilidad de los plazos de reabastecimiento del centro de distribución.
  • El promedio y la variabilidad de los plazos de reabastecimiento desde la fuente.
  • El nivel de servicio mínimo exigido en los almacenes.
  • El nivel de servicio mínimo requerido en el CD.
  • Los costos de mantenimiento, pedido y escasez en cada almacén.
  • Los costos de mantenimiento, pedido y escasez en el centro de distribución.

Como era de esperar, las conjeturas en el asiento de los pantalones no funcionarán bien en esta situación. Tampoco intentar simplificar el problema analizando cada escalón por separado. Por ejemplo, los desabastecimientos en el centro de distribución aumentan el riesgo de desabastecimiento a nivel de almacén y viceversa.

Obviamente, este problema es demasiado complicado para tratar de resolverlo sin la ayuda de algún tipo de modelo informático.

 

Por qué la teoría del inventario estándar es mala matemática

Con un poco de búsqueda, puede encontrar modelos, artículos de revistas y libros sobre MEIO. Estas son fuentes valiosas de información y conocimiento, incluso números. Pero la mayoría de ellos confían en el recurso de simplificar demasiado el problema para que sea posible escribir y resolver ecuaciones. Esta es la “Fantasía” a la que se refiere el título.

Hacerlo es una maniobra clásica de modelado y no es necesariamente una mala idea. Cuando era estudiante de posgrado en el MIT, me enseñaron el valor de tener dos modelos: un modelo pequeño y aproximado para servir como una especie de visor y un modelo más grande y preciso para producir números confiables. El modelo más pequeño está basado en ecuaciones y teorías; el modelo más grande está basado en procedimientos y datos, es decir, una simulación detallada del sistema. Los modelos basados en teorías y ecuaciones simples pueden producir malas estimaciones numéricas e incluso pasar por alto fenómenos completos. Por el contrario, los modelos basados en procedimientos (p. ej., "pedir hasta el máximo cuando supere el mínimo") y hechos (p. ej., los últimos 3 años de demanda diaria de artículos) requerirán mucha más computación pero darán respuestas más realistas. Afortunadamente, gracias a la nube, tenemos mucha potencia informática al alcance de la mano.

Quizás el mayor "pecado" de modelado en la literatura de MEIO es la suposición de que las demandas en todos los escalones se pueden modelar como procesos de Poisson puramente aleatorios. Incluso si fuera cierto a nivel de almacén, estaría lejos de ser cierto a nivel de CD. El proceso de Poisson es la "rata blanca del modelado de demanda" porque es simple y permite una mayor manipulación de ecuaciones con lápiz y papel. Dado que no todas las demandas tienen forma de Poisson, esto da como resultado recomendaciones poco realistas.

 

Optimización de simulación basada en escenarios

Para obtener realismo, debemos profundizar en los detalles de cómo funcionan los sistemas de inventario en cada escalón. Con pocos límites, excepto los impuestos por el hardware, como el tamaño de la memoria, los programas de computadora pueden mantener cualquier nivel de complejidad. Por ejemplo, no hay necesidad de suponer que cada uno de los almacenes enfrenta flujos de demanda idénticos o tiene los mismos costos que todos los demás.

Una simulación por computadora funciona de la siguiente manera.

  1. El historial de demanda del mundo real y el historial de tiempo de entrega se recopilan para cada SKU en cada ubicación.
  2. Los valores de los parámetros de inventario (p. ej., Min y Max) se seleccionan para la prueba.
  3. Los historiales de demanda y reposición se utilizan para crear escenarios que representan las entradas al programa de computadora que codifica las reglas de operación del sistema.
  4. Las entradas se utilizan para impulsar la operación de un modelo informático del sistema con los valores de los parámetros elegidos durante un largo período, digamos un año.
  5. Los indicadores clave de rendimiento (KPI) se calculan para el año simulado.
  6. Los pasos 2 a 5 se repiten muchas veces y los resultados se promedian para vincular las opciones de parámetros con el rendimiento del sistema.
  7.  

La optimización del inventario agrega otro "bucle externo" a los cálculos mediante la búsqueda sistemática de los posibles valores de Min y Max. Entre esos pares de parámetros que satisfacen la restricción de disponibilidad de artículos, la búsqueda adicional identifica los valores Mín. y Máx. que dan como resultado el costo operativo más bajo.

Realidad y fantasía en la optimización de Inventarios multi-escalón

Figura 1: Estructura general de un tipo de sistema de inventario de dos niveles

 

Estén atentos a nuestro próximo blog

PRÓXIMAMENTE, EN BREVE, PRONTO. Para ver un ejemplo de una simulación del sistema en la Figura 1, lea el segundo blog sobre este tema

 

 

Deja un comentario
Artículos Relacionados
¿Cómo trata su sistema ERP el stock de seguridad?

¿Cómo trata su sistema ERP el stock de seguridad?

¿Se considera el stock de seguridad como repuestos de emergencia o como un amortiguador diario contra picos en la demanda? Saber la diferencia y configurar su ERP correctamente beneficiará en gran medida su resultado final. Es fundamental comprender cómo las configuraciones de su ERP afectarán el tratamiento del stock de seguridad y las órdenes de reabastecimiento/sugerencias de trabajo de producción. Si lo hace, se asegura de que se puedan evitar los errores no deseados que causan la hinchazón y la escasez de inventario.

Los 4 movimientos principales cuando sospecha que el software está inflando el inventario

Los 4 movimientos principales cuando sospecha que el software está inflando el inventario

Descubra las estrategias clave para hacer frente a la inflación de inventario provocada por el software en su cadena de suministro. A menudo nos preguntan: "¿Por qué el software aumenta el inventario?" La respuesta es que el software no lo está impulsando en ninguna dirección: las entradas lo están impulsando y esas entradas están controladas por los usuarios (o administradores). Aquí hay cuatro cosas que puede hacer para obtener los resultados que espera.

Smart Software anuncia patente de próxima generación

Smart Software anuncia patente de próxima generación

Smart Software se complace en anunciar la concesión de la patente estadounidense 11.656.887. La patente dirige “soluciones técnicas para analizar datos históricos de demanda de recursos en una plataforma tecnológica para facilitar la gestión de un proceso automatizado en la plataforma.

Planificación de orden probabilística vs. determinista

El Blog de Smart

Hombre con una computadora en las mejores prácticas de un almacén en la planificación de la demanda, la previsión y la optimización del inventario

Considere el problema de reponer el inventario. Para ser específicos, suponga que el artículo de inventario en cuestión es una pieza de repuesto. Tanto usted como su proveedor querrán saber cuánto ordenarán y cuándo. Y su sistema ERP puede estar insistiendo en que también le diga el secreto.

Modelo determinista de reabastecimiento

La forma más sencilla de obtener una respuesta decente a esta pregunta es asumir que el mundo es, bueno, simple. En este caso, simple significa "no aleatorio" o, en lenguaje geek, "determinista". En particular, pretende que el tamaño aleatorio y el tiempo de la demanda es realmente un goteo continuo de un tamaño fijo que viene en un intervalo fijo, por ejemplo, 2, 2, 2, 2, 2, 2... Si esto parece poco realista , es. La demanda real podría parecerse más a esto: 0, 1, 10, 0, 1, 0, 0, 0 con muchos ceros, picos ocasionales pero aleatorios.

Pero la sencillez tiene sus virtudes. Si pretende que la demanda promedio ocurre todos los días como un reloj, es fácil calcular cuándo deberá realizar su próximo pedido y cuántas unidades necesitará. Por ejemplo, suponga que su política de inventario es del tipo (Q,R), donde Q es una cantidad de pedido fija y R es un punto de pedido fijo. Cuando las existencias caen hasta el punto de reorden R o por debajo de este, pide Q unidades más. Para redondear la fantasía, suponga que el tiempo de reabastecimiento también es fijo: después de L días, esas Q nuevas unidades estarán en el estante listas para satisfacer la demanda.

Todo lo que necesita ahora para responder a sus preguntas es la demanda promedio por día D para el artículo. La lógica es así:

  1. Comienza cada ciclo de reabastecimiento con Q unidades disponibles.
  2. Usted agota ese stock en D unidades por día.
  3. Por lo tanto, alcanza el punto de pedido R después de (QR)/D días.
  4. Entonces, usted ordena cada (QR)/D días.
  5. Cada ciclo de reabastecimiento dura (QR)/D + L días, por lo que realiza un total de 365D/(Q-R+LD) pedidos por año.
  6. Siempre que el tiempo de entrega L < R/D, nunca se agotará y su inventario será lo más pequeño posible.

La figura 1 muestra el gráfico del inventario disponible frente al tiempo para el modelo determinista. En torno al software inteligente, nos referimos a este gráfico como el "diente de sierra determinista". El stock comienza en el nivel de la última cantidad de pedido Q. Después de disminuir constantemente durante el tiempo de caída (QR)/D, el nivel llega al punto de pedido R y activa un pedido de otras Q unidades. Durante el tiempo de entrega L, las existencias caen exactamente a cero, luego llega mágicamente el nuevo pedido y comienza el siguiente ciclo.

Figura 1 Modelo determinista de inventario disponible

Figura 1: Modelo determinista de inventario disponible

 

Este modelo tiene dos cosas a su favor. No requiere más que álgebra de secundaria y combina (casi) todos los factores relevantes para responder las dos preguntas relacionadas: ¿Cuándo tendremos que hacer el próximo pedido? ¿Cuántos pedidos haremos en un año?

Modelo Probabilístico de Reposición

No es sorprendente que si eliminamos parte de la fantasía del modelo determinista, obtengamos información más útil. El modelo probabilístico incorpora toda la desordenada aleatoriedad del problema del mundo real: la incertidumbre tanto en el momento como en el tamaño de la demanda, la variación en el tiempo de reabastecimiento y las consecuencias de esos dos factores: la posibilidad de que las existencias disponibles no alcancen el reabastecimiento. punto, la probabilidad de que haya un desabastecimiento, la variabilidad en el tiempo hasta el próximo pedido y el número variable de pedidos ejecutados en un año.

El modelo probabilístico funciona simulando las consecuencias de una demanda incierta y un tiempo de entrega variable. Mediante el análisis de los patrones históricos de demanda del artículo (y la exclusión de cualquier observación registrada durante un período en el que la demanda pudo haber sido fundamentalmente diferente), los métodos estadísticos avanzados crean una cantidad ilimitada de escenarios de demanda realistas. Se aplica un análisis similar a los registros de los plazos de entrega de los proveedores. La combinación de estos escenarios de oferta y demanda con las reglas operativas de cualquier política de control de inventario produce escenarios de la cantidad de piezas disponibles. De estos escenarios, podemos extraer resúmenes de los diferentes intervalos entre órdenes.

La Figura 2 muestra un ejemplo de un escenario probabilístico; la demanda es aleatoria y el artículo se administra utilizando el punto de pedido R = 10 y la cantidad de pedido Q = 20. Atrás quedó el diente de sierra determinista; en su lugar hay algo más complejo y realista (la Escalera Probabilística). Durante los 90 días simulados de operación, se realizaron 9 pedidos y el tiempo entre pedidos varió claramente.

Usando el modelo probabilístico, las respuestas a las dos preguntas (cuánto tiempo entre pedidos y cuántos en un año) se expresan como distribuciones de probabilidad que reflejan las probabilidades relativas de varios escenarios. La figura 3 muestra la distribución del número de días entre pedidos después de diez años de funcionamiento simulado. Si bien el promedio es de aproximadamente 8 días, el número real varía ampliamente, de 2 a 17.

En lugar de decirle a su proveedor que realizará X pedidos el próximo año, ahora puede proyectar X ± Y pedidos, y su proveedor conoce mejor sus riesgos al alza y a la baja. Mejor aún, podría proporcionar la distribución completa como la respuesta más rica posible.

Figura 2 Un escenario probabilístico de inventario disponible

Figura 2 Un escenario probabilístico de inventario disponible

 

Figura 3 Distribución de días entre pedidos

Figura 3: Distribución de días entre pedidos

 

Subiendo la escalera aleatoria hacia una mayor eficiencia

Ir más allá del modelo determinista de inventario abre nuevas posibilidades para optimizar las operaciones. En primer lugar, el modelo probabilístico permite una evaluación realista del riesgo de desabastecimiento. El modelo simple en la Figura 1 implica que nunca hay un desabastecimiento, mientras que los escenarios probabilísticos permiten la posibilidad (aunque en la Figura 2 solo hubo una llamada cercana alrededor del día 70). Una vez que se conoce el riesgo, el software puede optimizar buscando en el "espacio de diseño" (es decir, todos los valores posibles de R y Q) para encontrar un diseño que cumpla con un nivel objetivo de riesgo de desabastecimiento a un costo mínimo. El valor del modelo determinista en este análisis más realista es que proporciona un buen punto de partida para la búsqueda a través del espacio de diseño.

Resumen

El software moderno proporciona respuestas a preguntas operativas con varios grados de detalle. Utilizando el ejemplo del tiempo entre pedidos de reabastecimiento, hemos demostrado que la respuesta se puede calcular de manera aproximada pero rápida mediante un modelo determinista simple. Pero también se puede proporcionar con mucho más detalle con toda la variabilidad expuesta por un modelo probabilístico. Pensamos en estas alternativas como complementarias. El modelo determinista agrupa todas las variables clave en un formato fácil de entender. El modelo probabilístico proporciona el realismo adicional que los profesionales esperan y respalda la búsqueda efectiva de opciones óptimas de punto de pedido y cantidad de pedido.

 

Deja un comentario
Artículos Relacionados
¿Cómo trata su sistema ERP el stock de seguridad?

¿Cómo trata su sistema ERP el stock de seguridad?

¿Se considera el stock de seguridad como repuestos de emergencia o como un amortiguador diario contra picos en la demanda? Saber la diferencia y configurar su ERP correctamente beneficiará en gran medida su resultado final. Es fundamental comprender cómo las configuraciones de su ERP afectarán el tratamiento del stock de seguridad y las órdenes de reabastecimiento/sugerencias de trabajo de producción. Si lo hace, se asegura de que se puedan evitar los errores no deseados que causan la hinchazón y la escasez de inventario.

Los 4 movimientos principales cuando sospecha que el software está inflando el inventario

Los 4 movimientos principales cuando sospecha que el software está inflando el inventario

Descubra las estrategias clave para hacer frente a la inflación de inventario provocada por el software en su cadena de suministro. A menudo nos preguntan: "¿Por qué el software aumenta el inventario?" La respuesta es que el software no lo está impulsando en ninguna dirección: las entradas lo están impulsando y esas entradas están controladas por los usuarios (o administradores). Aquí hay cuatro cosas que puede hacer para obtener los resultados que espera.

Smart Software anuncia patente de próxima generación

Smart Software anuncia patente de próxima generación

Smart Software se complace en anunciar la concesión de la patente estadounidense 11.656.887. La patente dirige “soluciones técnicas para analizar datos históricos de demanda de recursos en una plataforma tecnológica para facilitar la gestión de un proceso automatizado en la plataforma.

Seminario web de planificación de piezas de repuesto para agencias de transporte público

Planificación de piezas de repuesto en la era de Covid: Problemas y soluciones para las agencias de transporte público

Covid ha causado estragos en el transporte público. La caída en picado del número de pasajeros, la reducción de la capacidad, las pérdidas sin precedentes en las tarifas y los ingresos fiscales, junto con los costos adicionales para mantener la seguridad de los autobuses y los trenes, han dado como resultado un déficit masivo en el presupuesto del sistema de tránsito. APTA informa que incluso con dos rondas de financiamiento de emergencia, las agencias de transporte público enfrentarán un déficit proyectado de $39.3 mil millones hasta 2023.

Este seminario web abordará la necesidad de que las agencias de tránsito reconsideren las prácticas tradicionales, encuentren formas innovadoras de capturar ahorros de costos y hacerlo sin poner en peligro los niveles de servicio. Greg Hartunian, director ejecutivo de Smart Software, analizará el desafío particular de la planificación de repuestos, por qué fallan las prácticas tradicionales que se usan hoy en día y cómo se aprovecha la tecnología de pronóstico de inventario para optimizar el rendimiento y generar un retorno financiero significativo.

Greg destacará la experiencia de los clientes de tránsito de Smart Software, cómo han generado ahorros finales, qué están haciendo para prepararse para la recuperación y compartirá una demostración de tecnología utilizando datos de la industria del tránsito. Por favor, siéntase libre de revisar el contenido a continuación. Hemos proporcionado estudios de casos que describen el uso de nuestra tecnología dentro del transporte público y una revisión de software de APICS Magazine.

Contenido específico de tránsito

 

Acerca de Smart Software, Inc.

Fundada en 1981, Smart Software, Inc. es líder en brindar a las empresas soluciones de optimización de inventario, planificación y previsión de la demanda para toda la empresa. Las soluciones de optimización de inventario y pronóstico de demanda de Smart Software han ayudado a miles de usuarios en todo el mundo, incluidos clientes de empresas medianas y compañías Fortune 500, como Disney, Siemens, Metro Transit, APS y la Cruz Roja Americana. La planificación y optimización inteligente del inventario brinda a los planificadores de la demanda las herramientas para manejar la estacionalidad de las ventas, las promociones, los productos nuevos y antiguos, las jerarquías multidimensionales y las piezas de servicio y bienes de capital con demanda intermitente. También proporciona a los administradores de inventario estimaciones precisas del inventario óptimo y del stock de seguridad necesarios para cumplir con los pedidos futuros y lograr los niveles de servicio deseados. Smart Software tiene su sede en Belmont, Massachusetts, y se puede encontrar en la World Wide Web en www.smartcorp.com.

 

SmartForecasts y Smart IP&O son marcas comerciales registradas de Smart Software, Inc. Todas las demás marcas comerciales son propiedad de sus respectivos dueños.

Para obtener más información, comuníquese con Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Teléfono: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; Correo electrónico: info@smartcorp.com

 

 

 

Discutir la demanda intermitente con Bowman de Supply Chain Brain

El Blog de Smart

Recomendaciones para la planificación de la demanda,

previsión y optimización de inventario

Los desafíos únicos de la planificación de inventario para piezas de repuesto, grandes bienes de capital y otros artículos que se mueven con poca frecuencia o de manera irregular impulsan la importancia de encontrar métodos más inteligentes para pronosticar este tipo de demanda intermitente. Robert Bowman, editor de Supply Chain Brain Magazine, y yo discutimos este tema en la edición de octubre APICS conferencia en Denver, y el video de nuestra conversación está disponible en El cerebro de la cadena de suministro sitio web.

Por qué plan para demanda intermitente? Bueno, ¿por qué planificar para cualquier demanda? Si puede comprender cuál será el rango probable de demanda hasta que pueda obtener más, sabrá cuánto stock debe mantener en reserva, de modo que tenga lo suficiente. Este es el corazón de la previsión de la demanda y la optimización del inventario. La demanda intermitente es excepcionalmente difícil de pronosticar, pero este mismo principio es válido.

A diferencia de otros patrones de demanda, donde los datos históricos sugieren tendencias regulares, flujos y reflujos, estacionalidad u otros patrones perceptibles, la demanda intermitente parece ser aleatoria. Hay muchos períodos de demanda cero intercalados con demanda irregular, distinta de cero. Esto ocurre con frecuencia con las piezas de servicio, donde las piezas se reemplazan cuando se rompen, y simplemente no se sabe cuándo ocurrirá eso. La mayoría de los inventarios de repuestos (¡70% o más!) pueden experimentar una demanda intermitente. También es probable que la demanda de productos especializados o configurados sea intermitente.

Supply Chain Brain ha realizado una discusión más profunda sobre este tema Bowman y yo compartimos disponible aquí. Para los nuevos visitantes de Supply Chain Brain, se requiere un rápido registro de cuenta para acceder al video.

Jeff Scott se desempeña como vicepresidente de marketing y alianzas para Smart Software.

Deja un comentario

Artículos Relacionados

Maximice el tiempo de actividad de la máquina con el modelado probabilístico

Maximice el tiempo de actividad de la máquina con el modelado probabilístico

Si fabricas y vendes cosas, tienes dos problemas de inventario. Las empresas que venden cosas deben concentrarse incansablemente en tener suficiente inventario de productos para satisfacer la demanda de los clientes. Los fabricantes y las industrias intensivas en activos, como la generación de energía, el transporte público, la minería y la refinación, tienen una preocupación de inventario adicional: tener suficientes repuestos para mantener sus máquinas en funcionamiento.
Este resumen técnico revisa los conceptos básicos de dos modelos probabilísticos de avería de la máquina. También relaciona el tiempo de actividad de la máquina con la adecuación del inventario de piezas de repuesto.

Gestión del inventario para promociones

Gestión del inventario para promociones

En una publicación anterior, analicé uno de los problemas más espinosos que a veces enfrentan los planificadores de demanda: trabajar con datos de demanda de productos caracterizados por lo que los estadísticos llaman asimetría, una situación que puede requerir costosas inversiones en inventario. Este tipo de datos problemáticos se encuentran en varios escenarios diferentes. En al menos uno, la combinación de demanda intermitente y promociones de ventas muy efectivas, el problema se presta a una solución efectiva.

Mensajes recientes

  • Gestión del inventario de repuestos: mejores prácticasGestión del inventario de repuestos: mejores prácticas
    En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
  • 5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro
    La promesa de una cadena de suministro digital ha transformado la forma en que operan las empresas. En esencia, permite tomar decisiones rápidas basadas en datos y, al mismo tiempo, garantizar la calidad y la eficiencia en todas las operaciones. Sin embargo, no se trata solo de tener acceso a más datos. Las organizaciones necesitan las herramientas y plataformas adecuadas para convertir esos datos en información procesable. Aquí es donde la toma de decisiones se vuelve fundamental, especialmente en un panorama en el que las nuevas soluciones de cadena de suministro digital y las plataformas impulsadas por IA pueden ayudarlo a agilizar muchos procesos dentro de la matriz de decisiones. […]
  • Dos empleados verifican el inventario en un almacén temporal en un almacén de distribución.12 causas del exceso de stock y soluciones prácticas
    Gestionar el inventario de manera eficaz es fundamental para mantener un balance saludable y garantizar que los recursos se asignen de manera óptima. A continuación, se analizan en profundidad las principales causas del exceso de existencias, sus implicaciones y posibles soluciones. […]
  • Preguntas frecuentes Cómo dominar la gestión inteligente de IP&O para una mejor gestión del inventarioPreguntas frecuentes: Cómo dominar la IP&O inteligente para una mejor gestión del inventario.
    Una gestión eficaz de la cadena de suministro y del inventario es esencial para lograr la eficiencia operativa y la satisfacción del cliente. Este blog ofrece respuestas claras y concisas a algunas preguntas básicas y otras preguntas comunes de nuestros clientes de Smart IP&O, ofreciendo información práctica para superar los desafíos típicos y mejorar sus prácticas de gestión de inventario. Centrándonos en estas áreas clave, lo ayudamos a transformar problemas complejos de inventario en acciones estratégicas y manejables que reducen los costos y mejoran el rendimiento general con Smart IP&O. […]
  • 7 tendencias clave en planificación de la demanda que están dando forma al futuro7 tendencias clave en planificación de la demanda que están dando forma al futuro
    La planificación de la demanda va más allá de la simple previsión de las necesidades de productos; se trata de garantizar que su empresa satisfaga las demandas de los clientes con precisión, eficiencia y rentabilidad. La última tecnología de planificación de la demanda aborda desafíos clave como la precisión de las previsiones, la gestión de inventarios y la capacidad de respuesta al mercado. En este blog, presentaremos tendencias críticas de planificación de la demanda, que incluyen información basada en datos, previsión probabilística, planificación por consenso, análisis predictivo, modelado de escenarios, visibilidad en tiempo real y previsión multinivel. Estas tendencias le ayudarán a mantenerse a la vanguardia, optimizar su cadena de suministro, reducir costes y mejorar la satisfacción del cliente, posicionando a su empresa para el éxito a largo plazo. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Gestión del inventario de repuestos: mejores prácticasGestión del inventario de repuestos: mejores prácticas
      En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
    • Innovando en el mercado de repuestos OEM con optimización de inventario XL impulsada por IAInnovando en el mercado de repuestos OEM con optimización de inventario impulsada por IA
      El sector de posventa ofrece a los fabricantes de equipos originales una ventaja decisiva al ofrecer un flujo de ingresos constante y fomentar la lealtad del cliente mediante la entrega confiable y oportuna de piezas de repuesto. Sin embargo, la gestión del inventario y la previsión de la demanda en el mercado de posventa está plagada de desafíos, incluidos patrones de demanda impredecibles, amplias gamas de productos y la necesidad de entregas rápidas. Los métodos tradicionales a menudo no son suficientes debido a la complejidad y variabilidad de la demanda en el mercado de posventa. Las últimas tecnologías pueden analizar grandes conjuntos de datos para predecir la demanda futura con mayor precisión y optimizar los niveles de inventario, lo que conduce a un mejor servicio y menores costos. […]
    • Servicios públicos preparados para el futuro. Análisis avanzado para la optimización de la cadena de suministroUtilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro
      Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental. […]
    • Ley de centrado Piezas de repuesto Sincronización Precios y confiabilidadLey de centrado: sincronización, precio y confiabilidad de los repuestos
      En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]