Seis mejores prácticas de planificación de la demanda en las que debería pensar dos veces

Cada campo, incluido el pronóstico, acumula sabiduría popular que eventualmente comienza a disfrazarse de “mejores prácticas”. Estas mejores prácticas suelen ser acertadas, al menos en parte, pero a menudo carecen de contexto y pueden no ser apropiadas para determinados clientes, industrias o situaciones comerciales. A menudo hay un problema, un “Sí, pero”. Esta nota trata sobre seis preceptos de pronóstico generalmente verdaderos que, sin embargo, tienen sus salvedades.

 

  1. Organice su empresa en torno a una previsión de un número. Esto suena sensato: es bueno tener una visión compartida. Pero cada parte de la empresa tendrá su propia idea sobre qué número es el número. Finanzas puede querer ingresos trimestrales, Marketing puede querer visitas al sitio web, Ventas puede querer rotación, Mantenimiento puede querer tiempo medio hasta el fracaso. De hecho, cada unidad probablemente tenga un puñado de métricas clave. No necesitas un eslogan: necesitas hacer tu trabajo.

 

  1. Incorporar el conocimiento empresarial en un proceso de previsión colaborativo. Esta es una buena regla general, pero si su proceso de colaboración tiene fallas, alterar un pronóstico estadístico mediante anulaciones de gestión puede disminuir la precisión. No necesita un eslogan: necesita medir y comparar la precisión de todos y cada uno de los métodos e ir con los ganadores.

 

  1. Previsión mediante modelos causales. Los métodos de pronóstico extrapolativos no tienen en cuenta las fuerzas subyacentes que impulsan sus ventas, simplemente trabajan con los resultados. El modelado causal profundiza en los factores fundamentales y puede mejorar tanto la precisión como el conocimiento. Sin embargo, los modelos causales (implementados mediante análisis de regresión) pueden ser menos precisos, especialmente cuando requieren pronósticos de los factores determinantes (“predicciones de los predictores”) en lugar de simplemente ingresar valores registrados de variables predictoras rezagadas. No necesitas un eslogan: necesitas una comparación directa.

 

  1. Pronosticar la demanda en lugar de los envíos. Lo que realmente se desea es demanda, pero “componer una señal de demanda” puede ser complicado: ¿qué se hace con las transferencias internas? ¿Únicos? ¿Ventas perdidas? Además, los datos de la demanda pueden manipularse. Por ejemplo, si los clientes intencionalmente no realizan pedidos o intentan manipular sus pedidos haciendo pedidos con demasiada anticipación, entonces el historial de pedidos no será mejor que el historial de envíos. al menos con historial de envíos, es exacto: sabes lo que enviaste. Las previsiones de envíos no son previsiones de “demanda”, pero son un sólido punto de partida.

 

  1. Utilice métodos de aprendizaje automático. En primer lugar, el “aprendizaje automático” es un concepto elástico que incluye un conjunto cada vez mayor de alternativas. Debajo del capó de muchos modelos anunciados por ML hay solo una selección automática un método de pronóstico extrapolativo (es decir, mejor ajuste) que, si bien es excelente para pronosticar la demanda normal, existe desde la década de 1980 (Smart Software fue la primera compañía en lanzar un método de selección automática para PC). Los modelos de aprendizaje automático acaparan datos y requieren conjuntos de datos más grandes de los que puede tener disponibles. Elegir adecuadamente y luego entrenar un modelo de ML requiere un nivel de experiencia estadística que es poco común en muchas empresas de fabricación y distribución. Es posible que desees encontrar a alguien que te tome de la mano antes de comenzar a jugar este juego.

 

  1. Eliminar los valores atípicos crea mejores pronósticos. Si bien es cierto que picos o caídas muy inusuales en la demanda enmascararán patrones de demanda subyacentes como la tendencia o la estacionalidad, no siempre es cierto que se deban eliminar los picos. A menudo, estos aumentos repentinos de la demanda reflejan la incertidumbre que puede interferir aleatoriamente con su negocio y, por lo tanto, es necesario tenerlo en cuenta. Eliminar este tipo de datos de su modelo de pronóstico de demanda puede hacer que los datos sean más predecibles en papel, pero lo dejará sorprendido cuando vuelva a suceder. Por lo tanto, tenga cuidado al eliminar los valores atípicos, especialmente en masa.

 

 

 

 

Explicando qué significa "Nivel de servicio" en su software de optimización de inventario

Los clientes a menudo nos preguntan por qué una recomendación de almacenamiento es "tan alta". Aquí hay una pregunta que recibimos recientemente:

Durante nuestra última reunión de equipo, encontramos algunos elementos con brechas anormales entre nuestro ROP actual y el ROP sugerido por Smart en un nivel de servicio 99%. La preocupación es que el sistema indica que el punto de reorden tendrá que aumentar sustancialmente para lograr un nivel de servicio 99%. ¿Podría por favor ayudarnos a entender el cálculo?

Cuando revisamos los datos, quedó claro para el cliente que la ROP calculada por Smart era realmente correcta. Llegamos a la conclusión de que (1) lo que realmente querían era un objetivo de nivel de servicio mucho más bajo y (2) no habíamos hecho una buena explicación de lo que realmente significaba "nivel de servicio". 

Entonces, ¿qué significa realmente un "nivel de servicio 99%"? 

Cuando se trata del objetivo que ingresa en su software de optimización de inventario, significa que el nivel de existencias para el artículo en cuestión tendrá un 99% de posibilidades de poder satisfacer las necesidades del cliente. de inmediato.  Por ejemplo, si tiene 50 unidades en stock, existe una probabilidad de 99% de que la próxima demanda caiga en algún lugar en el rango de 0 a 50 unidades.

Lo que nuestro cliente quiso decir fue que el 99% del momento en que un cliente hizo un pedido, fue entregado en su totalidad dentro del plazo de entrega indicado por el cliente. En otras palabras, no necesariamente de inmediato, sino cuando se prometió.  

Obviamente, cuanto más tiempo se dé a sí mismo para entregar a un cliente, mayor será su nivel de servicio. Pero esa distinción a menudo no se entiende explícitamente cuando los nuevos usuarios del software de optimización de inventario realizan escenarios hipotéticos en diferentes niveles de servicio. Y eso puede llevar a una confusión considerable. Calcular los niveles de servicio en función de la disponibilidad inmediata de existencias es un estándar superior: más difícil de cumplir pero mucho más competitivo.

Nuestros clientes de fabricación a menudo cotizan los niveles de servicio en función de los plazos de entrega a sus clientes, por lo que no es esencial que entreguen inmediatamente desde el estante. Por el contrario, nuestros clientes en los espacios de distribución, mantenimiento, reparación y operaciones (MRO) y repuestos, normalmente deben enviar el mismo día o dentro de las 24 horas. Para ellos es una necesidad competitiva enviar de inmediato y hacerlo en su totalidad.

Al ingresar los niveles de servicio objetivo utilizando su software de optimización de inventario, tenga en cuenta esta distinción. Elija el nivel de servicio según el porcentaje de tiempo que desea enviar el inventario completo, de inmediato desde el estante.  

La función de previsión automática

La previsión automática es la característica más popular y más utilizada de SmartForecasts y Smart Demand Planner. Crear pronósticos automáticos es fácil. Pero, la simplicidad del Pronóstico Automático enmascara una poderosa interacción de varios métodos altamente efectivos de pronóstico. En este blog, discutimos parte de la teoría detrás de esta característica principal. Nos enfocamos en el pronóstico automático, en parte debido a su popularidad y en parte porque muchos otros métodos de pronóstico producen resultados similares. El conocimiento de la previsión automática se traslada inmediatamente a la media móvil simple, la media móvil lineal, el suavizado exponencial único, el suavizado exponencial doble, el suavizado exponencial de Winters y la previsión promocional.

 

Torneo de pronóstico

El pronóstico automático funciona mediante la realización de un torneo entre un conjunto de métodos competitivos. Debido a que las computadoras personales y la computación en la nube son rápidas, y debido a que hemos codificado algoritmos muy eficientes en el motor de pronóstico automático de SmartForecasts, es práctico adoptar un enfoque puramente empírico para decidir qué método de pronóstico extrapolativo usar. Esto significa que puede darse el lujo de probar una serie de enfoques y luego quedarse con el que mejor pronostique la serie de datos particular en cuestión. SmartForecasts automatiza completamente este proceso al probar los diferentes métodos de pronóstico en un torneo de pronóstico simulado. El ganador del torneo es el método que más se acerca a predecir nuevos valores de datos a partir de los antiguos. La precisión se mide por el error absoluto promedio (es decir, el error promedio, ignorando cualquier signo menos). El promedio se calcula sobre un conjunto de pronósticos, cada uno de los cuales utiliza una parte de los datos, en un proceso conocido como simulación deslizante.

 

Simulación deslizante

La simulación deslizante recorre repetidamente porciones cada vez más largas de los datos históricos, en cada caso pronosticando con anticipación el número deseado de períodos en su horizonte de pronóstico. Suponga que hay 36 valores de datos históricos y necesita pronosticar seis períodos por delante. Imagine que desea evaluar la precisión del pronóstico de algún método en particular, digamos un promedio móvil de cuatro observaciones, en la serie de datos en cuestión.

En un punto de la simulación deslizante, los primeros 24 puntos (solo) se utilizan para pronosticar los valores de datos históricos del 25 al 30, que consideramos temporalmente como desconocidos. Decimos que los puntos 25-30 están “retenidos” del análisis. Calcular los valores absolutos de las diferencias entre los seis pronósticos y los valores históricos reales correspondientes proporciona una instancia de cada pronóstico absoluto de 1 paso, 2 pasos, 3 pasos, 4 pasos, 5 pasos y 6 pasos. error. Repetir este proceso usando los primeros 25 puntos proporciona más instancias de errores de 1 paso, 2 pasos, 3 pasos adelante, etc. El promedio de todas las estimaciones de error absoluto obtenidas de esta manera proporciona un resumen de precisión de un solo número.

 

Métodos utilizados en la previsión automática

Normalmente, hay seis métodos de pronóstico extrapolativo que compiten en el torneo de pronóstico automático:

  • media móvil simple
  • Media móvil lineal
  • Suavizado exponencial simple
  • Suavizado exponencial doble
  • Versión aditiva del suavizado exponencial de Winters
  • Versión multiplicativa del suavizado exponencial de Winters

 

Los dos últimos métodos son apropiados para series estacionales; sin embargo, se excluyen automáticamente del torneo si hay menos de dos ciclos estacionales completos de datos (por ejemplo, menos de 24 períodos de datos mensuales u ocho períodos de datos trimestrales).

Estos seis métodos clásicos basados en el suavizado han demostrado ser fáciles de entender, fáciles de calcular y precisos. Puede excluir cualquiera de estos métodos del torneo si tiene preferencia por algunos de los competidores y no por otros.

 

 

 

 

No culpe la escasez a los tiempos de entrega problemáticos.

Los retrasos en los plazos de entrega y la variabilidad del suministro son hechos de la vida de la cadena de suministro, sin embargo, las organizaciones que llevan el inventario a menudo se sorprenden cuando un proveedor se retrasa. Un proceso de planificación de inventario efectivo abarca este hecho de la vida y desarrolla políticas que dan cuenta de manera efectiva de esta incertidumbre. Claro, habrá momentos en que los retrasos en el tiempo de entrega surjan de la nada y causen una escasez. Pero la mayoría de las veces, la escasez es el resultado de:

  1. No calcular las políticas de almacenamiento (p. ej., puntos de pedido, existencias de seguridad y niveles mínimos y máximos) con la frecuencia suficiente para detectar cambios en el tiempo de entrega. 
  2. Usar estimaciones deficientes del tiempo de entrega real, como usar solo promedios de recibos históricos o confiar en una cotización del proveedor.

En su lugar, vuelva a calibrar las políticas en cada parte durante cada ciclo de planificación para detectar cambios en la demanda y los plazos de entrega. En lugar de asumir solo un tiempo de entrega promedio, simule los tiempos de entrega utilizando escenarios. De esta forma, las políticas de almacenamiento recomendadas tienen en cuenta las probabilidades de que los plazos de entrega sean elevados y se ajustan en consecuencia. Cuando haga esto, identificará los aumentos de inventario necesarios antes de que sea demasiado tarde. Obtendrá más ventas e impulsará mejoras significativas en la satisfacción del cliente.

Estrategias de resultados para la planificación de piezas de repuesto

La gestión de piezas de repuesto presenta numerosos desafíos, como averías inesperadas, horarios cambiantes y patrones de demanda inconsistentes. Los métodos de pronóstico tradicionales y los enfoques manuales son ineficaces para hacer frente a estas complejidades. Para superar estos desafíos, este blog describe estrategias clave que priorizan los niveles de servicio, utilizan métodos probabilísticos para calcular los puntos de pedido, ajustan periódicamente las políticas de almacenamiento e implementan un proceso de planificación dedicado para evitar un inventario excesivo. Explore estas estrategias para optimizar el inventario de repuestos y mejorar la eficiencia operativa.

Línea inferior por adelantado

1. La gestión de inventario es Gestión de riesgos.

2. No puede gestionar bien el riesgo o a escala con planificación subjetiva – Necesita saber servicio vs. costo.

3. No es variabilidad de la oferta y la demanda ese es el problema, es cómo lo manejas.

4. Las piezas de repuesto tienen intermitente pedir por lo que los métodos tradicionales no funcionan.

5.Regla de oro Los enfoques no tienen en cuenta la variabilidad de la demanda y asignan incorrectamente las existencias.

6.Uso Optimize el nivel de servicio considerablemente,  (compensaciones entre servicio y costo) para impulsar las decisiones sobre acciones.

7.probabilístico enfoques tales como arranque producir estimaciones precisas de los puntos de pedido.

8.Clasificar partes y asigne objetivos de nivel de servicio por clase.

9.Recalibrar a menudo – miles de piezas tienen puntos de reorden antiguos y obsoletos.

10.Partes reparables requieren un tratamiento especial.

 

Céntrese en las causas fundamentales reales

Estrategias de resultado final para las causas de planificación de piezas de repuesto

Demanda intermitente

Estrategias de resultados para la demanda intermitente de planificación de piezas de repuesto

 

  • Movimiento lento, irregular o esporádico con un gran porcentaje de valores cero.
  • Los valores distintos de cero se mezclan al azar: los picos son grandes y variados.
  • No tiene forma de campana (la demanda normalmente no se distribuye alrededor del promedio).
  • Al menos 70% de las piezas típicas de una empresa de servicios públicos se demandan de forma intermitente.

Estrategias de resultados para la planificación de piezas de repuesto 4

 

demanda normal

Estrategias de resultados para la demanda intermitente de planificación de piezas de repuesto

  • Muy pocos períodos de demanda cero (la excepción son las piezas de temporada).
  • A menudo exhibe patrones de tendencia, estacionales o cíclicos.
  • Menores niveles de variabilidad de la demanda.
  • Tiene forma de campana (la demanda normalmente se distribuye alrededor del promedio).

Estrategias de resultados para la planificación de piezas de repuesto 5

No confíes en los promedios

Estrategias de resultados para los promedios de planificación de piezas de repuesto

  • OK para determinar el uso típico durante períodos de tiempo más largos.
  • A menudo pronostica con más "precisión" que algunos métodos avanzados.
  • Pero... insuficiente para determinar qué almacenar.

 

No búfer con múltiplos de promedios

Ejemplo: Dos partes igualmente importantes, así que tratémoslas igual.
Pediremos más cuando el inventario disponible sea ≤ 2 x la demanda promedio de tiempo de entrega.

Estrategias de resultados para la planificación de piezas de repuesto Promedios múltiples

 

Utilice las curvas de compensación del nivel de servicio para calcular el stock de seguridad

Estrategias de resultados para el nivel de servicio de planificación de piezas de repuesto

Probabilidades normales estándar

Está bien para la demanda normal. ¡No funciona con demanda intermitente!

Estrategias de resultados para la planificación de piezas de repuesto Probabilidades estándar

 

No use distribuciones normales (en forma de campana)

  • Obtendrá la curva de compensación incorrecta:

– por ejemplo, tendrá como objetivo 95% pero logrará 85%.

– por ejemplo, tendrá como objetivo 99% pero logrará 91%.

  • Esta es una gran falta con implicaciones costosas:

– Se agotará con más frecuencia de lo esperado.

– Comenzará a agregar búferes subjetivos para compensar y luego el exceso de existencias.

– La falta de confianza/las dudas sobre los resultados paralizan la planificación.

 

Por qué los métodos tradicionales fallan en la demanda intermitente: 

Los métodos tradicionales no están diseñados para abordar problemas fundamentales en la gestión de piezas de repuesto.

Necesidad: distribución de probabilidad (no en forma de campana) de la demanda durante un tiempo de entrega variable.

  • Obtener: Predicción de promedio demanda en cada mes, no un total sobre el tiempo de entrega.
  • Obtener: Modelo de variabilidad reforzado, generalmente el modelo Normal, generalmente incorrecto.

Necesidad: exposición de compensaciones entre la disponibilidad de artículos y el costo del inventario.

  • Obtener: nada de esto; en cambio, obtenga muchas decisiones inconsistentes y ad-hoc.

 

Utilice Bootstrapping estadístico para predecir la distribución:

Luego explote la distribución para optimizar las políticas de almacenamiento.

Estrategias de resultados para la planificación de repuestos Predict Distribution

 

¿Cómo funciona Bootstrapping?

24 meses de datos históricos de demanda.

Estrategias de resultados para la planificación de piezas de repuesto Bootstrapping 1

Escenarios Bootstrap para un plazo de ejecución de 3 meses.

Estrategias de resultados para la planificación de piezas de repuesto Bootstrapping 2

¡Bootstrapping alcanza el objetivo de nivel de servicio con una precisión de casi 100%!

  • Operación de Almacenamiento Nacional.

Tarea: Pronostique los niveles de existencias de inventario para 12 000 SKU con demanda intermitente en los niveles de servicio 95% y 99%

Resultados:

En el nivel de servicio 95%, 95.23% no se agotó.

En el nivel de servicio 99%, 98.66% no se agotó.

Esto significa que puede confiar en la producción para establecer expectativas y realizar con confianza ajustes de stock específicos que reduzcan el inventario y aumenten el servicio.

 

Establezca niveles de servicio objetivo según la frecuencia y el tamaño del pedido

Establecer niveles de servicio objetivo según la frecuencia de pedidos

 

Recalibrar los puntos de pedido con frecuencia

  • Las ROP estáticas provocan exceso y escasez.
  • A medida que aumenta el tiempo de entrega, también debería hacerlo el ROP y viceversa.
  • A medida que disminuye el uso, también debería hacerlo la ROP y viceversa.
  • Cuanto más espere para recalibrar, mayor será el desequilibrio.
  • Montañas de piezas ordenadas demasiado pronto o demasiado tarde.
  • Desperdicia el tiempo de los compradores al realizar pedidos incorrectos.
  • Genera desconfianza en los sistemas y fuerza los silos de datos.

Recalibrar los puntos de pedido con frecuencia

hacer un plan Rotables (Piezas de reparación) de manera diferente

Planifique los rotables (reparaciones) de manera diferente

 

Resumen

1. La gestión de inventario es Gestión de riesgos.

2. No puede gestionar bien el riesgo o a escala con planificación subjetiva – Necesita saber servicio vs. costo.

3. No es variabilidad de la oferta y la demanda ese es el problema, es cómo lo manejas.

4. Las piezas de repuesto tienen intermitente pedir por lo que los métodos tradicionales no funcionan.

5.Regla de oro Los enfoques no tienen en cuenta la variabilidad de la demanda y asignan incorrectamente las existencias.

6.Uso Optimize el nivel de servicio considerablemente,  (compensaciones entre servicio y costo) para impulsar las decisiones sobre acciones.

7.probabilístico enfoques tales como arranque producir estimaciones precisas de los puntos de pedido.

8.Clasificar partes y asigne objetivos de nivel de servicio por clase.

9.Recalibrar a menudo – miles de piezas tienen puntos de reorden antiguos y obsoletos.

10.Partes reparables requieren un tratamiento especial.

 

Soluciones de software para la planificación de repuestos

El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

 

 

Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

 

Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.