La planificación impulsada por el nivel de servicio (SLDP) es un enfoque para la planificación del inventario. Prescribe objetivos de nivel de servicio óptimos, identifica y comunica continuamente las ventajas y desventajas entre el servicio y el costo que son la base de todas las decisiones sabias de inventario. Cuando una organización entiende esta relación, puede comunicar dónde está en riesgo, dónde no, y manejar de manera efectiva sus activos de inventario. SLDP ayuda a exponer los desequilibrios de inventario y permite tomar decisiones informadas sobre la mejor manera de corregirlos. Para implementar SLDP, deberá mirar más allá de los enfoques de planificación tradicionales, como la orientación arbitraria del nivel de servicio (todos mis artículos A deben obtener el nivel de servicio 99%, los artículos B 95%, los artículos C 80%, etc.) y la previsión de demanda que intenta de manera poco realista predecir exactamente lo que sucederá y cuándo. SLDP se desarrolla en 4 pasos: Benchmark, Collaborate, Plan y Track.
Paso 1. Rendimiento de referencia
Todos los participantes en el proceso de inversión y planificación de inventario deben tener un entendimiento común de cómo se está desempeñando la política actual en un conjunto acordado de métricas de inventario. Las métricas deben incluir niveles de servicio alcanzados históricamente y tasas de llenado, tiempo de entrega a los clientes, rendimiento del tiempo de entrega del proveedor, rotación de inventario e inversión en inventario. Una vez que estas métricas se hayan comparado y se puedan informar diariamente, la organización tendrá la información que necesita para comenzar a priorizar los esfuerzos de planificación. Por ejemplo, si el inventario ha aumentado pero los niveles de servicio no, esto indicaría que el inventario no se está asignando correctamente entre los SKU. Los informes deben generarse con clics del mouse, lo que permite a los planificadores concentrarse en el análisis en lugar de la generación de informes que requiere mucho tiempo. El desempeño pasado no es garantía del desempeño futuro ya que la variabilidad de la demanda, los costos, las prioridades y los plazos de entrega siempre están cambiando. Por lo tanto, SLDP permite la evaluación comparativa predictiva que estima cuál es el rendimiento probable en el futuro. Software de optimización de inventario que utiliza pronóstico de probabilidad se puede usar para estimar un rango realista de demandas potenciales y ciclos de reabastecimiento. Poner a prueba sus parámetros de planificación para ayudar a descubrir con qué frecuencia y qué artículos se esperan desabastecimientos y excesos.
Paso 2. Planificación y colaboración “Qué pasaría si”
El modelado de inventario y la colaboración "qué pasaría si" es el corazón de SLDP. Los puntos de referencia históricos y predictivos deben compartirse primero con todas las partes interesadas relevantes, incluidas las de ventas, finanzas y operaciones. Se deben hacer esfuerzos para responder las siguientes preguntas:
– ¿Son aceptables tanto el rendimiento actual como la inversión?
– Si no, ¿cómo deberían mejorarse?
– ¿Qué SKU es probable que se demanden a continuación y en qué cantidades?
– ¿Dónde estamos dispuestos a asumir más riesgo de desabastecimiento?
– ¿Dónde se debe minimizar el riesgo de desabastecimiento?
– ¿Cuáles son los costes específicos de desabastecimiento?
– ¿Qué reglas comerciales y restricciones debemos cumplir (acuerdos de nivel de servicio al cliente, umbrales de inventario, etc.)
Una vez respondidas las preguntas anteriores, se pueden desarrollar nuevas políticas de planificación de inventario. El software de optimización de inventario puede conciliar todos los costos asociados con la gestión del inventario, incluidos los costos de falta de existencias, para generar el conjunto correcto de parámetros de planificación (mín./máx., existencias de seguridad, puntos de pedido, etc.) y niveles de servicio prescritos. La política óptima puede compararse con la política actual y modificarse en función de las restricciones y las reglas comerciales. Por ejemplo, ciertos artículos pueden tener como objetivo un nivel de servicio objetivo para cumplir con un acuerdo de nivel de servicio al cliente. Se pueden desarrollar y compartir varios escenarios de planificación de inventario "qué pasaría si" con las partes interesadas clave. Por ejemplo, puede modelar cómo los plazos de entrega más cortos afectan los costos de inventario. Una vez que se ha logrado el consenso y los riesgos y costos se comunican claramente, las políticas modificadas se pueden cargar en el sistema ERP para impulsar la reposición de inventario.
Paso 3. Planifique y administre continuamente por excepción
SLDP vuelve a pronosticar continuamente los parámetros de planificación optimizados en función de las demandas cambiantes, los plazos de entrega, los costos y otros factores. Esto significa que los niveles de servicio y el valor del inventario tienen el potencial de cambiar. Por ejemplo, el objetivo de nivel de servicio prescrito de 95% podría aumentar a 99% en el próximo período de planificación si los costos de desabastecimiento de ese artículo aumentaran repentinamente. Esto también es cierto si se opta por apuntar arbitrariamente a un nivel de servicio determinado o fijar los parámetros de planificación a una cantidad unitaria específica. Por ejemplo, un nivel de servicio objetivo de 95% podría requerir $1,000 en inventario hoy, pero $2,000 el próximo mes si los plazos de entrega aumentan. De manera similar, un punto de pedido de 10 unidades podría obtener el servicio 95% hoy y solo el servicio 85% el próximo mes en respuesta a una mayor variabilidad de la demanda. El software de optimización de inventario identificará qué artículos se pronostica que tendrán cambios significativos en el nivel de servicio y/o el valor del inventario y qué artículos no se están ordenando de acuerdo con el plan de consenso. Las listas de excepciones se producen automáticamente, lo que facilita la revisión de estos elementos y decide cómo administrarlos en el futuro. El análisis prescriptivo puede ayudar a identificar si la causa principal del cambio es una anomalía de la demanda, un cambio en la variabilidad general de la demanda, un cambio en el tiempo de entrega o un cambio en el costo, lo que lo ayuda a ajustar la política en consecuencia.
Paso 4. Realice un seguimiento del rendimiento continuo
Los procesos SLDP miden periódicamente el rendimiento operativo histórico y actual. Los resultados deben monitorearse para garantizar que los niveles de servicio estén mejorando y los niveles de inventario estén disminuyendo en comparación con los puntos de referencia históricos determinados en el Paso 1. Realice un seguimiento de métricas como giros, niveles de servicio agregados y específicos de artículos, tasas de llenado, falta de existencias y rendimiento del tiempo de entrega del proveedor. Comparta los resultados en toda la organización e identifique las causas raíz de las ineficiencias operativas. Los procesos SLDP facilitan el seguimiento del rendimiento al proporcionar herramientas que generan automáticamente los informes necesarios en lugar de colocar esta carga en los planificadores para que la administren en Excel. Hacerlo le permite a la organización descubrir problemas operativos que afectan el desempeño y brindar retroalimentación sobre lo que funciona y lo que debe mejorarse.
Conclusión
El marco SLDP es una forma de racionalizar el proceso de planificación de inventario y generar un retorno económico significativo. Su principio organizativo es que los niveles de servicio al cliente y los costos de inventario asociados con la política elegida deben entenderse, rastrearse y refinarse continuamente. El uso de software de optimización de inventario ayuda a garantizar que pueda identificar el nivel de servicio de menor costo. Esto crea un esfuerzo coherente en toda la empresa que combina la visibilidad de las operaciones actuales con evaluaciones científicas de los riesgos y condiciones futuras. Se realiza mediante una combinación de visión ejecutiva, experiencia del personal en la materia y el poder del moderno software de optimización y planificación de inventario.
Vea cómo Smart Inventory Optimization admite la planificación basada en el nivel de servicio y descargue la hoja del producto aquí: https://smartcorp.com/inventory-optimization/
Artículos Relacionados
Haga de la optimización de inventario impulsada por IA un aliado para su organización
En este blog, exploraremos cómo las organizaciones pueden lograr una eficiencia y precisión excepcionales con la optimización del inventario impulsada por la IA. Los métodos tradicionales de gestión de inventario a menudo resultan insuficientes debido a su naturaleza reactiva y su dependencia de procesos manuales. Mantener niveles óptimos de inventario es fundamental para satisfacer la demanda de los clientes y minimizar los costos. La introducción de la optimización del inventario impulsada por la IA puede reducir significativamente la carga de los procesos manuales, brindando alivio a los gerentes de la cadena de suministro de tareas tediosas.
Escenarios de demanda diaria
En este Videoblog explicaremos cómo la previsión de series temporales se ha convertido en una herramienta fundamental, especialmente a nivel diario, en la que Smart Software ha sido pionero desde sus inicios hace más de cuarenta años. La evolución de las prácticas comerciales de incrementos temporales anuales a incrementos temporales más refinados, como el análisis de datos mensual y ahora diario, ilustra un cambio significativo en las estrategias operativas.
Juego constructivo con gemelos digitales
Aquellos de ustedes que siguen temas candentes estarán familiarizados con el término "gemelo digital". Aquellos que han estado demasiado ocupados con el trabajo tal vez quieran seguir leyendo y ponerse al día. Si bien existen varias definiciones de gemelo digital, aquí hay una que funciona bien: un gemelo digital es una copia virtual dinámica de un activo físico, proceso, sistema o entorno que se parece y se comporta de manera idéntica a su contraparte del mundo real. Un gemelo digital ingiere datos y replica procesos para que pueda predecir posibles resultados de rendimiento y problemas que podría experimentar el producto del mundo real.