Introducción a la predicción probabilística

El Blog de Smart

 Recomendaciones para la planificación de la demanda,

previsión y optimización de inventario

Si sigues las noticias sobre análisis de la cadena de suministro, se encontrará con más frecuencia con la frase “pronóstico probabilístico”. Si esta frase es desconcertante, sigue leyendo.

Probablemente ya sepa lo que significa "pronóstico". Y probablemente también sepa que parece haber muchas maneras diferentes de hacerlo. Y probablemente haya escuchado pequeñas frases picantes como "todo pronóstico es incorrecto". Así que sabes que algún tipo de matemágica podría calcular que "el pronóstico es que venderá 100 unidades el próximo mes", y luego podría vender 110 unidades, en cuyo caso tiene un error de pronóstico 10%.

Es posible que no sepa que lo que acabo de describir es un tipo particular de pronóstico llamado "pronóstico puntual". Un pronóstico puntual se llama así porque consta de un solo número (es decir, un punto en la recta numérica, si recuerda la recta numérica de su juventud).

Pronósticos puntuales tienen una virtud: Son simples. También tienen un defecto: dan lugar a afirmaciones sarcásticas como “todas las previsiones están equivocadas”. Es decir, en la mayoría de los casos realistas, es poco probable que el valor real sea exactamente igual al pronóstico. (Lo cual no es gran cosa si el pronóstico es lo suficientemente cercano).

Esto nos lleva al "pronóstico probabilístico". Este enfoque es un paso adelante, porque en lugar de producir un pronóstico de un solo número (punto), produce una distribución de probabilidad para el pronóstico. Y a diferencia de los modelos extrapolativos tradicionales que se basan únicamente en los datos históricos, los pronósticos probabilísticos tienen la capacidad de simular valores futuros que no están anclados al pasado.

“Distribución de probabilidad” es una frase prohibitiva, que evoca algunas matemáticas arcanas de las que quizás hayas oído hablar pero que nunca hayas estudiado. Afortunadamente, la mayoría de los adultos tienen suficiente experiencia de vida para tener una comprensión intuitiva del concepto. Cuando se desglosa, es bastante sencillo de entender.

Imagina el simple acto de lanzar dos monedas. Puede llamar a esto diversión inofensiva, pero yo lo llamo un "experimento probabilístico". El número total de caras que salgan en las dos monedas será cero, uno o dos. Lanzar dos monedas es un "experimento aleatorio". El número resultante de cabezas es una "variable aleatoria". Tiene una “distribución de probabilidad”, que no es más que una tabla de la probabilidad de que la variable aleatoria tenga alguno de sus posibles valores. La probabilidad de obtener dos caras cuando las monedas son justas resulta ser ¼, al igual que la probabilidad de que no salga cara. La probabilidad de una cara es ½.

El mismo enfoque puede describir una variable aleatoria más interesante, como la demanda diaria de una pieza de repuesto. La Figura 2 muestra tal distribución de probabilidad. Se calculó mediante la compilación de tres años de datos de demanda diaria de una determinada parte utilizada en un instrumento científico vendido a hospitales.

 

Probabilistic demand forecast 1

Figura 1: La distribución de probabilidad de la demanda diaria de una determinada pieza de repuesto

 

La distribución de la Figura 1 se puede considerar como un pronóstico probabilístico de la demanda en un solo día. Para esta parte en particular, vemos que es muy probable que el pronóstico sea cero (probabilidad 97%), pero a veces será para un puñado de unidades, y una vez cada tres años será para veinte unidades. Aunque el pronóstico más probable es cero, querrás tener algunos a mano si esta parte fuera crítica ("... por falta de un clavo...")

Ahora usemos esta información para hacer un pronóstico probabilístico más complicado. Suponga que tiene tres unidades a mano. ¿Cuántos días tardará en no tener ninguno? Hay muchas respuestas posibles, que van desde un solo día (si obtiene inmediatamente una demanda de tres o más) hasta un número muy grande (ya que 97% de días no ven demanda). El análisis de esta pregunta es un poco complicado debido a todas las formas en que esta situación puede desarrollarse, pero la respuesta final que es más informativa será una distribución de probabilidad. Resulta que el número de días hasta que no quedan unidades en stock tiene la distribución que se muestra en la Figura 2.

Probabilistic demand forecast 2

Figura 2: Distribución del número de días hasta que se acaban las tres unidades

 

El promedio de días es 74, lo que sería un pronóstico puntual, pero hay mucha variación alrededor del promedio. Desde la perspectiva de la gestión de inventario, cabe destacar que existe una posibilidad de 25% de que todas las unidades se hayan ido después de 32 días. Entonces, si decidió pedir más cuando solo tenía tres en el estante, sería bueno que el proveedor se los entregue antes de que haya pasado un mes. Si no pudieran, tendría la posibilidad de agotarse el 75%, lo que no es bueno para una pieza crítica.

El análisis detrás de la Figura 2 implicó hacer algunas suposiciones que eran convenientes pero no necesarias si no eran ciertas. Los resultados provinieron de un método llamado "simulación de Monte Carlo", en el que comenzamos con tres unidades, elegimos una demanda aleatoria de la distribución en la Figura 1, la restamos de las existencias actuales y continuamos hasta que se agoten las existencias, registrando cuántas Pasaron los días antes de que se acabara. Repitiendo este proceso 100.000 veces se produjo la Figura 2.

Las aplicaciones de la simulación de Monte Carlo se extienden a problemas de alcance aún mayor que el ejemplo anterior de "cuándo nos quedamos sin". Especialmente importantes son los pronósticos de Monte Carlo de la demanda futura. Si bien el resultado habitual de los pronósticos es un conjunto de pronósticos puntuales (por ejemplo, la demanda unitaria esperada durante los próximos doce meses), sabemos que la demanda real podría desarrollarse de varias maneras. La simulación podría usarse para producir, digamos, mil conjuntos posibles de 365 demandas diarias.

Este conjunto de escenarios de demanda expondría de manera más completa el rango de posibles situaciones con las que tendría que lidiar un sistema de inventario. Este uso de la simulación se denomina "prueba de estrés", porque expone un sistema a una variedad de escenarios variados pero realistas, incluidos algunos desagradables. Luego, esos escenarios se ingresan en modelos matemáticos del sistema para ver qué tan bien los manejará, como se refleja en los indicadores clave de rendimiento (KPI). Por ejemplo, en esos mil años simulados de operación, ¿cuántos desabastecimientos hay en el peor año? el año promedio? el mejor año? De hecho, ¿cuál es la distribución de probabilidad completa del número de desabastecimientos en un año y cuál es la distribución de su tamaño?

Las Figuras 3 y 4 ilustran el modelado probabilístico de un sistema de control de inventario que convierte los desabastecimientos en pedidos atrasados. El sistema simulado usa una política de control Min/Max con Min = 10 unidades y Max = 20 unidades.

La Figura 3 muestra un año simulado de operaciones diarias en cuatro parcelas. El primer gráfico muestra un patrón particular de demanda diaria aleatoria en el que la demanda promedio aumenta constantemente de lunes a viernes pero desaparece los fines de semana. La segunda gráfica muestra el número de unidades disponibles cada día. Tenga en cuenta que hay una docena de veces durante este año simulado cuando el inventario se vuelve negativo, lo que indica falta de existencias. El tercer gráfico muestra el tamaño y el momento de los pedidos de reabastecimiento. La cuarta gráfica muestra el tamaño y el tiempo de los pedidos pendientes. La información de estos gráficos se puede traducir en estimaciones de inversión en inventario, unidades promedio disponibles, costos de mantenimiento, costos de pedido y costos de escasez.

Probabilistic demand forecast 3

Figura 3: Un año simulado de operación del sistema de inventario

 

La figura 3 muestra uno de mil años simulados. Cada año tendrá diferentes demandas diarias, lo que dará como resultado diferentes valores de métricas como unidades disponibles y los diversos componentes del costo operativo. La figura 4 traza la distribución de 1000 valores simulados de cuatro KPI. La simulación de 1000 años de operación imaginada expone el rango de resultados posibles para que los planificadores puedan tener en cuenta no solo los resultados promedio, sino también ver los valores en el mejor y el peor de los casos.

Probabilistic demand forecast 4

Figura 4: Distribuciones de cuatro KPI basadas en 1000 simulaciones

 

La simulación de Monte Carlo es un enfoque de pronóstico probabilístico de pocas matemáticas y altos resultados: muy práctico y fácil de explicar. Los métodos avanzados de pronóstico probabilístico empleados por Smart Software amplían la simulación estándar de Monte Carlo y producen estimaciones extremadamente precisas de los niveles de inventario requeridos.

 

Deja un comentario

Artículos Relacionados

Managing the Inventory of Promoted Items

Gestión del inventario para promociones

En una publicación anterior, analicé uno de los problemas más espinosos que a veces enfrentan los planificadores de demanda: trabajar con datos de demanda de productos caracterizados por lo que los estadísticos llaman asimetría, una situación que puede requerir costosas inversiones en inventario. Este tipo de datos problemáticos se encuentran en varios escenarios diferentes. En al menos uno, la combinación de demanda intermitente y promociones de ventas muy efectivas, el problema se presta a una solución efectiva.

Top 3 Most Common Inventory Control Policies

Las 3 políticas de control de inventario más comunes

Para tomar la decisión correcta, deberá saber cómo la previsión de la demanda respalda la gestión del inventario, la elección de la política que se utilizará y el cálculo de las entradas que impulsan estas políticas. desea minimizar el número de órdenes de compra que debe generar.

Mensajes recientes

  • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
    En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
  • 5 Ways to Improve Supply Chain Decision Speed5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro
    La promesa de una cadena de suministro digital ha transformado la forma en que operan las empresas. En esencia, permite tomar decisiones rápidas basadas en datos y, al mismo tiempo, garantizar la calidad y la eficiencia en todas las operaciones. Sin embargo, no se trata solo de tener acceso a más datos. Las organizaciones necesitan las herramientas y plataformas adecuadas para convertir esos datos en información procesable. Aquí es donde la toma de decisiones se vuelve fundamental, especialmente en un panorama en el que las nuevas soluciones de cadena de suministro digital y las plataformas impulsadas por IA pueden ayudarlo a agilizar muchos procesos dentro de la matriz de decisiones. […]
  • Two employees checking inventory in temporary storage in a distribution warehouse.12 causas del exceso de stock y soluciones prácticas
    Gestionar el inventario de manera eficaz es fundamental para mantener un balance saludable y garantizar que los recursos se asignen de manera óptima. A continuación, se analizan en profundidad las principales causas del exceso de existencias, sus implicaciones y posibles soluciones. […]
  • FAQ Mastering Smart IP&O for Better Inventory ManagementPreguntas frecuentes: Cómo dominar la IP&O inteligente para una mejor gestión del inventario.
    Una gestión eficaz de la cadena de suministro y del inventario es esencial para lograr la eficiencia operativa y la satisfacción del cliente. Este blog ofrece respuestas claras y concisas a algunas preguntas básicas y otras preguntas comunes de nuestros clientes de Smart IP&O, ofreciendo información práctica para superar los desafíos típicos y mejorar sus prácticas de gestión de inventario. Centrándonos en estas áreas clave, lo ayudamos a transformar problemas complejos de inventario en acciones estratégicas y manejables que reducen los costos y mejoran el rendimiento general con Smart IP&O. […]
  • 7 Key Demand Planning Trends Shaping the Future7 tendencias clave en planificación de la demanda que están dando forma al futuro
    La planificación de la demanda va más allá de la simple previsión de las necesidades de productos; se trata de garantizar que su empresa satisfaga las demandas de los clientes con precisión, eficiencia y rentabilidad. La última tecnología de planificación de la demanda aborda desafíos clave como la precisión de las previsiones, la gestión de inventarios y la capacidad de respuesta al mercado. En este blog, presentaremos tendencias críticas de planificación de la demanda, que incluyen información basada en datos, previsión probabilística, planificación por consenso, análisis predictivo, modelado de escenarios, visibilidad en tiempo real y previsión multinivel. Estas tendencias le ayudarán a mantenerse a la vanguardia, optimizar su cadena de suministro, reducir costes y mejorar la satisfacción del cliente, posicionando a su empresa para el éxito a largo plazo. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
      En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
    • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovando en el mercado de repuestos OEM con optimización de inventario impulsada por IA
      El sector de posventa ofrece a los fabricantes de equipos originales una ventaja decisiva al ofrecer un flujo de ingresos constante y fomentar la lealtad del cliente mediante la entrega confiable y oportuna de piezas de repuesto. Sin embargo, la gestión del inventario y la previsión de la demanda en el mercado de posventa está plagada de desafíos, incluidos patrones de demanda impredecibles, amplias gamas de productos y la necesidad de entregas rápidas. Los métodos tradicionales a menudo no son suficientes debido a la complejidad y variabilidad de la demanda en el mercado de posventa. Las últimas tecnologías pueden analizar grandes conjuntos de datos para predecir la demanda futura con mayor precisión y optimizar los niveles de inventario, lo que conduce a un mejor servicio y menores costos. […]
    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationUtilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro
      Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental. […]
    • Centering Act Spare Parts Timing Pricing and ReliabilityLey de centrado: sincronización, precio y confiabilidad de los repuestos
      En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]

      El cuento de Ricitos de Oro sobre los niveles de inventario

      Puede que recuerdes la historia de Goldilocks de tu juventud hace mucho tiempo. A veces la papilla estaba demasiado caliente, a veces demasiado fría, pero solo una vez estaba bien. Ahora que somos adultos, podemos traducir ese cuento de hadas en un principio profesional para la planificación del inventario: puede haber muy poco o demasiado inventario, y hay un nivel de Ricitos de Oro que es “perfecto”. Este blog trata de encontrar ese punto dulce.

      Para ilustrar nuestra fábula de la cadena de suministro, considere este ejemplo. Imagine que vende repuestos para mantener los sistemas de sus clientes en funcionamiento. Usted ofrece una parte de servicio en particular que le cuesta $100 pero se vende por un margen de beneficio de 20%. Puede hacer $20 en cada unidad que vende, pero no puede quedarse con el $20 completo debido a los costos operativos de inventario que soporta para poder vender la pieza. Hay costos de mantenimiento para mantener la pieza en buen estado mientras está en stock y costos de pedido para reabastecer las unidades que vende. Finalmente, a veces se pierden ingresos por ventas perdidas debido a desabastecimientos.  

      Estos costos operativos pueden estar directamente relacionados con la forma en que administra la pieza en el inventario. Para nuestro ejemplo, suponga que utiliza una política de inventario (Q,R), donde Q es la cantidad del pedido de reposición y R es el punto de pedido. Suponga además que la razón por la que no está fabricando $30 por unidad es que tiene competidores, y los clientes obtendrán la pieza de ellos si no pueden obtenerla de usted.

      Tanto sus ingresos como sus costes dependen de formas complejas de sus elecciones de Q y R. Estas determinarán cuánto pide, cuándo y, por tanto, con qué frecuencia pide, con qué frecuencia se agota y, por tanto, cuántas ventas pierde y cuánto dinero en efectivo que atas en el inventario. Es imposible calcular el costo de estas relaciones con conjeturas, pero el software moderno puede hacer que las relaciones sean visibles y calcular las cifras en dólares que necesita para guiar su elección de valores para Q y R. Lo hace ejecutando simulaciones probabilísticas detalladas y basadas en hechos. que predicen los costes y el rendimiento promediando un gran número de escenarios de demanda realistas.  

      Con estos resultados en la mano, puede calcular el margen asociado con los valores (Q,R) usando la fórmula simple

      Margen = (Demanda - Ventas perdidas) x Beneficio por unidad vendida - Costos de pedido - Costos de mantenimiento.

      En esta fórmula, las ventas perdidas, los costos de pedido y los costos de mantenimiento dependen del punto de pedido R y la cantidad de pedido Q.

      La Figura 1 muestra el resultado de las simulaciones que fijaron Q en 25 unidades y variaron R de 10 a 30 en pasos de 5. Si bien la curva es bastante plana en la parte superior, ganaría más dinero manteniendo un inventario disponible de alrededor de 25 unidades ( que corresponde al ajuste R = 20). Más inventario, a pesar de un mayor nivel de servicio y menos ventas perdidas, generaría un poco menos de dinero (y vincularía mucho más efectivo), y menos inventario generaría mucho menos.

       

      Margins vs Inventory Level Business

      Figura 1: Mostrando que puede haber muy poco o demasiado inventario disponible

       

      Sin confiar en el software de simulación de inventario, no podríamos descubrir

      • a) que es posible llevar muy poco y demasiado inventario
      • b) cuál es el mejor nivel de inventario
      • c) cómo llegar allí mediante las elecciones adecuadas del punto de pedido R y la cantidad de pedido Q.

       

      Sin una comprensión explícita de lo anterior, las empresas tomarán decisiones de inventario diarias basándose en la intuición y los métodos de regla empírica basados en promedios. Las compensaciones descritas aquí no están expuestas y la combinación resultante de inventario produce un retorno mucho menor, perdiendo cientos de miles a millones por año en ganancias perdidas. Así que sé como Ricitos de Oro. Con los sistemas y las herramientas de software correctos, ¡usted también puede hacerlo bien!    

       

       

      Deja un comentario
      Artículos Relacionados
      Daily Demand Scenarios

      Escenarios de demanda diaria

      En este Videoblog explicaremos cómo la previsión de series temporales se ha convertido en una herramienta fundamental, especialmente a nivel diario, en la que Smart Software ha sido pionero desde sus inicios hace más de cuarenta años. La evolución de las prácticas comerciales de incrementos temporales anuales a incrementos temporales más refinados, como el análisis de datos mensual y ahora diario, ilustra un cambio significativo en las estrategias operativas.

      Irregular Operations

      Operaciones irregulares

      Este blog trata sobre "operaciones irregulares". Smart Software está en el proceso de adaptar nuestros productos para ayudarle a afrontar sus propias operaciones irregulares. Esto es una vista previa.

      Finding Your Spot on the Inventory Tradeoff Curve

      Encontrar su lugar en la curva de compensación del inventario

      Este videoblog contiene información esencial para quienes trabajan con las complejidades de la gestión de inventario. La sesión se centra en lograr el equilibrio adecuado dentro de la curva de compensación de acciones, invitando a los espectadores a comprender la importancia profundamente arraigada de este equilibrio.

      Aumento de los ingresos mediante el aumento de la disponibilidad de piezas de repuesto

      El Blog de Smart

       Recomendaciones para la planificación de la demanda,

      previsión y optimización de inventario

      Comencemos reconociendo que el aumento de los ingresos es bueno para usted y que aumentar la disponibilidad de las piezas de repuesto que proporciona es bueno para sus clientes.

      Pero también reconozcamos que aumentar la disponibilidad de artículos no necesariamente conducirá a mayores ingresos. Si planifica incorrectamente y termina teniendo un exceso de inventario, el efecto neto puede ser bueno para sus clientes, pero definitivamente será malo para usted. Debe haber alguna forma correcta de hacer que esto sea beneficioso para todos, si tan solo se puede reconocer.

      Para tomar la decisión correcta aquí, debe pensar sistemáticamente sobre el problema. Eso requiere que utilice modelos probabilísticos del proceso de control de inventario.

       

      un escenario

      Consideremos un escenario específico y realista. Muchos factores influyen en los resultados:

      • El artículo: Una pieza de repuesto específica de bajo volumen.
      • Demanda media: promedio de 0,1 unidades por día (por lo tanto, altamente "intermitente")
      • Desviación estándar de la demanda: 0,35 unidades por día (por lo tanto, muy variable o “sobredispersada”).
      • Plazo medio de entrega del proveedor: 5 días.
      • Costo unitario: $100.
      • Costo de mantenimiento por año como % del costo unitario: 10%.
      • Costo de pedido por corte de orden de compra: $25.
      • Consecuencias del desabastecimiento: pérdida de ventas (por lo tanto, un mercado competitivo, sin pedidos pendientes).
      • Costo de escasez por venta perdida: $100.
      • Objetivo de nivel de servicio: 85% (por lo tanto, 15% de probabilidad de desabastecimiento en cualquier ciclo de reabastecimiento).
      • Política de control de inventario: revisión periódica/pedido hasta (también llamada política en (T,S))

       

      Política de control de inventario

      Una palabra sobre la política de control de inventario. La política (T,S) es una de varias que son comunes en la práctica. Aunque existen otras políticas más eficientes (p. ej., no esperan a que pasen T días para hacer el ajuste de stock), (T,S) es una de las más sencillas y, por lo tanto, bastante popular. Funciona de esta manera: cada T días, verifica cuántas unidades tiene en stock, digamos X unidades. Luego, solicita unidades SX, que aparecen después del tiempo de entrega del proveedor (en este caso, 5 días). La T en (T,S) es el “intervalo de pedido”, el número de días entre pedidos; la S es el "pedido hasta el nivel", la cantidad de unidades que desea tener disponibles al comienzo de cada ciclo de reposición.

      Para aprovechar al máximo esta política, debe elegir sabiamente los valores de T y S. Elegir sabiamente significa que no puede ganar adivinando o usando guías simples de reglas generales como "Mantenga un promedio de 3 veces la demanda promedio disponible". Las malas elecciones de T y S perjudican tanto a sus clientes como a sus resultados. Y quedarse demasiado tiempo con opciones que alguna vez fueron buenas puede resultar en un rendimiento deficiente si alguno de los factores anteriores cambia significativamente, por lo que los valores de T y S deben recalcularse de vez en cuando.

      La forma inteligente de elegir los valores correctos de T y S es usar modelos probabilísticos codificados en software avanzado. El uso de software es esencial cuando tiene que escalar y elegir valores de T y S que sean correctos no para un artículo sino para cientos o miles.

       

      Análisis de Escenario

      Pensemos en cómo ganar dinero en este escenario. ¿Cuál es el lado positivo? Si no hubiera gastos, este rubro podría generar un promedio de $3.650 por año: 0,1 unidades/día x 365 días x $100/unidad. Se restarán de eso los costos operativos, compuestos por costos de mantenimiento, pedidos y faltantes. Cada uno de ellos dependerá de sus elecciones de T y S.

      El software proporciona números específicos: la configuración de T = 321 días y S = 40 unidades dará como resultado costos operativos anuales promedio de $604, dando un margen esperado de $3,650 – $604 = $3,046. Ver Tabla 1, columna izquierda. Este uso de software se denomina "análisis predictivo" porque traduce las entradas del diseño del sistema en estimaciones de un indicador clave de rendimiento, el margen.

      Ahora piensa si puedes hacerlo mejor. El objetivo de nivel de servicio en este escenario es 85%, que es un estándar algo relajado que no llamará la atención. ¿Qué pasaría si pudiera ofrecer a sus clientes un nivel de servicio 99%? Eso suena como una clara ventaja competitiva, pero ¿reduciría su margen? No si ajusta correctamente los valores de T y S.

      Establecer T = 216 días y S = 35 unidades reducirá los costos operativos anuales promedio a $551 y aumentará el margen esperado a $3,650 – $551 = $3,099. Ver Tabla 1, columna derecha. Aquí está el ganar-ganar que queríamos: mayor satisfacción del cliente y aproximadamente 2% más de ingresos. Este uso del software se denomina "análisis de sensibilidad" porque muestra cuán sensible es el margen a la elección del objetivo de nivel de servicio.

      El software también puede ayudarlo a visualizar la dinámica compleja y aleatoria de los movimientos de inventario. Un subproducto del análisis que llenó la Tabla 1 son los gráficos que muestran las rutas aleatorias tomadas por las existencias a medida que disminuyen durante un ciclo de reabastecimiento. La figura 1 muestra una selección de 100 escenarios aleatorios para el escenario en el que el nivel de servicio objetivo es 99%. En la figura, solo 1 de los 100 escenarios resultó en un desabastecimiento, lo que confirma la precisión de la elección del pedido hasta el nivel.

       

      Resumen

      La gestión de los inventarios de piezas de repuesto a menudo se realiza al azar utilizando el instinto, el hábito o la regla empírica obsoleta. Volarlo de esta manera no es un camino confiable y reproducible hacia un mayor margen o una mayor satisfacción del cliente. La teoría de la probabilidad, destilada en modelos de probabilidad y luego codificada en software avanzado, es la base para una guía coherente y eficiente sobre cómo administrar las piezas de repuesto en función de los hechos: características de la demanda, plazos de entrega, objetivos de nivel de servicio, costos y otros factores. Los escenarios analizados aquí ilustran que es posible lograr niveles de servicio más altos y un margen más alto. Una multitud de escenarios que no se muestran aquí ofrecen formas de lograr niveles de servicio más altos pero pierden margen. Usa el programa.

      Scenarios with different service level targets

      Stock on hand during one replenishment cycle

       

       

      Deja un comentario

      Artículos Relacionados

      Managing the Inventory of Promoted Items

      Gestión del inventario para promociones

      En una publicación anterior, analicé uno de los problemas más espinosos que a veces enfrentan los planificadores de demanda: trabajar con datos de demanda de productos caracterizados por lo que los estadísticos llaman asimetría, una situación que puede requerir costosas inversiones en inventario. Este tipo de datos problemáticos se encuentran en varios escenarios diferentes. En al menos uno, la combinación de demanda intermitente y promociones de ventas muy efectivas, el problema se presta a una solución efectiva.

      Top 3 Most Common Inventory Control Policies

      Las 3 políticas de control de inventario más comunes

      Para tomar la decisión correcta, deberá saber cómo la previsión de la demanda respalda la gestión del inventario, la elección de la política que se utilizará y el cálculo de las entradas que impulsan estas políticas. desea minimizar el número de órdenes de compra que debe generar.

      Mensajes recientes

      • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
        En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
      • 5 Ways to Improve Supply Chain Decision Speed5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro
        La promesa de una cadena de suministro digital ha transformado la forma en que operan las empresas. En esencia, permite tomar decisiones rápidas basadas en datos y, al mismo tiempo, garantizar la calidad y la eficiencia en todas las operaciones. Sin embargo, no se trata solo de tener acceso a más datos. Las organizaciones necesitan las herramientas y plataformas adecuadas para convertir esos datos en información procesable. Aquí es donde la toma de decisiones se vuelve fundamental, especialmente en un panorama en el que las nuevas soluciones de cadena de suministro digital y las plataformas impulsadas por IA pueden ayudarlo a agilizar muchos procesos dentro de la matriz de decisiones. […]
      • Two employees checking inventory in temporary storage in a distribution warehouse.12 causas del exceso de stock y soluciones prácticas
        Gestionar el inventario de manera eficaz es fundamental para mantener un balance saludable y garantizar que los recursos se asignen de manera óptima. A continuación, se analizan en profundidad las principales causas del exceso de existencias, sus implicaciones y posibles soluciones. […]
      • FAQ Mastering Smart IP&O for Better Inventory ManagementPreguntas frecuentes: Cómo dominar la IP&O inteligente para una mejor gestión del inventario.
        Una gestión eficaz de la cadena de suministro y del inventario es esencial para lograr la eficiencia operativa y la satisfacción del cliente. Este blog ofrece respuestas claras y concisas a algunas preguntas básicas y otras preguntas comunes de nuestros clientes de Smart IP&O, ofreciendo información práctica para superar los desafíos típicos y mejorar sus prácticas de gestión de inventario. Centrándonos en estas áreas clave, lo ayudamos a transformar problemas complejos de inventario en acciones estratégicas y manejables que reducen los costos y mejoran el rendimiento general con Smart IP&O. […]
      • 7 Key Demand Planning Trends Shaping the Future7 tendencias clave en planificación de la demanda que están dando forma al futuro
        La planificación de la demanda va más allá de la simple previsión de las necesidades de productos; se trata de garantizar que su empresa satisfaga las demandas de los clientes con precisión, eficiencia y rentabilidad. La última tecnología de planificación de la demanda aborda desafíos clave como la precisión de las previsiones, la gestión de inventarios y la capacidad de respuesta al mercado. En este blog, presentaremos tendencias críticas de planificación de la demanda, que incluyen información basada en datos, previsión probabilística, planificación por consenso, análisis predictivo, modelado de escenarios, visibilidad en tiempo real y previsión multinivel. Estas tendencias le ayudarán a mantenerse a la vanguardia, optimizar su cadena de suministro, reducir costes y mejorar la satisfacción del cliente, posicionando a su empresa para el éxito a largo plazo. […]

        Optimización de inventario para fabricantes, distribuidores y MRO

        • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
          En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
        • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovando en el mercado de repuestos OEM con optimización de inventario impulsada por IA
          El sector de posventa ofrece a los fabricantes de equipos originales una ventaja decisiva al ofrecer un flujo de ingresos constante y fomentar la lealtad del cliente mediante la entrega confiable y oportuna de piezas de repuesto. Sin embargo, la gestión del inventario y la previsión de la demanda en el mercado de posventa está plagada de desafíos, incluidos patrones de demanda impredecibles, amplias gamas de productos y la necesidad de entregas rápidas. Los métodos tradicionales a menudo no son suficientes debido a la complejidad y variabilidad de la demanda en el mercado de posventa. Las últimas tecnologías pueden analizar grandes conjuntos de datos para predecir la demanda futura con mayor precisión y optimizar los niveles de inventario, lo que conduce a un mejor servicio y menores costos. […]
        • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationUtilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro
          Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental. […]
        • Centering Act Spare Parts Timing Pricing and ReliabilityLey de centrado: sincronización, precio y confiabilidad de los repuestos
          En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]

          Maximice el tiempo de actividad de la máquina con el modelado probabilístico

          El Blog de Smart

           Recomendaciones para la planificación de la demanda,

          previsión y optimización de inventario

          Dos problemas de inventario

          Si fabricas y vendes cosas, tienes dos problemas de inventario. Las empresas que venden cosas deben concentrarse incansablemente en tener suficiente inventario de productos para satisfacer la demanda de los clientes. Los fabricantes y las industrias intensivas en activos, como la generación de energía, el transporte público, la minería y la refinación, tienen una preocupación de inventario adicional: tener suficientes repuestos para mantener sus máquinas en funcionamiento. Este resumen técnico revisa los conceptos básicos de dos modelos probabilísticos de avería de la máquina. También relaciona el tiempo de actividad de la máquina con la adecuación del inventario de piezas de repuesto.

           

          Modelización del fallo de una máquina tratada como una “caja negra”

          Así como la demanda de productos es inherentemente aleatoria, también lo es el momento de las averías de las máquinas. Del mismo modo, así como el modelado probabilístico es la forma correcta de lidiar con la demanda aleatoria, también es la forma correcta de lidiar con fallas aleatorias.

          Los modelos de avería de máquinas tienen dos componentes. El primero se ocupa de la duración aleatoria del tiempo de actividad. El segundo se ocupa de la duración aleatoria del tiempo de inactividad.

          El campo de teoría de la confiabilidad ofrece varios modelos de probabilidad estándar que describen el tiempo aleatorio hasta la falla de una máquina sin tener en cuenta el motivo de la falla. El modelo más simple de tiempo de actividad es el distribución exponencial. Este modelo dice que el tasa de riesgo, es decir, la posibilidad de fallar en el siguiente instante de tiempo es constante sin importar cuánto tiempo haya estado operando el sistema. El modelo exponencial hace un buen trabajo modelando ciertos tipos de sistemas, especialmente electrónicos, pero no es universalmente aplicable.

           

          Descargar el documento técnico

           

          El siguiente paso en la complejidad del modelo es el Weibull modelo (pronunciado “POR QUÉ-toro”). La distribución de Weibull permite que el riesgo de falla cambie con el tiempo, ya sea disminuyendo después de un período de quemado o, más a menudo, aumentando a medida que se acumula el desgaste. La distribución exponencial es un caso especial de la distribución de Weibull en la que la tasa de riesgo no aumenta ni disminuye.

          Weibull Reliability Plot

          Figura 1: Tres curvas de supervivencia de Weibull diferentes

          La Figura 1 ilustra la probabilidad del modelo de Weibull de que una máquina aún esté funcionando como una función de cuánto tiempo ha estado funcionando. Hay tres curvas correspondientes a tasas de riesgo constantes, decrecientes y crecientes. Por razones obvias, estos se llaman curvas de supervivencia porque grafican la probabilidad de sobrevivir por varias cantidades de tiempo (pero también se les llama curvas de confiabilidad). La curva negra que comienza alta y desciende rápidamente (β=3) representa una máquina que se desgasta con el tiempo. La curva más ligera en el medio rápido (β=1) muestra la distribución exponencial. La curva media-oscura (β=0.5) es aquella que tiene una alta tasa de riesgo temprano pero mejora con la edad.

          Por supuesto, hay otro fenómeno que debe incluirse en el análisis: el tiempo de inactividad. Modelar el tiempo de inactividad es donde la teoría del inventario entra en escena. El tiempo de inactividad se modela mediante una mezcla de dos distribuciones diferentes. Si hay una pieza de repuesto disponible para reemplazar la pieza defectuosa, el tiempo de inactividad puede ser muy breve, digamos un día. Pero si no hay repuestos en stock, el tiempo de inactividad puede ser bastante largo. Incluso si el repuesto se puede obtener rápidamente, pueden pasar varios días o una semana antes de que se pueda reparar la máquina. Si el repuesto debe ser fabricado por un proveedor lejano y enviado por mar, luego por tren y luego por camión a su planta, el tiempo de inactividad podría ser de semanas o meses. Todo esto significa que mantener un inventario adecuado de repuestos es muy importante para mantener la producción en marcha.

          En este tipo de análisis agregado, la máquina se trata como una caja negra que funciona o no. Aunque ignora los detalles de qué parte falló y cuándo, dicho modelo es útil para dimensionar el grupo de máquinas necesarias para mantener un nivel mínimo de capacidad de producción con alta probabilidad.

          Él Distribución binomial es el modelo de probabilidad relevante para este problema. El binomio es el mismo modelo que describe, por ejemplo, la distribución del número de “caras” resultantes de veinte lanzamientos de una moneda. En el problema de confiabilidad de las máquinas, las máquinas corresponden a monedas, y un resultado de caras corresponde a tener una máquina en funcionamiento.

          Como ejemplo, si

          • la posibilidad de que cualquier máquina esté funcionando en un día en particular es 90%
          • las fallas de las máquinas son independientes (p. ej., no hay inundaciones ni tornados que las eliminen todas a la vez)
          • necesita al menos una probabilidad de 95% de que al menos 5 máquinas estén funcionando en un día determinado

          luego, el modelo binomial prescribe siete máquinas para lograr su objetivo.

           

          Modelado de fallas de máquinas basadas en fallas de componentes

          Maximize Machine Uptime with Probabilistic Modeling

          El modelo de Weibull también se puede usar para describir la falla de una sola pieza. Sin embargo, cualquier máquina de producción realistamente compleja tendrá múltiples partes y, por lo tanto, tendrá múltiples modos de falla. Esto significa que calcular el tiempo hasta que la máquina falla requiere el análisis de una “carrera hacia la falla”, con cada parte compitiendo por el “honor” de ser la primera en fallar.

          Si hacemos la suposición razonable de que las piezas fallan de forma independiente, la teoría de la probabilidad estándar señala el camino para combinar los modelos de falla de piezas individuales en un modelo general de falla de la máquina. El tiempo hasta que falla la primera de muchas partes tiene un poli-Weibull distribución. En este punto, sin embargo, el análisis puede volverse bastante complicado, y el mejor movimiento puede ser cambiar de análisis por ecuación a análisis por simulación.

           

          Simulación de fallas de máquinas a partir de los detalles de fallas de piezas

          El análisis de simulación tuvo su comienzo moderno como un derivado del Proyecto Manhattan para construir la primera bomba atómica. El método también se denomina comúnmente simulación del Monte Carlo después del centro de juego más grande del mundo en el pasado (hoy sería "simulación de Macao").

          Un modelo de simulación convierte la lógica de la secuencia de eventos aleatorios en el código informático correspondiente. Luego, utiliza números (pseudo) aleatorios generados por computadora como combustible para impulsar el modelo de simulación. Por ejemplo, el tiempo de falla de cada componente se crea a partir de su distribución particular de tiempo de falla de Weibull. Luego, el más temprano de esos tiempos de falla comienza el siguiente episodio de tiempo de inactividad de la máquina.

          simulation of machine uptime over one year of operation

          Figura 2: una simulación del tiempo de actividad de la máquina durante un año de funcionamiento

          La Figura 2 muestra los resultados de una simulación del tiempo de actividad de una sola máquina. Las máquinas pasan por períodos alternos de tiempo de actividad y tiempo de inactividad. En esta simulación, se supone que el tiempo de actividad tiene una distribución exponencial con una duración promedio (MTBF = Tiempo medio antes de la falla) de 30 días. El tiempo de inactividad tiene una división de 50:50 entre 1 día si hay un repuesto disponible y 30 días si no. En la simulación que se muestra en la Figura 2, la máquina está funcionando durante 85% de los días en un año de operación.

           

          Una fórmula aproximada para el tiempo de actividad de la máquina

          Aunque la simulación de Monte Carlo puede proporcionar resultados más exactos, un modelo algebraico más simple funciona bien como aproximación y facilita ver cómo se relacionan las variables clave.

          Defina las siguientes variables clave:

          • MTBF = Tiempo medio antes de la falla (días)
          • Pa = Probabilidad de que haya un repuesto disponible cuando se necesite
          • MDTshort = Tiempo medio de inactividad si hay un repuesto disponible cuando sea necesario
          • MDTlong = Tiempo medio de inactividad si no hay repuesto disponible cuando se necesita
          • Uptime = Porcentaje de días en los que la máquina está en funcionamiento.

          Entonces hay una aproximación simple para el tiempo de actividad:

          Tiempo de actividad ≈ 100 x MTBF/(MTBF + MDTshort x Pa + MDTlong x (1-Pa)). (Ecuación 1)

          La ecuación 1 nos dice que el tiempo de actividad depende de la disponibilidad de un repuesto. Si siempre hay un repuesto (Pa=1), el tiempo de actividad alcanza un valor máximo de alrededor de 100 x MTBF/(MTBF + MDTshort). Si nunca hay un repuesto disponible (Pa=0), entonces el tiempo de actividad alcanza su valor más bajo de alrededor de 100 x MTBF/(MTBF + MDTlong). Cuando el tiempo de reparación es tan largo como el tiempo típico entre fallas, el tiempo de actividad se reduce a un nivel inaceptable cerca de 50%. Si siempre hay un repuesto disponible, el tiempo de actividad puede acercarse a 100%.

          Relacionar el tiempo de inactividad de la máquina con el inventario de piezas de repuesto

          Minimizar el tiempo de inactividad requiere una iniciativa múltiple que implique una formación intensiva del operador, el uso de materias primas de calidad, un mantenimiento preventivo eficaz y las piezas de repuesto adecuadas. Los tres primeros establecen las condiciones para obtener buenos resultados. El último se ocupa de las contingencias.

          Inventory Planning for Manufacturers MRO SAAS

          Una vez que una máquina está inactiva, el dinero sale volando por la puerta y hay una prima en volver a ponerla en marcha pronto. Esta escena podría desarrollarse de dos maneras. El bueno tiene una pieza de repuesto lista para usar, por lo que el tiempo de inactividad se puede reducir al mínimo. El defectuoso no tiene repuestos disponibles, por lo que hay una lucha para acelerar la entrega de la pieza necesaria. En este caso, el fabricante debe asumir tanto el costo de la pérdida de producción como el costo del envío acelerado, si es que esa es una opción.

          Si el sistema de inventario está diseñado correctamente, la disponibilidad de repuestos no será un impedimento importante para el tiempo de actividad de la máquina. Por el diseño de un sistema de inventario, me refiero a los resultados de varias opciones: si la política de escasez es una política de pedidos pendientes o una política de pérdida, si el ciclo de revisión del inventario es periódico o continuo, y qué puntos de pedido y cantidades de pedido se establecen.

          Cuando se diseñan políticas de inventario para productos, se evalúan utilizando varios criterios. El nivel de servicio es el porcentaje de períodos de reabastecimiento que transcurren sin desabastecimiento. Tasa de llenado es el porcentaje de unidades pedidas que se suministran inmediatamente desde el stock. El nivel de inventario promedio es el número típico de unidades disponibles.

          Ninguno de estos es exactamente la métrica necesaria para el almacenamiento de repuestos, aunque todos están relacionados. La métrica necesaria es Disponibilidad de artículos, que es el porcentaje de días en los que hay al menos un repuesto listo para usar. Los niveles de servicio, las tasas de llenado y los niveles de inventario más altos implican una alta disponibilidad de artículos, y hay formas de convertir de uno a otro. (Cuando se trata de varias máquinas que comparten el mismo stock de repuestos, la disponibilidad de inventario se reemplaza por la distribución de probabilidad del número de repuestos en un día determinado. Dejamos ese problema más complejo para otro día).

          Claramente, mantener un buen suministro de repuestos reduce los costos del tiempo de inactividad de la máquina. Por supuesto, mantener un buen suministro de repuestos genera sus propios costos de inventario y pedidos. Este es el segundo problema de inventario del fabricante. Al igual que con cualquier decisión que involucre inventario, la clave es lograr el equilibrio adecuado entre estos dos centros de costos en competencia. Ver este artículo sobre pronóstico probabilístico para demanda intermitente para obtener orientación sobre cómo lograr ese equilibrio.

           

          Deja un comentario

          Artículos Relacionados

          Managing the Inventory of Promoted Items

          Gestión del inventario para promociones

          En una publicación anterior, analicé uno de los problemas más espinosos que a veces enfrentan los planificadores de demanda: trabajar con datos de demanda de productos caracterizados por lo que los estadísticos llaman asimetría, una situación que puede requerir costosas inversiones en inventario. Este tipo de datos problemáticos se encuentran en varios escenarios diferentes. En al menos uno, la combinación de demanda intermitente y promociones de ventas muy efectivas, el problema se presta a una solución efectiva.

          Top 3 Most Common Inventory Control Policies

          Las 3 políticas de control de inventario más comunes

          Para tomar la decisión correcta, deberá saber cómo la previsión de la demanda respalda la gestión del inventario, la elección de la política que se utilizará y el cálculo de las entradas que impulsan estas políticas. desea minimizar el número de órdenes de compra que debe generar.

          Mensajes recientes

          • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
            En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
          • 5 Ways to Improve Supply Chain Decision Speed5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro
            La promesa de una cadena de suministro digital ha transformado la forma en que operan las empresas. En esencia, permite tomar decisiones rápidas basadas en datos y, al mismo tiempo, garantizar la calidad y la eficiencia en todas las operaciones. Sin embargo, no se trata solo de tener acceso a más datos. Las organizaciones necesitan las herramientas y plataformas adecuadas para convertir esos datos en información procesable. Aquí es donde la toma de decisiones se vuelve fundamental, especialmente en un panorama en el que las nuevas soluciones de cadena de suministro digital y las plataformas impulsadas por IA pueden ayudarlo a agilizar muchos procesos dentro de la matriz de decisiones. […]
          • Two employees checking inventory in temporary storage in a distribution warehouse.12 causas del exceso de stock y soluciones prácticas
            Gestionar el inventario de manera eficaz es fundamental para mantener un balance saludable y garantizar que los recursos se asignen de manera óptima. A continuación, se analizan en profundidad las principales causas del exceso de existencias, sus implicaciones y posibles soluciones. […]
          • FAQ Mastering Smart IP&O for Better Inventory ManagementPreguntas frecuentes: Cómo dominar la IP&O inteligente para una mejor gestión del inventario.
            Una gestión eficaz de la cadena de suministro y del inventario es esencial para lograr la eficiencia operativa y la satisfacción del cliente. Este blog ofrece respuestas claras y concisas a algunas preguntas básicas y otras preguntas comunes de nuestros clientes de Smart IP&O, ofreciendo información práctica para superar los desafíos típicos y mejorar sus prácticas de gestión de inventario. Centrándonos en estas áreas clave, lo ayudamos a transformar problemas complejos de inventario en acciones estratégicas y manejables que reducen los costos y mejoran el rendimiento general con Smart IP&O. […]
          • 7 Key Demand Planning Trends Shaping the Future7 tendencias clave en planificación de la demanda que están dando forma al futuro
            La planificación de la demanda va más allá de la simple previsión de las necesidades de productos; se trata de garantizar que su empresa satisfaga las demandas de los clientes con precisión, eficiencia y rentabilidad. La última tecnología de planificación de la demanda aborda desafíos clave como la precisión de las previsiones, la gestión de inventarios y la capacidad de respuesta al mercado. En este blog, presentaremos tendencias críticas de planificación de la demanda, que incluyen información basada en datos, previsión probabilística, planificación por consenso, análisis predictivo, modelado de escenarios, visibilidad en tiempo real y previsión multinivel. Estas tendencias le ayudarán a mantenerse a la vanguardia, optimizar su cadena de suministro, reducir costes y mejorar la satisfacción del cliente, posicionando a su empresa para el éxito a largo plazo. […]

            Optimización de inventario para fabricantes, distribuidores y MRO

            • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
              En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
            • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovando en el mercado de repuestos OEM con optimización de inventario impulsada por IA
              El sector de posventa ofrece a los fabricantes de equipos originales una ventaja decisiva al ofrecer un flujo de ingresos constante y fomentar la lealtad del cliente mediante la entrega confiable y oportuna de piezas de repuesto. Sin embargo, la gestión del inventario y la previsión de la demanda en el mercado de posventa está plagada de desafíos, incluidos patrones de demanda impredecibles, amplias gamas de productos y la necesidad de entregas rápidas. Los métodos tradicionales a menudo no son suficientes debido a la complejidad y variabilidad de la demanda en el mercado de posventa. Las últimas tecnologías pueden analizar grandes conjuntos de datos para predecir la demanda futura con mayor precisión y optimizar los niveles de inventario, lo que conduce a un mejor servicio y menores costos. […]
            • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationUtilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro
              Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental. […]
            • Centering Act Spare Parts Timing Pricing and ReliabilityLey de centrado: sincronización, precio y confiabilidad de los repuestos
              En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]

              La Ingeniería bajo demanda en Kratos Space hace que la disponibilidad de piezas sea una ventaja estratégica

              Introducción

              El grupo Kratos Space dentro del innovador tecnológico de seguridad nacional Kratos Defense & Security Solutions, Inc., produce software COTS y productos de componentes para comunicaciones espaciales, productos personalizados para clientes individuales, así como soluciones completas de segmento terrestre y satelital. El suyo es un mercado muy exigente que a menudo requiere sistemas diseñados a medida con un rendimiento excepcional y ciclos de entrega rápidos. Kirk Smith, vicepresidente de Business Systems Innovation, se sentó con nosotros para explicarnos cómo la gestión y la planificación de piezas se han vuelto fundamentales para su excelencia operativa, respaldando numerosos proyectos personalizados al año.

              El reto:  

              La ingeniería bajo pedido en el mundo de Kratos significa que la previsión tradicional de productos terminados no le ayudará a planificar el futuro. En el mercado personalizado, el pasado no proporciona un pronóstico utilizable para el futuro, incluso dentro de las áreas tecnológicas enfocadas del grupo espacial. Simplemente no sabe de antemano todo lo que su próximo cliente de sistema personalizado va a solicitar. Esto es problemático para los fabricantes por contrato (CM) de la empresa que producen ensamblajes clave de nivel inferior: no pueden saber qué esperar y, sin algunos consejos, no tendrán la capacidad de realizar pedidos anticipados y almacenar los componentes necesarios. Los horizontes de pronóstico cortos y los tiempos de entrega largos de los componentes dificultan la licitación competitiva para nuevos proyectos, donde el tiempo de entrega es crucial.

               

              Aprovechar una ventaja competitiva

              “Con soluciones a la medida y personalizadas, la razón número 1 por la que ganamos es que resolvemos problemas muy desafiantes para nuestros clientes”, dice Smith. Pero un segundo cercano es una ventaja estratégica: la capacidad de entregar esos sistemas personalizados rápidamente. Kratos tiene una variedad de bloques de construcción previamente diseñados y diseñados (ensamblajes de nivel de placa y chasis) que se pueden aplicar a soluciones de nuevo diseño. Esto acelera el diseño, pero debido a que estos componentes básicos se adaptan a cada cliente, almacenarlos para futuras ventas es problemático: hay muchas variantes. Si Kratos pudiera encontrar una manera de pronosticar de manera efectiva los requisitos a nivel de placa y componente, podría reducir el tiempo de producción de principio a fin, minimizar la escasez de piezas que retrasan la entrega y evitar los excesos que crean un inventario obsoleto.

               

              La solución: 

              Kratos siguió un enfoque de planificación híbrido, combinando la planificación de ventas de su equipo de desarrollo comercial con pronósticos estadísticos de Smart Software. Smith explicó el proceso:

              Parte 1: pronóstico anual a nivel de ensamblaje construido de CM:

              • Use Smart para producir un pronóstico continuo de nivel de ensamblaje de 12 meses para el CM.
              • Compare esto con el Pronóstico de Oportunidades de Desarrollo de Negocios
              • Combine los conocimientos de Smart con el Pronóstico de oportunidades
              • Proporcione el pronóstico de ensamblaje ajustado resultante al CM para la planificación de ingresos y capacidad.

              Parte 2: proporcionar pronósticos a nivel de componente a los fabricantes por contrato:

              • Introduzca el pronóstico del nivel de ensamblaje en la función de lista de materiales de ERP, explotando la demanda a nivel de componente para todas las piezas.
              • Agregando la demanda por número de pieza, genere pronósticos a nivel de componente.
              • Proporcione pronósticos a la adquisición de CM para permitirles determinar cuándo comprar por adelantado o aumentar los pedidos para capturar las rebajas de precio por volumen. Cuando ven una oportunidad, contactan a Kratos, obtienen permiso y aumentan las compras, con el efecto de reducir el costo del material y los plazos de entrega.
              • Además, proporcionar pronósticos anuales reduce la presión de recompra de los CM: Kratos está obligado a recomprar componentes no utilizados, pero ahora los CM pueden ver oportunidades a nivel de componentes y el valor de retener existencias.

               

              Resultados: 

              En los últimos tres años, este enfoque le ha permitido a Kratos reducir el costo del material. Además, Kratos puede trabajar con sus fabricantes por contrato para reducir el riesgo de desabastecimiento y lograr compromisos de entrega más cortos. Al tratar con componentes con plazos de entrega de hasta seis meses, pueden proponer y cumplir con confianza las fechas de entrega al cliente.

              Jon Good, gerente general del fabricante por contrato NeoTech, compartió su experiencia. “Utilizamos el pronóstico inteligente proporcionado por el grupo espacial de Kratos para ayudar a aprovechar las rebajas de precios en material en cantidades más altas que de otro modo no serían visibles en nuestro modelo comercial actual. Esto nos permite reducir el costo del material, lo que se traduce en precios reducidos para Kratos a largo plazo”.

              Good agregó que otro uso es predecir el consumo probable de material durante un período de tiempo más largo que el que sería visible solo en órdenes abiertas. “Esto nos permite comprender de manera más realista la posición de nuestro inventario disponible en términos de exceso. Estos dos beneficios permiten a NEOTech tomar decisiones más inteligentes relacionadas con la gestión de compras e inventario y, al mismo tiempo, ahorrar días y semanas en la etapa inicial del proceso y entregar el producto final a Kratos lo más rápido posible”.

              De cara al futuro, Smith ve una oportunidad aún mayor de asociarse con los CM de Kratos Space para optimizar su cadena de suministro y los costos asociados. “La conclusión”, dice Smith, “es que ahora podemos comunicarnos de manera más efectiva con nuestros socios de CM, a pesar de la falta de previsibilidad en nuestro negocio, y al mismo tiempo reducir el costo del material y acortar los plazos de entrega”.

               

               

               

              Las ventajas del pronóstico probabilístico

              }

              El Blog de Smart

               Recomendaciones para la planificación de la demanda,

              previsión y optimización de inventario

              La mayoría de los pronósticos de demanda son parciales o incompletos: proporcionan un solo número: el valor más probable de la demanda futura. Esto se llama pronóstico puntual. Por lo general, el pronóstico puntual estima el valor promedio de la demanda futura.

              Mucho más útil es un pronóstico de la distribución de probabilidad completa de la demanda en cualquier momento futuro. Esto se conoce más comúnmente como pronóstico de probabilidad y es mucho más útil.

              El promedio no es la respuesta

               

              La única ventaja de un pronóstico puntual es su simplicidad. Si su sistema ERP también es simple, el pronóstico de puntos completa el número que necesita el sistema ERP para programar la mano de obra o comprar materias primas.

              La desventaja de un pronóstico puntual es que es demasiado simple. Ignora información adicional en el historial de demanda de un artículo que puede brindarle una imagen más completa de cómo podría desarrollarse la demanda: un pronóstico de probabilidad.

              Más allá del promedio: Pronóstico de probabilidad

               

              Mientras que el pronóstico puntual proporciona información limitada, por ejemplo, "La demanda más probable el próximo mes es de 15 unidades", el pronóstico de probabilidad agrega información crucial, por ejemplo, "Existe una probabilidad de 20% de que la demanda supere las 28 unidades y una probabilidad de 10% de que lo haga". ser inferior a 5 unidades”.

              Esta información le permite realizar la evaluación de riesgos y la planificación de contingencias. La planificación de contingencia es necesaria porque el pronóstico puntual generalmente tiene solo una pequeña posibilidad de ser correcto. Un pronóstico de probabilidad también puede decir: "La posibilidad de que la demanda sea de 15 unidades es solo 10%, aunque es el valor más probable". En otras palabras, existe una probabilidad 90% de que el pronóstico de puntos sea incorrecto. Este tipo de error no es un error en los cálculos de pronóstico: es la realidad de lidiar con la volatilidad de la demanda. Sería mejor llamarlo una "incertidumbre" que un "error".

              Un gerente de operaciones puede usar la información adicional en un pronóstico de probabilidad tanto de manera informal como formal. Informalmente, incluso si un sistema ERP requiere un pronóstico de un solo número como entrada, un administrador inteligente querrá tener alguna pista sobre los riesgos asociados con ese pronóstico puntual, es decir, su margen de error. Entonces, un pronóstico de 15 ± 1 unidad es mucho más seguro que un pronóstico de 15 ± 10. La parte ± es una compresión de un pronóstico probabilístico. La figura 1 a continuación muestra el historial de demanda de un artículo (línea roja), las previsiones puntuales para los próximos 12 meses (línea verde) y sus márgenes de error (líneas cian). El pronóstico más bajo de alrededor de 3.300 unidades ocurre en junio, pero la demanda real podría ser tanto como 800 unidades más o menos.

              Bonus: Aplicación a la Gestión de Inventarios

               

              La gestión de inventario requiere que equilibre la disponibilidad del artículo con el costo del inventario. Resulta que conocer la distribución de probabilidad completa de la demanda durante un tiempo de espera de reabastecimiento es esencial para establecer puntos de reposición (también llamados minutos) sobre una base racional y científica. La Figura 2 muestra un pronóstico de probabilidad de la demanda total durante el plazo de entrega de reabastecimiento de 33 semanas para una determinada pieza de repuesto. Si bien la demanda de tiempo de entrega promedio es de 3 unidades, la demanda más probable es cero, y se necesita un punto de reorden de 14 para asegurar que la probabilidad de agotamiento sea de solo 1%. Una vez más, el promedio no es la respuesta.

              Saber más siempre es mejor que saber menos y el pronóstico de probabilidad proporciona esa información crucial adicional. El software ha sido capaz de proporcionar un pronóstico puntual durante más de 40 años, pero el software moderno puede hacerlo mejor y proporcionar una imagen completa.

               

               

              Figura 1: La línea roja muestra el historial de demanda de un bien terminado. La línea verde muestra las previsiones puntuales para los próximos 12 meses. Las líneas azules indican los márgenes de error en los pronósticos de 12 puntos.

               

               

              Figura 2: Pronóstico probabilístico de la demanda de una pieza de repuesto durante un plazo de reposición de 33 semanas. La demanda más probable es cero, la demanda promedio es 3, pero se requiere un punto de pedido de 14 unidades para tener solo una probabilidad de 1% de que se agoten las existencias.

              Deja un comentario

              Artículos Relacionados

              Managing the Inventory of Promoted Items

              Gestión del inventario para promociones

              En una publicación anterior, analicé uno de los problemas más espinosos que a veces enfrentan los planificadores de demanda: trabajar con datos de demanda de productos caracterizados por lo que los estadísticos llaman asimetría, una situación que puede requerir costosas inversiones en inventario. Este tipo de datos problemáticos se encuentran en varios escenarios diferentes. En al menos uno, la combinación de demanda intermitente y promociones de ventas muy efectivas, el problema se presta a una solución efectiva.

              Top 3 Most Common Inventory Control Policies

              Las 3 políticas de control de inventario más comunes

              Para tomar la decisión correcta, deberá saber cómo la previsión de la demanda respalda la gestión del inventario, la elección de la política que se utilizará y el cálculo de las entradas que impulsan estas políticas. desea minimizar el número de órdenes de compra que debe generar.

              Mensajes recientes

              • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
                En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
              • 5 Ways to Improve Supply Chain Decision Speed5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro
                La promesa de una cadena de suministro digital ha transformado la forma en que operan las empresas. En esencia, permite tomar decisiones rápidas basadas en datos y, al mismo tiempo, garantizar la calidad y la eficiencia en todas las operaciones. Sin embargo, no se trata solo de tener acceso a más datos. Las organizaciones necesitan las herramientas y plataformas adecuadas para convertir esos datos en información procesable. Aquí es donde la toma de decisiones se vuelve fundamental, especialmente en un panorama en el que las nuevas soluciones de cadena de suministro digital y las plataformas impulsadas por IA pueden ayudarlo a agilizar muchos procesos dentro de la matriz de decisiones. […]
              • Two employees checking inventory in temporary storage in a distribution warehouse.12 causas del exceso de stock y soluciones prácticas
                Gestionar el inventario de manera eficaz es fundamental para mantener un balance saludable y garantizar que los recursos se asignen de manera óptima. A continuación, se analizan en profundidad las principales causas del exceso de existencias, sus implicaciones y posibles soluciones. […]
              • FAQ Mastering Smart IP&O for Better Inventory ManagementPreguntas frecuentes: Cómo dominar la IP&O inteligente para una mejor gestión del inventario.
                Una gestión eficaz de la cadena de suministro y del inventario es esencial para lograr la eficiencia operativa y la satisfacción del cliente. Este blog ofrece respuestas claras y concisas a algunas preguntas básicas y otras preguntas comunes de nuestros clientes de Smart IP&O, ofreciendo información práctica para superar los desafíos típicos y mejorar sus prácticas de gestión de inventario. Centrándonos en estas áreas clave, lo ayudamos a transformar problemas complejos de inventario en acciones estratégicas y manejables que reducen los costos y mejoran el rendimiento general con Smart IP&O. […]
              • 7 Key Demand Planning Trends Shaping the Future7 tendencias clave en planificación de la demanda que están dando forma al futuro
                La planificación de la demanda va más allá de la simple previsión de las necesidades de productos; se trata de garantizar que su empresa satisfaga las demandas de los clientes con precisión, eficiencia y rentabilidad. La última tecnología de planificación de la demanda aborda desafíos clave como la precisión de las previsiones, la gestión de inventarios y la capacidad de respuesta al mercado. En este blog, presentaremos tendencias críticas de planificación de la demanda, que incluyen información basada en datos, previsión probabilística, planificación por consenso, análisis predictivo, modelado de escenarios, visibilidad en tiempo real y previsión multinivel. Estas tendencias le ayudarán a mantenerse a la vanguardia, optimizar su cadena de suministro, reducir costes y mejorar la satisfacción del cliente, posicionando a su empresa para el éxito a largo plazo. […]

                Optimización de inventario para fabricantes, distribuidores y MRO

                • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
                  En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
                • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovando en el mercado de repuestos OEM con optimización de inventario impulsada por IA
                  El sector de posventa ofrece a los fabricantes de equipos originales una ventaja decisiva al ofrecer un flujo de ingresos constante y fomentar la lealtad del cliente mediante la entrega confiable y oportuna de piezas de repuesto. Sin embargo, la gestión del inventario y la previsión de la demanda en el mercado de posventa está plagada de desafíos, incluidos patrones de demanda impredecibles, amplias gamas de productos y la necesidad de entregas rápidas. Los métodos tradicionales a menudo no son suficientes debido a la complejidad y variabilidad de la demanda en el mercado de posventa. Las últimas tecnologías pueden analizar grandes conjuntos de datos para predecir la demanda futura con mayor precisión y optimizar los niveles de inventario, lo que conduce a un mejor servicio y menores costos. […]
                • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationUtilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro
                  Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental. […]
                • Centering Act Spare Parts Timing Pricing and ReliabilityLey de centrado: sincronización, precio y confiabilidad de los repuestos
                  En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]