Utilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro

Las empresas de servicios públicos tienen requisitos únicos de optimización de la cadena de suministro, principalmente garantizando un alto tiempo de actividad al mantener todas las máquinas críticas en funcionamiento continuo. Lograr esto implica mantener una alta disponibilidad de repuestos para garantizar un suministro consistente, confiable y seguro. Además, como entidades reguladas, las empresas de servicios públicos también deben gestionar y controlar cuidadosamente los costos.

Gestionar las cadenas de suministro de manera eficiente

Para mantener un suministro eléctrico fiable a 99.99%+ Para niveles de servicio, por ejemplo, las empresas de servicios públicos deben poder responder rápidamente a los cambios en la demanda en el corto plazo y anticipar con precisión la demanda futura. Para ello, deben tener una cadena de suministro bien organizada que les permita comprar los equipos, materiales y servicios necesarios de los proveedores adecuados en el momento adecuado, en las cantidades adecuadas y al precio adecuado.

Hacerlo se ha vuelto cada vez más desafiante en los últimos 3 años.

  • Los requisitos de seguridad, confiabilidad y prestación de servicios son más estrictos.
  • Las interrupciones en la cadena de suministro, los plazos de entrega impredecibles de los proveedores y los picos intermitentes en el uso de piezas siempre han sido problemáticos, pero ahora son más la regla que la excepción.
  • La desregulación a principios de la década de 2000 eliminó las piezas de repuesto de la lista de artículos reembolsados directamente, lo que obligó a las empresas de servicios públicos a pagar las piezas de repuesto directamente con los ingresos.[1]
  • La necesidad constante de capital combinada con tasas de interés que aumentan agresivamente significa que los costos se examinan más que nunca.

Como resultado, la optimización de la cadena de suministro (SCO) se ha convertido en una práctica empresarial cada vez más crítica para las empresas de servicios públicos. Para hacer frente a estos desafíos, las empresas de servicios públicos ya no pueden simplemente gestionar su cadena de suministro: deben optimizarla. Y para ello, serán necesarias inversiones en nuevos procesos y sistemas.

[1] Scala et al. “Inventario de Riesgos y Repuestos en Empresas Eléctricas”. Actas de la Conferencia de Investigación de Ingeniería Industrial.

Análisis y optimización avanzados: cadenas de suministro de servicios públicos preparadas para el futuro

Planificación y optimización de inventario   

Las inversiones específicas en tecnología de optimización de inventario ofrecen un camino a seguir para cada empresa de servicios públicos. Las soluciones de optimización de inventario deben priorizarse porque:

  1. Puede implementarse en una fracción del tiempo requerido para iniciativas en otras áreas, como la gestión de almacenes, el diseño de la cadena de suministro y las consolidaciones de compras. No es raro comenzar a generar beneficios después de 90 días y tener una implementación de software completa en menos de 180 días.
  2. Puede generar un ROI masivo, con rendimientos 20x y beneficios financieros de siete cifras al año. Al pronosticar mejor el uso de piezas, las empresas de servicios públicos reducirán los costos al comprar solo el inventario necesario mientras controlan el riesgo de desabastecimiento que conduce a tiempos de inactividad y niveles de servicio deficientes.
  3. Proporcionar apoyo fundamental para otras iniciativas. Una cadena de suministro sólida se basa en pronósticos de uso sólidos y planes de compra de inventario.

Utilizando análisis predictivos y algoritmos avanzados, la optimización de inventario ayuda a las empresas de servicios públicos a maximizar los niveles de servicio y reducir los costos operativos mediante la optimización de los niveles de inventario de piezas de repuesto. Por ejemplo, una empresa de servicios eléctricos podría usar pronósticos estadísticos para predecir el uso futuro de piezas, realizar auditorías de inventario para identificar el exceso de inventario y aprovechar los resultados analíticos para identificar dónde deben enfocarse primero los esfuerzos de optimización del inventario. Al hacer esto, la empresa de servicios públicos puede garantizar que las máquinas funcionen a niveles óptimos y reducir el riesgo de demoras costosas debido a la falta de repuestos.

Mediante el uso de análisis y datos, puede identificar qué repuestos y equipos es más probable que se necesiten y pedir solo los artículos necesarios. Esto ayuda a garantizar que el equipo tenga un alto tiempo de actividad. Recompensa el monitoreo y el ajuste regulares de los niveles de inventario para que cuando cambien las condiciones operativas, pueda detectar el cambio y ajustarlo en consecuencia. Esto implica que los ciclos de planificación deben operar a un ritmo lo suficientemente alto como para mantenerse al día con las condiciones cambiantes. apalancamiento de pronóstico probabilístico recalibrar las políticas de almacenamiento de repuestos para cada ciclo de planificación garantiza que las políticas de almacenamiento (como los niveles mínimos/máximos) estén siempre actualizadas y reflejen el uso de piezas y los plazos de entrega de los proveedores más recientes.

 

Niveles de servicio y la curva de compensación

El nivel de servicio Curva de compensación relaciona la inversión en inventario con la disponibilidad de artículos medida por el nivel de servicio. El nivel de servicio es la probabilidad de que no ocurra escasez entre el momento en que solicita más existencias y cuando llega al estante. Sorprendentemente, pocas empresas tienen datos sobre esta importante métrica en toda su flota de repuestos.

La curva de compensación del nivel de servicio expone el vínculo entre los costos asociados con los diferentes niveles de servicio y los requisitos de inventario necesarios para alcanzarlos. Saber qué componentes son importantes para mantener altos niveles de servicio es clave para el proceso de optimización y está determinado por varios factores, incluida la estandarización de artículos del inventario, la criticidad, el uso histórico y las órdenes de reparación futuras conocidas. Al comprender esta relación, las empresas de servicios públicos pueden asignar mejor los recursos, como cuando se usan las curvas para identificar áreas donde se pueden reducir los costos sin afectar la confiabilidad del sistema.

Nivel de servicio curva de compensación costos de servicios públicos requisitos de inventario Software

Con el software de optimización de inventario, establecer políticas de almacenamiento es pura conjetura: es posible saber cómo cualquier aumento o disminución afectará los niveles de servicio, además de las estimaciones aproximadas. Nadie sabe realmente cómo se desarrollarán los cambios en términos de inversión en inventarios, costos operativos y costos de escasez. La mayoría de los servicios públicos dependen de métodos de regla general y ajustar arbitrariamente las políticas de almacenamiento de manera reactiva después de que algo haya salido mal, como una gran falta de existencias o una pérdida de inventario. Cuando los ajustes se realizan de esta manera, no hay un análisis basado en hechos que detalle cómo se espera que este cambio afecte las métricas que importan: niveles de servicio y valores de inventario.

El software de optimización de inventario puede calcular las curvas de compensación cuantitativas y detalladas requeridas para tomar decisiones informadas sobre políticas de inventario o incluso recomendar el nivel de servicio objetivo que resulte en el costo operativo general más bajo (la suma de los costos de mantenimiento, pedido y desabastecimiento). Usando este análisis, los grandes aumentos en los niveles de existencias pueden justificarse matemáticamente cuando la reducción prevista en los costos de escasez supera el aumento en la inversión en inventario y los costos de mantenimiento asociados. Al establecer niveles de servicio apropiados y recalibrar las políticas en todas las partes activas una vez en cada ciclo de planificación (al menos una vez al mes), las empresas de servicios públicos pueden minimizar el riesgo de interrupciones mientras controlan los gastos.

Quizás los aspectos más críticos de la respuesta a la avería del equipo son los relacionados con el logro de una arreglo por primera vez lo más rápido posible. Tener los repuestos adecuados disponibles puede ser la diferencia entre completar un solo viaje y aumentar el tiempo medio de reparación, asumir los costos asociados con varias visitas y hacer que las relaciones con los clientes se deterioren.

Con un software moderno, puede comparar el rendimiento anterior y aprovechar los métodos de pronóstico probabilístico para simular el rendimiento futuro. Al someter a prueba sus políticas actuales de almacenamiento de inventario frente a todos los escenarios plausibles de uso futuro de piezas, sabrá de antemano cómo es probable que funcionen las políticas de almacenamiento actuales y propuestas. Cecha un vistazo a nuestra publicación de blog sobre cómo medir la precisión de su pronóstico de nivel de servicio para ayudarlo a evaluar la precisión de las recomendaciones de inventario que los proveedores de software pretenden proporcionar beneficios.

 

Optimización de las cadenas de suministro de servicios públicos Análisis avanzado para la preparación futura

 

Aprovechando el análisis avanzado y la IA

Al introducir la automatización, cada empresa de servicios públicos tiene sus propios objetivos que perseguir, pero se debe comenzar evaluando las operaciones actuales para identificar áreas que pueden volverse más efectivas. Algunas empresas pueden priorizar las cuestiones financieras, pero otras pueden priorizar las exigencias regulatorias, como el gasto en energía limpia o cambios en toda la industria, como las redes inteligentes. Las dificultades de cada empresa son únicas, pero el software moderno puede señalar el camino hacia un sistema de gestión de inventario más eficaz que minimice el exceso de inventario y coloque los componentes correctos en los lugares correctos y en el momento adecuado.

En general, las iniciativas de optimización de la cadena de suministro son esenciales para las empresas de servicios públicos que buscan maximizar su eficiencia y reducir sus costos. La tecnología nos permite hacer que el proceso de integración sea perfecto y no es necesario que reemplace su sistema ERP o EAM actual para hacerlo. Solo necesita hacer un mejor uso de los datos que ya tiene.

Por ejemplo, una gran empresa de servicios públicos lanzó una iniciativa estratégica de optimización de la cadena de suministro (SCO) y agregó las mejores capacidades de su clase a través de la selección e integración de aplicaciones comerciales listas para usar. El principal de ellos fue el sistema inteligente de planificación y optimización de inventario (Smart IP&O), que comprende la funcionalidad de previsión de piezas/planificación de demanda y optimización de inventario. En solo 90 días, el sistema de software estaba listo y funcionando, y pronto redujo el inventario en $9,000,000 mientras mantenía la disponibilidad de repuestos a un alto nivel. Puedes leer el caso de estudio aquí La empresa de servicios eléctricos opta por Smart IP&O.

Las empresas de servicios públicos pueden asegurarse de poder gestionar sus suministros de repuestos de una manera eficiente y rentable, preparándolas mejor para el futuro. Con el tiempo, este equilibrio entre oferta y demanda se traduce en una ventaja significativa. Comprender la curva de compensación del nivel de servicio ayuda a comprender los costos asociados con los diferentes niveles de servicio y los requisitos de inventario necesarios para lograrlos. Esto conduce a costos operativos reducidos, inventario optimizado y garantía de que puede satisfacer las necesidades de sus clientes.

 

 

 

Soluciones de software para la planificación de repuestos

El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

 

 

Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

 

Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

 

    Ley de centrado: sincronización, precio y confiabilidad de los repuestos

    Así como el renombrado astrónomo Copérnico transformó nuestra comprensión de la astronomía al colocar el sol en el centro de nuestro universo, hoy lo invitamos a volver a centrar su enfoque en la gestión de inventario. Y aunque no es tan esclarecedor, este consejo ayudará a su empresa a evitar quedar atrapada en la atracción gravitacional de los problemas de inventario, orbitando constantemente entre desabastecimientos, exceso de gravedad y los gastos cósmicos inesperados de la aceleración.

    En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio.

    En las empresas orientadas a los servicios, las consecuencias del desabastecimiento suelen ser muy importantes. Lograr altos niveles de servicio depende de tener las piezas adecuadas en el momento adecuado. Sin embargo, tener las piezas adecuadas no es el único factor. Su equipo de cadena de suministro debe desarrollar un plan de inventario consensuado para cada pieza y luego actualizarlo continuamente para reflejar los cambios en tiempo real en la demanda, el suministro y las prioridades financieras.

     

    Gestión del inventario con planificación basada en el nivel de servicio combina la capacidad de planificar miles de elementos con modelado estratégico de alto nivel. Esto requiere abordar los problemas centrales que enfrentan los ejecutivos de inventario:

    • Falta de control sobre el suministro y los plazos de entrega asociados.
    • Demanda intermitente impredecible.
    • Prioridades conflictivas entre los equipos mecánicos/de mantenimiento y la gestión de materiales.
    • Enfoque reactivo de “esperar y ver” para la planificación.
    • Inventario mal asignado, lo que provoca desabastecimiento y exceso.
    • Falta de confianza en los sistemas y procesos.

    La clave para una gestión óptima de repuestos es lograr el equilibrio entre brindar un servicio excelente y controlar los costos. Para hacer esto, debemos comparar los costos del desabastecimiento con el costo de mantener un inventario adicional de repuestos. Los costos de un desabastecimiento serán mayores para repuestos críticos o de emergencia, cuando existe un acuerdo de nivel de servicio con clientes externos, para piezas utilizadas en múltiples activos, para piezas con plazos de entrega de proveedores más largos y para piezas con un solo proveedor. El costo del inventario se puede evaluar considerando los costos unitarios, las tasas de interés, el espacio de almacén que se consumirá y el potencial de obsolescencia (por ejemplo, las piezas utilizadas en una flota que pronto se retirará tienen un mayor riesgo de obsolescencia).

    Para arbitrar cuántas existencias se deben almacenar para cada pieza, es fundamental establecer un consenso sobre las métricas clave deseadas que expongan las compensaciones que la empresa debe hacer para lograr los KPI deseados. Estos KPI incluirán niveles de servicio que le indican con qué frecuencia satisface las necesidades de uso sin quedarse corto de existencias, tasas de cumplimiento que le indican qué porcentaje de la demanda se satisface y costos de pedidos que detallan los gastos incurridos cuando realiza y recibe pedidos de reabastecimiento. También tiene costos de retención, que abarcan gastos como obsolescencia, impuestos y almacenamiento, y costos de escasez que pertenecen a los gastos incurridos cuando se produce un desabastecimiento.

    Una empresa de MRO o un equipo de planificación de piezas de posventa podría desear un nivel de servicio 99% en todas las piezas; es decir, el riesgo mínimo de desabastecimiento que están dispuestos a aceptar es 1%. Pero ¿qué pasa si la cantidad de inventario necesaria para respaldar ese nivel de servicio es demasiado costosa? Para tomar una decisión informada sobre si habrá un retorno de esa inversión adicional en inventario, necesitará conocer los costos de desabastecimiento y compararlos con los costos de inventario. Para obtener los costos de desabastecimiento, multiplique dos elementos clave: el costo por desabastecimiento y el número proyectado de desabastecimientos. Para obtener el valor del inventario, multiplique las unidades requeridas por el costo unitario de cada pieza. Luego determine los costos anuales de mantenimiento (normalmente 25-35% del costo unitario). Elija la opción que produzca un costo total más bajo. En otras palabras, si el beneficio asociado con agregar más existencias (reducción de costos de escasez) supera el costo (mayores costos de mantenimiento de inventario), entonces hágalo. Una comprensión profunda de estas métricas y las compensaciones asociadas sirve como brújula para la toma de decisiones.

    El software moderno ayuda en este proceso al permitirle simular una multitud de escenarios futuros. Al hacerlo, puede evaluar qué tan bien es probable que funcionen sus estrategias actuales de almacenamiento de inventario frente a diferentes patrones de oferta y demanda. Si algo se queda corto o sale mal, es hora de recalibrar su enfoque, teniendo en cuenta los datos actuales sobre el historial de uso, los plazos de entrega de los proveedores y los costos para evitar situaciones de desabastecimiento y exceso de existencias.

     

    Mejore constantemente su plan de inventario basado en el nivel de servicio.

    En conclusión, es crucial evaluar continuamente su plan basado en el nivel de servicio. Al construir y perfeccionar sistemáticamente escenarios de rendimiento, puede definir métricas y objetivos clave, comparar el rendimiento esperado y automatizar el cálculo de las políticas de almacenamiento para todos los artículos. Este proceso iterativo implica monitorear, revisar y repetir cada ciclo de planificación.

    La profundidad de su análisis dentro de estas políticas de almacenamiento depende de los datos a su disposición y de las capacidades de configuración de su sistema de planificación. Para lograr resultados óptimos, es imperativo mantener un análisis de datos continuo. Esto implica que un enfoque manual para el examen de datos suele ser insuficiente para las necesidades de la mayoría de las organizaciones.

    Para obtener información sobre cómo Smart Software puede ayudarle a alcanzar los objetivos de su cadena de suministro de servicios con una planificación basada en servicios y más, visite los siguientes blogs.

    –   "Explicando qué significa nivel de servicio en su software de optimización de inventario"  Las recomendaciones de almacenamiento pueden resultar desconcertantes, especialmente cuando chocan con las necesidades del mundo real. En esta publicación, desglosaremos qué significa el nivel de servicio 99% y por qué es crucial para administrar el inventario de manera efectiva y mantener a los clientes satisfechos en el panorama competitivo actual.

    – “Planificación basada en el nivel de servicio para empresas de repuestos” La planificación de piezas de servicio basada en el nivel de servicio es un proceso de cuatro pasos que va más allá de la previsión simplificada y las existencias de seguridad como regla general. Proporciona a los planificadores de repuestos soporte para tomar decisiones ajustadas al riesgo y basadas en datos.

    –   “Cómo elegir un nivel de servicio objetivo.“Esta es una decisión estratégica sobre la gestión del riesgo de inventario, considerando los niveles de servicio actuales y las tasas de cumplimiento, los plazos de reabastecimiento y las compensaciones entre capital, existencias y costos de oportunidad. Aprenda enfoques que puedan ayudar.

    –   “La métrica de precisión de pronóstico adecuada para la planificación de inventarios”.  Sólo porque establezca un objetivo de nivel de servicio no significa que realmente lo alcanzará. Si está interesado en optimizar los niveles de stock, concéntrese en la precisión de la proyección del nivel de servicio. Aprender cómo.

     

    Soluciones de software para la planificación de repuestos

    El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

    Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

     

     

    Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

     

    Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

     

      Escenarios de demanda diaria

      En este Videoblog explicaremos cómo la previsión de series temporales se ha convertido en una herramienta fundamental, especialmente a nivel diario, en la que Smart Software ha sido pionero desde sus inicios hace más de cuarenta años. La evolución de las prácticas comerciales de incrementos temporales anuales a incrementos temporales más refinados, como el análisis de datos mensual y ahora diario, ilustra un cambio significativo en las estrategias operativas.

      Inicialmente, durante la década de 1980, la práctica habitual de utilizar datos anuales para realizar pronósticos y la introducción de datos mensuales se consideró innovadora. Este período marcó el comienzo de una tendencia hacia el aumento de la resolución del análisis de datos, lo que permitió a las empresas capturar y reaccionar ante cambios más rápidos en la dinámica del mercado. A medida que avanzamos hacia la década de 2000, la norma del análisis de datos mensual estaba bien establecida, pero los "chicos geniales" (innovadores en el borde de la analítica empresarial) comenzaron a experimentar con datos semanales. Este cambio fue impulsado por la necesidad de sincronizar las operaciones comerciales con condiciones de mercado cada vez más volátiles y comportamientos de los consumidores que exigían respuestas más rápidas que las que podían proporcionar los ciclos mensuales. Hoy, en la década de 2020, si bien el análisis de datos mensuales sigue siendo común, la frontera se ha desplazado nuevamente, esta vez hacia el análisis de datos diario, y algunos pioneros incluso se han aventurado en el análisis por horas.

      El verdadero poder del análisis de datos diario radica en su capacidad de proporcionar una vista detallada de las operaciones comerciales, capturando las fluctuaciones diarias que podrían pasar desapercibidas en los datos mensuales o semanales. Sin embargo, las complejidades de los datos diarios requieren enfoques analíticos avanzados para extraer información significativa. En este nivel, comprender la demanda requiere lidiar con conceptos como intermitencia, estacionalidad, tendencia y volatilidad. La intermitencia, o la aparición de días sin demanda, se vuelve más pronunciada en una granularidad diaria y exige técnicas de pronóstico especializadas como el método de Croston para predicciones precisas. La estacionalidad a nivel diario puede revelar múltiples patrones (como mayores ventas los fines de semana o días festivos) que los datos mensuales enmascararían. Las tendencias se pueden observar como aumentos o disminuciones de la demanda a corto plazo, lo que exige estrategias de ajuste ágiles. Finalmente, la volatilidad a nivel diario se acentúa, mostrando oscilaciones de la demanda más significativas que las observadas en los análisis mensuales o semanales, lo que puede afectar las estrategias de gestión de inventarios y la necesidad de existencias de reserva. Este nivel de complejidad subraya la necesidad de herramientas analíticas sofisticadas y experiencia en el análisis de datos diario.

      En conclusión, la evolución de pronósticos de series temporales menos frecuentes a pronósticos diarios marca un cambio sustancial en la forma en que las empresas abordan el análisis de datos. Esta transición no solo refleja el ritmo acelerado de los negocios, sino que también resalta la necesidad de herramientas que puedan manejar una mayor granularidad de los datos. La dedicación de Smart Software para perfeccionar sus capacidades analíticas para gestionar los datos diarios destaca el movimiento más amplio de la industria hacia una toma de decisiones más dinámica, receptiva y basada en datos. Este cambio no se trata simplemente de mantener el ritmo del tiempo, sino de aprovechar conocimientos detallados para forjar ventajas competitivas en un entorno empresarial en constante cambio.

       

      Por qué las empresas de MRO necesitan software complementario de planificación e inventario de piezas de servicio

      Las organizaciones MRO existen en una amplia gama de industrias, incluido el transporte público, los servicios eléctricos, las aguas residuales, la energía hidroeléctrica, la aviación y la minería. Para realizar su trabajo, los profesionales de MRO utilizan sistemas de gestión de activos empresariales (EAM) y planificación de recursos empresariales (ERP). Estos sistemas están diseñados para realizar muchos trabajos. Dadas sus características, costo y amplios requisitos de implementación, se supone que los sistemas EAM y ERP pueden hacerlo todo.

      Por ejemplo, en un evento reciente del Grupo de Trabajo de Maximo Utilities, varios prospectos declararon que "Nuestro EAM hará eso" cuando se les preguntó sobre los requisitos para pronosticar el uso, compensar los planes de suministro y optimizar las políticas de inventario. Se sorprendieron al saber que no era así y quisieron saber más.

      En esta publicación, resumimos la necesidad de un software complementario que aborde análisis especializados para la optimización del inventario, la previsión y la planificación de piezas de servicio.   

      Sistemas EAM

      Los sistemas EAM no pueden asimilar pronósticos de uso futuro; estos sistemas simplemente no están diseñados para llevar a cabo la planificación del suministro y muchos ni siquiera tienen un lugar para guardar pronósticos. Entonces, cuando una empresa de MRO necesita compensar los requisitos conocidos para proyectos de capital o producción planificados, una aplicación complementaria como IP&O inteligente es necesario.

      El software de optimización de inventario con funciones que respaldan la planificación de la demanda futura conocida tomará datos basados en proyectos que no se mantienen en el sistema EAM (incluidas las fechas de inicio del proyecto, la duración y cuándo se espera que se necesite cada parte) y calculará un pronóstico período por período. en cualquier horizonte de planificación. Ese pronóstico "planificado" se puede proyectar junto con pronósticos estadísticos de la demanda "no planificada" que surge del desgaste normal. En ese punto, el software de planificación de piezas puede determinar la oferta e identificar las brechas entre la oferta y la demanda. Esto garantiza que estas lagunas no pasen desapercibidas y provoquen una escasez que, de otro modo, retrasaría la finalización de los proyectos. También minimiza el exceso de stock que, de otro modo, se pediría demasiado pronto y consume innecesariamente efectivo y espacio de almacén. Una vez más, las empresas de MRO a veces asumen erróneamente que estas capacidades se abordan en su paquete EAM.

      Sistemas ERP

      Los sistemas ERP, por otro lado, normalmente incluyen un módulo MRP que está diseñado para procesar un pronóstico y calcular los requisitos de materiales. El procesamiento considerará el inventario disponible actual, las órdenes de venta abiertas, los trabajos programados, las órdenes de compra entrantes, cualquier lista de materiales y artículos en tránsito durante la transferencia entre sitios. Comparará esos valores del estado actual con los campos de la política de reabastecimiento más cualquier pronóstico mensual o semanal para determinar cuándo sugerir el reabastecimiento (una fecha) y cuánto reabastecer (una cantidad).

      Entonces, ¿por qué no utilizar únicamente el sistema ERP para compensar el plan de suministro y evitar la escasez y el exceso? En primer lugar, si bien los sistemas ERP tienen un espacio reservado para un pronóstico y algunos sistemas pueden calcular el suministro utilizando sus módulos MRP, no facilitan la conciliación de los requisitos de demanda planificados asociados con los proyectos de capital. La mayoría de las veces, los datos sobre cuándo se llevarán a cabo los proyectos planificados se mantienen fuera del ERP, especialmente la lista de materiales del proyecto que detalla qué piezas se necesitarán para respaldar el proyecto. En segundo lugar, muchos sistemas ERP no ofrecen nada efectivo cuando se trata de capacidades predictivas, sino que se basan en matemáticas simples que simplemente no funcionan para piezas de repuesto debido a la alta prevalencia de la demanda intermitente. Finalmente, los sistemas ERP no tienen interfaces flexibles y fáciles de usar que permitan interactuar con las previsiones y el plan de suministro.

      Lógica de puntos de reordenamiento

      Tanto ERP como EAM tienen marcadores de posición para métodos de reabastecimiento de puntos de reorden, como niveles mínimos y máximos. Puede utilizar software de optimización de inventario para completar estos campos con las políticas de puntos de reorden ajustadas al riesgo. Luego, dentro de los sistemas ERP o EAM, los pedidos se activan cada vez que la demanda real (no prevista) hace que el stock disponible esté por debajo del mínimo. Este tipo de política no utiliza un pronóstico tradicional que proyecta la demanda semana tras semana o mes tras mes y a menudo se lo conoce como “reabastecimiento impulsado por la demanda” (ya que los pedidos solo ocurren cuando la demanda real hace que el stock esté por debajo de un nivel definido por el usuario). límite).

      Pero el hecho de que no utilice un pronóstico período tras período no significa que no sea predictivo. Las políticas de puntos de reorden deben basarse en una predicción de la demanda durante un tiempo de reabastecimiento más un margen para proteger contra la variabilidad de la demanda y la oferta. Las empresas de MRO necesitan conocer el riesgo de desabastecimiento en el que incurren con cualquier política de abastecimiento determinada. Después de todo, la gestión de inventario es gestión de riesgos, especialmente en las empresas de MRO, cuando el costo del desabastecimiento es tan alto. Sin embargo, ERP y EAM no ofrecen ninguna capacidad para ajustar las políticas de almacenamiento en función del riesgo. Obligan a los usuarios a generar manualmente estas políticas de forma externa o a utilizar reglas básicas que no detallan los riesgos asociados con la elección de la política.

      Resumen

      La funcionalidad de planificación de la cadena de suministro, como la optimización del inventario, no es el objetivo principal de EAM y ERP. Debería aprovechar las plataformas de planificación complementarias, como Smart IP&O, que admiten pronósticos estadísticos, gestión de proyectos planificados y optimización de inventario. Smart IP&O desarrollará pronósticos y políticas de almacenamiento que pueden ingresarse en un sistema EAM o ERP para impulsar los pedidos diarios.

       

       

      Soluciones de software para la planificación de repuestos

      El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

      Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

       

       

      Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

       

      Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

       

        Señales de advertencia de que tiene una brecha en el análisis de la cadena de suministro

        “Los negocios son guerra” puede ser una metáfora exagerada, pero no carece de validez. Al igual que la “brecha de los bombarderos” y la “brecha de los misiles”, la preocupación por quedarse atrás de la competencia y la consiguiente amenaza de aniquilación siempre acechan en las mentes de los ejecutivos de negocios. Si no lo hacen, deberían hacerlo, porque no todas las brechas se solucionan. imaginario (se demostró que la brecha de los bombarderos y la brecha de los misiles no existían entre los EE.UU. y la URSS, pero la brecha de los años 1980 entre la productividad japonesa y la estadounidense era demasiado real). La diferencia entre paranoia y preocupación justificada es convertir el miedo en hechos. Esta publicación trata sobre cómo organizar su atención hacia posibles brechas en el análisis de la cadena de suministro de su empresa.

        Brechas de vigilancia

        El ejército estadounidense tiene un dicho: "El tiempo dedicado al reconocimiento nunca se desperdicia". De vez en cuando, nuestro Pronosticador inteligente El blog tiene una publicación que te ayuda a girar la cabeza para ver qué sucede a tu alrededor. Un ejemplo es nuestra publicación sobre gemelos digitales, que es un tema candente en todo el mundo de la ingeniería. En resumen: utilizar simulaciones de oferta y demanda para detectar debilidades en su plan de inventario es una forma de reconocimiento de la cadena de suministro. Cerrar esta brecha de vigilancia permite a las empresas tomar medidas correctivas antes de que surja un problema real.

        Brechas de conciencia situacional

        Un comandante militar necesita realizar un seguimiento de lo que está disponible para su uso y de qué tan bien se está utilizando. Los informes disponibles en Analítica operativa inteligente mantenerlo actualizado sobre sus recuentos de inventario, la precisión de sus pronósticos, la capacidad de respuesta de sus proveedores y las tendencias en estas y otras áreas operativas. Sabrá exactamente cuál es su posición en una variedad de KPI de la cadena de suministro, como el nivel de servicio, las tasas de cumplimiento y la rotación de inventario. Sabrá si el desempeño real está alineado con el desempeño planificado y si el plan de inventario (es decir, qué pedir, cuándo, a quién y por qué) se cumple o se ignora.

        Brechas de agilidad

        El entorno empresarial puede cambiar rápidamente. Todo lo que se necesita es un camión cisterna atrapado de costado en el Canal de Suez, unos cuantos misiles balísticos antibuque en el Mar Rojo o un fenómeno meteorológico que afecte a toda la región. Estas catástrofes pueden recaer tanto sobre la cabeza de sus competidores como sobre la suya, pero ¿quién de ustedes es lo suficientemente ágil como para reaccionar primero? Informe de excepciones en Planificador de la demanda y análisis operativo inteligente puede detectar cambios importantes en el carácter de la demanda para que pueda filtrar rápidamente datos de demanda obsoletos antes de que contaminen todos sus cálculos para pronósticos de demanda u optimización de inventario. Planificador de la demanda puede avisar con antelación de un aumento o disminución pendiente de la demanda. Optimización del inventario puede ayudarle a ajustar sus tácticas de reabastecimiento de inventario para reflejar estos cambios en la demanda.

         

        Brechas de innovación

        Ya sea que te refieras a tu competencia como "Los otros chicos" o "Todos los demás" o algo que no se pueda imprimir, aquellos de los que debes preocuparte son los que siempre buscan una ventaja. Cuando elige a Smart como su socio, le brindaremos esa ventaja con soluciones predictivas innovadoras pero probadas en el campo. Smart Software ha estado innovando en modelos predictivos desde su nacimiento hace más de 40 años.

        • Nuestros primeros productos introdujeron múltiples innovaciones técnicas: evaluación de la calidad del pronóstico mirando hacia el futuro, no hacia el pasado; selección automática de las mejores entre un conjunto de metodologías competitivas, aprovechando los gráficos de los primeros PC para permitir una fácil gestión de las anulaciones de las previsiones estadísticas.
        • Más tarde inventamos y patentamos un enfoque radicalmente diferente para pronosticar la demanda intermitente que es característica tanto de repuestos como de bienes duraderos costosos. Nuestra tecnología fue patentada y recibió múltiples premios por mejorar drásticamente la gestión del inventario. La solución es ahora un enfoque probado en el campo utilizado por muchas empresas líderes en repuestos, MRO, repuestos de posventa y servicio de campo.
        • Más recientemente, la plataforma en la nube de Smart para pronóstico de demanda, modelado predictivo, optimización de inventario y análisis, toma todos los datos relevantes que de otro modo estarían bloqueados en sus sistemas ERP o EAM, archivos externos y otras fuentes de datos dispares, y los organiza en el canalización de datos inteligente, lo estructura en nuestro modelo de datos comúny lo procesa en nuestro nube de AWS. Inteligente utiliza el poder de nuestro patentado simulaciones probabilísticas de demanda en Smart Inventory Optimization para realizar pruebas de estrés y optimizar las reglas que utiliza para administrar cada uno de los artículos de su inventario.

        Es mi trabajo, junto con mi cofundador, el Dr. Nelson Hartunian, nuestro equipo de ciencia de datos y consultores académicos, continuar ampliando los límites del análisis de la cadena de suministro y brindarle los beneficios mediante la implementación continua de nuevas versiones de nuestros productos para que usted no se quede atrapado en una brecha de innovación, ni en ninguna de las otras.