Cómo seleccionar el método de pronóstico correcto con Epicor Smart IPO

Smart Software is pleased to introduce our new series of educational webinars, offered exclusively for Epicor Users. In this webinar, Erik Subatis, Enterprise Solution Engineer at Smart Software, will reveal the statistical models Epicor Smart IP&O uses to forecast and how the automatic “best pick” system works. While automatic modeling is invaluable for large-scale forecasting, occasionally, these forecasts don’t reflect our expectations and/or business knowledge. Understanding how and when to override the model selection can be a valuable tool in a forecaster’s toolbox. Finally, the presentation will conclude by showing how to increase profitability with software-enhanced inventory planning processes in a Live Demo.

Attending this webinar, you will learn about the statistical models Smart IP&O uses to forecast and how to catch the exceptions so you can make the most of your forecasting tool.

FORMULARIO DE REGISTRO AL SEMINARIO WEB

 

Regístrese para asistir al seminario web. Si está interesado pero no puede asistir, regístrese de todos modos: grabaremos nuestra sesión y le enviaremos un enlace a la repetición.

¡Esperamos que pueda unirse a nosotros!

 

SmartForecasts y Smart IP&O son marcas comerciales registradas de Smart Software, Inc. Todas las demás marcas comerciales son propiedad de sus respectivos dueños.


Para obtener más información, comuníquese con Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
Teléfono: 1-800-SMART-99 (800-762-7899); Correo electrónico: info@smartcorp.com

 

Pronóstico Probabilístico y Demanda Intermitente

El Blog de Smart

  Recomendaciones para la planificación de la demanda,

previsión y optimización de inventario

La demanda intermitente, irregular o desigual, en particular para artículos de baja demanda como servicio y repuestos, es especialmente difícil de predecir con precisión. El pronóstico probabilístico patentado de Smart Software mejora drásticamente precisión del nivel de servicio. Si alguno de estos escenarios se aplica a su empresa, la previsión probabilística le ayudará a mejorar sus resultados.

  • ¿Tiene una demanda intermitente o irregular con picos grandes e infrecuentes que superan muchas veces la demanda promedio?
  • ¿Es difícil obtener información comercial sobre cuándo es probable que la demanda vuelva a aumentar?
  • ¿Pierde oportunidades comerciales porque no puede pronosticar con precisión la demanda y estimar los requisitos de inventario para ciertos productos impredecibles?
  • ¿Está obligado a mantener un inventario de muchos artículos, incluso si se demandan con poca frecuencia, para diferenciarse de la competencia al proporcionar altos niveles de servicio?
  • ¿Tiene que hacer inversiones innecesariamente grandes en inventario para cubrir pedidos inesperados y requisitos de materiales?
  • ¿Tiene que entregar a los clientes de inmediato a pesar de los largos plazos de entrega del proveedor?

Si ha respondido afirmativamente a algunas o todas las preguntas anteriores, no está solo. La demanda intermitente, también conocida como demanda irregular, esporádica, irregular o de movimiento lento, afecta a industrias de todos los tipos y tamaños: sectores de bienes de capital y equipos, automotriz, aviación, transporte público, herramientas industriales, productos químicos especiales, servicios públicos y alta tecnología. por nombrar unos cuantos. Y hace que la previsión y la planificación de la demanda sean extremadamente difíciles. Puede ser mucho más que un dolor de cabeza; puede ser un problema multimillonario, especialmente para las empresas de MRO y otras que administran y distribuyen piezas de repuesto y de servicio.

Identificar datos de demanda intermitente no es difícil. Por lo general, contiene un gran porcentaje de valores cero, con valores distintos de cero mezclados al azar. Pero pocas soluciones de pronóstico han arrojado resultados satisfactorios, incluso en esta era de análisis de Big Data, análisis predictivo, aprendizaje automático e inteligencia artificial.

 

DESCARGAR EL ARTÍCULO

Enfoques tradicionales y su dependencia de una distribución de demanda asumida

Los métodos tradicionales de pronóstico estadístico, como el suavizado exponencial y los promedios móviles, funcionan bien cuando los datos de demanda del producto son normales o uniformes, pero no brindan resultados precisos con datos intermitentes. Muchas herramientas de previsión automatizadas fallan porque funcionan mediante la identificación de patrones en los datos del historial de demanda, como la tendencia y la estacionalidad. Pero con datos de demanda intermitentes, los patrones son especialmente difíciles de reconocer. Estos métodos también tienden a ignorar el papel especial de los valores cero en el análisis y pronóstico de la demanda. Aun así, algunos métodos de pronóstico estadísticos convencionales pueden producir pronósticos creíbles de la demanda. promedio demanda por período. Sin embargo, cuando la demanda es intermitente, un pronóstico de la demanda promedio no es suficiente para la planificación del inventario. Se necesitan estimaciones precisas de toda la distribución (es decir, el conjunto completo) de todos los posibles valores de demanda en el tiempo de entrega. Sin esto, estos métodos producen entradas engañosas para los modelos de control de inventario, con consecuencias costosas.

Collague con engranajes y modelado de pronóstico estadístico

 

Para producir puntos de pedido, niveles de pedido y existencias de seguridad para la planificación del inventario, muchos enfoques de pronóstico se basan en suposiciones sobre la distribución de la demanda y el tiempo de entrega. Algunos suponen que la distribución de probabilidad de la demanda total de un artículo de producto en particular durante un tiempo de entrega (demanda de tiempo de entrega) se parecerá a una curva clásica normal en forma de campana. Otros enfoques pueden basarse en una distribución de Poisson o alguna otra distribución de libro de texto. Con una demanda intermitente, un enfoque único para todos es problemático porque la distribución real a menudo no coincidirá con la distribución supuesta. Cuando esto ocurre, las estimaciones de la reserva de estabilización serán incorrectas. Este es especialmente el caso cuando se gestionan repuestos (Tabla 1).

Para cada artículo con demanda intermitente, no se puede exagerar la importancia de tener un pronóstico preciso de la distribución completa de todos los posibles valores de demanda de tiempo de entrega, no solo un número que represente la demanda promedio o más probable por período. Estos pronósticos son entradas clave para los modelos de control de inventario que recomiendan los procedimientos correctos para el momento y el tamaño de las órdenes de reposición (puntos de reposición y cantidades de órdenes). Son particularmente esenciales en entornos de piezas de repuesto, donde se necesitan para estimar con precisión los requisitos de inventario del nivel de servicio al cliente (por ejemplo, una probabilidad del 95 o 99 por ciento de no agotarse un artículo) para satisfacer la demanda total durante un tiempo de entrega. Los departamentos de planificación de inventario deben estar seguros de que cuando apunten a un nivel de servicio deseado, lo lograrán. Si el modelo de pronóstico produce consistentemente un nivel de servicio diferente al objetivo, el inventario se administrará de manera incorrecta y la confianza en el sistema se erosionará.

Ante este desafío, muchas organizaciones confían en aplicar regla de oro inventadas por el usuario, basados en enfoques para determinar los niveles de existencias o aplicarán ajustes de juicio a sus pronósticos estadísticos, que esperan predecir con mayor precisión la actividad futura en función de la experiencia comercial pasada. Pero también hay varios problemas con estos enfoques.

Los enfoques de regla general ignoran la variabilidad en la demanda y el tiempo de entrega. Tampoco se actualizan por cambios en los patrones de demanda y no brindan información crítica. información de compensación sobre la relación entre los niveles de servicio y los costos de inventario.

La previsión basada en juicios no es factible cuando se trata de grandes cantidades (miles y decenas de miles) de elementos. Además, la mayoría de los pronósticos de juicio proporcionan una estimación de un solo número en lugar de un pronóstico de la distribución completa de los valores de demanda de tiempo de entrega. Finalmente, es fácil predecir inadvertidamente pero incorrectamente una tendencia a la baja (o al alza) en la demanda, según las expectativas, lo que resulta en un inventario insuficiente (o excesivo).

 

¿Cómo funciona la previsión probabilística de la demanda en la práctica?

Aunque la arquitectura completa de esta tecnología incluye características patentadas adicionales, un ejemplo simple del enfoque demuestra la utilidad de la técnica. Consulte la Tabla 1.

hoja de cálculo de artículos de productos demandados intermitentemente

Tabla 1. Valores de demanda mensual para un artículo de pieza de servicio.

Los valores de demanda de 24 meses para un artículo de servicio son típicos de la demanda intermitente. Supongamos que necesita pronósticos de la demanda total de este artículo durante los próximos tres meses porque su proveedor de repuestos necesita tres meses para completar un pedido para reponer el inventario. El enfoque probabilístico es tomar muestras de los 24 valores mensuales, con reemplazo, tres veces, creando un escenario de demanda total durante el tiempo de anticipación de tres meses.

Cómo funciona el nuevo método de previsión de demanda intermitente

Figura 1. Los resultados de 25.000 escenarios.

 

Puede seleccionar al azar los meses 6, 12 y 4, lo que le da valores de demanda de 0, 6 y 3, respectivamente, para una demanda de tiempo de entrega total (en unidades) de 0 + 6 + 3 = 9. Luego repite este proceso , quizás seleccionando aleatoriamente los meses 19, 8 y 14, lo que da una demanda de tiempo de entrega de 0 + 32 + 0 = 32 unidades. Continuando con este proceso, puede crear una imagen estadísticamente rigurosa de la distribución completa de los posibles valores de demanda de tiempo de entrega para este artículo. La Figura 1 muestra los resultados de 25 000 escenarios de este tipo, lo que indica (en este ejemplo) que el valor más probable para la demanda en el tiempo de entrega es cero, pero que la demanda en el tiempo de entrega podría llegar a 70 o más unidades. También refleja la posibilidad de la vida real de que los valores de demanda distintos de cero para el artículo de la pieza que ocurran en el futuro puedan diferir de los que ocurrieron en el pasado.

Con el recursos computacionales de alta velocidad disponibles en la nube hoy, los métodos de pronóstico probabilístico pueden proporcionar pronósticos rápidos y realistas de la demanda total de tiempo de entrega para miles o decenas de miles de artículos de productos con demanda intermitente. Estos pronósticos se pueden ingresar directamente en los modelos de control de inventario para garantizar que haya suficiente inventario disponible para satisfacer la demanda del cliente. Esto también garantiza que no se mantenga más inventario del necesario, lo que minimiza los costos.

 

Un método probado en el campo que funciona

Los clientes que han implementado la tecnología han descubierto que aumenta la precisión del nivel de servicio al cliente y reduce significativamente los costos de inventario.

Bodega o almacenamiento obteniendo optimización de inventario

La operación de almacenamiento de un minorista de hardware a nivel nacional pronosticó los requisitos de inventario para 12,000 SKU con demanda intermitente a niveles de servicio del 95 y 99 por ciento. Los resultados del pronóstico fueron casi 100 por ciento precisos. Con un nivel de servicio del 95 por ciento, el 95,23 por ciento de los artículos no se agotaron (el 95 por ciento hubiera sido perfecto). Con un nivel de servicio del 99 por ciento, el 98,66 por ciento de los artículos no se agotaron (el 99 por ciento hubiera sido perfecto).

La operación de mantenimiento de aeronaves de una empresa global obtuvo resultados de pronóstico de nivel de servicio similares con 6000 SKU. Los posibles ahorros anuales en costos de manejo de inventario se estimaron en $3 millones. La unidad de negocios de posventa de un proveedor de la industria automotriz, dos tercios de cuyos 7000 SKU muestran una demanda altamente intermitente, también proyectó $3 millones en ahorros de costos anuales.

Que el desafío de pronosticar la demanda intermitente de productos se haya cumplido es una buena noticia para los fabricantes, distribuidores y negocios de repuestos/MRO. Con la computación en la nube, el método probabilístico probado en el campo de Smart Software ahora es accesible para quienes no son estadísticos y se puede aplicar a escala a decenas de miles de piezas. Los datos de demanda que alguna vez fueron impredecibles ya no representan un obstáculo para lograr los más altos niveles de servicio al cliente con la menor inversión posible en inventario.

 

Mano colocando piezas para construir una flecha

DESCARGAR EL ARTÍCULO

Deja un comentario

Artículos Relacionados

¿Sus pronósticos estadísticos sufren el efecto de oscilación?

¿Sus pronósticos estadísticos sufren el efecto de oscilación?

¿Qué es el efecto meneo? Es cuando su pronóstico estadístico predice incorrectamente los altibajos observados en su historial de demanda cuando realmente no hay un patrón. Es importante asegurarse de que sus pronósticos no cambien a menos que haya un patrón real. Aquí hay una transcripción de un cliente reciente donde se discutió este problema:

Cómo manejar pronósticos estadísticos de cero

Cómo manejar pronósticos estadísticos de cero

Un pronóstico estadístico de cero puede causar mucha confusión a los pronosticadores, especialmente cuando la demanda histórica no es cero. Claro, es obvio que la demanda tiene una tendencia a la baja, pero ¿debería tener una tendencia a cero?

Mensajes recientes

  • Empresario y empresaria leyendo y analizando hojas de cálculoLas 3 razones principales por las que su hoja de cálculo no funcionará para optimizar los puntos de pedido de piezas de repuesto
    A menudo nos encontramos con métodos de planificación de puntos de pedido basados en Excel. En esta publicación, detallamos un enfoque que utilizó un cliente antes de continuar con Smart. Describimos cómo funcionaba su hoja de cálculo, los enfoques estadísticos en los que se basaba, los pasos que los planificadores siguieron en cada ciclo de planificación y sus motivaciones declaradas para usar (y realmente gustarles) esta hoja de cálculo desarrollada internamente. […]
  • Grupo de negocios de estilo en trajes de negocios clásicos con binoculares y telescopios reproducen diferentes métodos de pronósticoCómo interpretar y manipular los resultados del pronóstico con diferentes métodos de pronóstico
    Este blog explica cómo funciona cada modelo de pronóstico utilizando gráficos de tiempo de datos históricos y de pronóstico. Describe cómo elegir qué modelo usar. Los ejemplos a continuación muestran el mismo historial, en rojo, pronosticado con cada método, en verde oscuro, en comparación con el método ganador elegido por Smart, en verde claro. […]
  • Ingeniero trabajador de fábrica que trabaja en la fábrica usando una tableta para verificar la tubería de agua de la caldera de mantenimiento en la fábrica.Por qué las curvas de compensación de piezas de repuesto son de misión crítica para la planificación de piezas
    Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]
  • Qué hacer cuando un pronóstico estadístico no tiene sentidoQué hacer cuando un pronóstico estadístico no tiene sentido
    A veces, un pronóstico estadístico simplemente no tiene sentido. Todos los pronosticadores han estado allí. Pueden volver a verificar que los datos se ingresaron correctamente o revisar la configuración del modelo, pero todavía se quedan pensando por qué el pronóstico se ve muy diferente al historial de demanda. Cuando el pronóstico ocasional no tiene sentido, puede erosionar la confianza en todo el proceso de pronóstico estadístico. […]
  • Retrato de una trabajadora de fábrica con casco azul sostiene una tableta y se para en el área de trabajo de repuestos. Concepto de confianza en trabajar con software de planificación de piezas de repuesto.La planificación de piezas de repuesto no es tan difícil como cree
    Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Empresario y empresaria leyendo y analizando hojas de cálculoLas 3 razones principales por las que su hoja de cálculo no funcionará para optimizar los puntos de pedido de piezas de repuesto
      A menudo nos encontramos con métodos de planificación de puntos de pedido basados en Excel. En esta publicación, detallamos un enfoque que utilizó un cliente antes de continuar con Smart. Describimos cómo funcionaba su hoja de cálculo, los enfoques estadísticos en los que se basaba, los pasos que los planificadores siguieron en cada ciclo de planificación y sus motivaciones declaradas para usar (y realmente gustarles) esta hoja de cálculo desarrollada internamente. […]
    • Ingeniero trabajador de fábrica que trabaja en la fábrica usando una tableta para verificar la tubería de agua de la caldera de mantenimiento en la fábrica.Por qué las curvas de compensación de piezas de repuesto son de misión crítica para la planificación de piezas
      Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]
    • Retrato de una trabajadora de fábrica con casco azul sostiene una tableta y se para en el área de trabajo de repuestos. Concepto de confianza en trabajar con software de planificación de piezas de repuesto.La planificación de piezas de repuesto no es tan difícil como cree
      Al administrar piezas de servicio, no sabe qué fallará y cuándo porque las fallas de las piezas son aleatorias y repentinas. Como resultado, los patrones de demanda suelen ser extremadamente intermitentes y carecen de una tendencia significativa o una estructura estacional. El número de combinaciones de pieza por ubicación suele ser de cientos de miles, por lo que no es factible revisar manualmente la demanda de piezas individuales. No obstante, es mucho más sencillo implementar un sistema de planificación y previsión para respaldar la planificación de repuestos de lo que podría pensar. […]
    • Trabajador en un almacén de piezas de repuesto para automóviles que utiliza un software de planificación de inventarioPlanificación basada en el nivel de servicio para empresas de repuestos
      La planificación de piezas de servicio impulsada por el nivel de servicio es un proceso de cuatro pasos que se extiende más allá de la previsión simplificada y las existencias de seguridad de regla empírica. Proporciona a los planificadores de piezas de servicio un soporte de decisiones basado en datos y ajustado al riesgo. […]

      Smart Software lanza Smart Inventory Optimization y Demand Planning para Prophet 21
      Smart Software, líder en soluciones de optimización de inventario, previsión de consenso y planificación de la demanda empresarial, anuncia el lanzamiento de Smart Inventory Planning and Optimization (Smart IP&O) para Prophet 21 (P21). La compañía demostrará la solución en Connect 2022, la conferencia anual del grupo de usuarios de P21 del 29 al 31 de agosto. Con Smart IP&O, los usuarios de Prophet 21 ahora podrán:  
      • Lleve a cabo escenarios hipotéticos globales en miles de piezas que comparen políticas de almacenamiento prescritas inteligentemente, definidas por el usuario y calculadas por P21 en predicciones clave de rendimiento de niveles de servicio, tasas de llenado, costos de escasez, valor de inventario y más.
       
      • Aproveche las políticas de almacenamiento prescritas y las recomendaciones de nivel de servicio de Smart que producirán de manera óptima los resultados más rentables para cada pieza, considerando los costos de mantenimiento previstos, los costos de pedido y los costos de escasez.
       
      • Pronostique con precisión todos los patrones de demanda, incluida la demanda intermitente que es muy frecuente en los negocios de distribución. El motor de modelado probabilístico patentado de Smart genera miles de escenarios de demanda futura que predicen con mayor precisión las políticas de demanda y almacenamiento.
       
      • Desarrolle pronósticos de consenso que comparen pronósticos estadísticos generados por P21, ventas y pronósticos de clientes. El banco de trabajo de planificación de la demanda de Smart permite visualizaciones gráficas y tabulares de todos los pronósticos considerados y admite pronósticos de consenso automatizados y medición de precisión.
       
      • Aproveche la integración bidireccional de Smart IP&O con P21 que actualiza continuamente el modelo de datos comunes de Smart con datos de planificación y escribe pronósticos y políticas de almacenamiento a pedido.
        “Smart IP&O amplía un P21 ya rico en funciones con una tecnología de optimización de inventario y previsión que marca la diferencia. Nuestros clientes conjuntos ahora podrán manejar el inventario de manera más efectiva para construir un foso competitivo alrededor de su negocio, maximizar las ventas y superar a la competencia”, dijo Greg Hartunian, CEO de Smart Software. “Las cadenas de suministro de hoy en día necesitan capacidades mucho mejores para lidiar con la demanda extrema y la variabilidad de la oferta que enfrentan las empresas en la actualidad. Esperamos poder equipar a nuestros clientes de Epicor P21 con las herramientas para hacer esto de manera efectiva, precisa y a escala”.   Acerca de Smart Software, Inc. Fundada en 1981, Smart Software, Inc. es un socio platino de Epicor y un proveedor líder de soluciones de planificación, pronóstico, optimización de inventario y análisis de la demanda. Nuestra plataforma web, Smart IP&O, aprovecha el modelado de pronóstico probabilístico, el aprendizaje automático y la planificación colaborativa de la demanda para optimizar los niveles de inventario y aumentar la precisión del pronóstico. Smart Software tiene su sede en Belmont, Massachusetts. Para obtener más información, visite www.smartcorp.com.  
      Smart Software presentara en Epicor Insights 2022

      El presidente y director ejecutivo de Smart Software presentará las sesiones de Epicor Insights 2022 sobre la creación de una ventaja competitiva con la planificación y optimización de inventario inteligente

       

      Belmont, MA, mayo de 2022: Smart Software, Inc., proveedor de soluciones de optimización de inventario, planificación y pronóstico de demanda líderes en la industria, anunció hoy que presentará en Epicor Insights 2022.

      Greg Hartunian, director ejecutivo de Smart Software, presentará dos sesiones y explicará la planificación y optimización de inventario inteligente de Epicor en el evento Epicor Insights de este año en Nashville, TN. Greg mostrará cómo capacitar a los equipos de planificación para reducir el inventario, mejorar los niveles de servicio y aumentar la eficiencia operativa.

      • La presentación del Profeta 21 está programada para el miércoles 25 de mayo, de 11:30 a. m. a 12:15 p. m. (CST) 

      El software inteligente Prophet 21 se presentará en Epicor Insights 2022

      Smart Software Kinetic 21 Sesión Greg CEO

      • La presentación de Kinetic está programada para el miércoles 25 de mayo, de 2:30 p. m. a 3:20 p. m. (CST) 

      Kinetic Smart Software se presentará en Epicor Insights 2022

       

      Si planea asistir este año, únase a nosotros en cualquiera de las sesiones a continuación y obtenga más información sobre la optimización y planificación de inventario inteligente a medida que destacamos características valiosas en nuestras soluciones. Epicor Insights 2022 reunirá a más de 2000 usuarios de las soluciones ERP específicas de la industria de Epicor para las industrias de fabricación, distribución y servicios. Para obtener más información, visite PERSPECTIVAS 2022.

      Equipo de conocimientos en el trabajo

      Smart Software es un socio platino de Epicor y un proveedor líder de soluciones de planificación, pronóstico, optimización de inventario y análisis de la demanda. Nuestra plataforma web, Smart IP&O, aprovecha el modelado de pronóstico probabilístico, el aprendizaje automático y la planificación colaborativa de la demanda para optimizar los niveles de inventario y aumentar la precisión del pronóstico. Utilizará Smart IP&O para crear pronósticos precisos y políticas de almacenamiento óptimas que impulsan los pedidos automatizados en Epicor. La plataforma incluye integraciones bidireccionales tanto para Epicor ERP como para Prophet 21.

       

      Acerca de Smart Software, Inc.
      Fundada en 1981, Smart Software, Inc. es líder en proporcionar a las empresas soluciones de optimización de inventario, planificación y previsión de la demanda en toda la empresa. Las soluciones de optimización de inventario y pronóstico de la demanda de Smart Software han ayudado a miles de usuarios en todo el mundo, incluidos clientes de empresas medianas y compañías Fortune 500, como Otis Elevator, Mitsubishi, Siemens, Disney, FedEx, MARS y The Home Depot. Smart Inventory Planning & Optimization brinda a los planificadores de la demanda las herramientas para manejar la estacionalidad de las ventas, las promociones, los productos nuevos y antiguos, las jerarquías multidimensionales y las piezas de servicio y los bienes de capital demandados de forma intermitente. También proporciona a los gerentes de inventario estimaciones precisas del inventario óptimo y el stock de seguridad requerido para cumplir con los pedidos futuros y lograr los niveles de servicio deseados. Smart Software tiene su sede en Belmont, Massachusetts y se puede encontrar en la World Wide Web en www.smartcorp.com.

       


      Para obtener más información, comuníquese con Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
      Teléfono: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; Correo electrónico: info@smartcorp.com

       

       

      Impulse la eficiencia operativa y aumente la excelencia operativa

      Smart Software se complace en presentar nuestra nueva serie de seminarios web educativos, ofrecidos exclusivamente para usuarios de Epicor. Greg Hartunian, director ejecutivo de Smart Software, dirigirá un seminario web de 45 minutos que se centrará en enfoques específicos para la previsión de la demanda y la planificación del inventario que le permitirán aumentar la rentabilidad, mejorar los niveles de servicio y reducir los costos de mantenimiento de inventario. La presentación describirá los desafíos asociados con la planificación de inventario tradicional y los procesos de previsión de la demanda y cómo los nuevos métodos de optimización y previsión probabilística marcarán una gran diferencia en sus resultados. Finalmente, la presentación concluirá mostrando cómo aumentar la rentabilidad con procesos de planificación de inventario mejorados por software en una demostración en vivo.

      FORMULARIO DE REGISTRO AL SEMINARIO WEB

       

      Regístrese para asistir al seminario web. Si está interesado pero no puede asistir, regístrese de todos modos: grabaremos nuestra sesión y le enviaremos un enlace a la repetición.

      ¡Esperamos que pueda unirse a nosotros!

       

      SmartForecasts y Smart IP&O son marcas comerciales registradas de Smart Software, Inc. Todas las demás marcas comerciales son propiedad de sus respectivos dueños.


      Para obtener más información, comuníquese con Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
      Teléfono: 1-800-SMART-99 (800-762-7899); Correo electrónico: info@smartcorp.com