Qué hacer cuando un pronóstico estadístico no tiene sentido

A veces, un pronóstico estadístico simplemente no tiene sentido. Todos los pronosticadores han estado allí. Pueden volver a verificar que los datos se ingresaron correctamente o revisar la configuración del modelo, pero todavía se quedan pensando por qué el pronóstico se ve muy diferente al historial de demanda. Cuando el pronóstico ocasional no tiene sentido, puede erosionar la confianza en todo el proceso de pronóstico estadístico.

Este blog ayudará a un profano a comprender qué son los modelos estadísticos inteligentes y cómo se eligen automáticamente. Abordará cómo esa elección a veces falla, cómo puede saber si lo hizo y qué puede hacer para garantizar que los pronósticos siempre puedan justificarse. Es importante saber esperar y cómo detectar las excepciones para que pueda confiar en su sistema de pronóstico.

 

Cómo se eligen los métodos automáticamente

El criterio para elegir automáticamente un método estadístico de un conjunto se basa en qué método estuvo más cerca de predecir correctamente el historial retenido. El historial anterior se pasa a cada método y el resultado se compara con los datos reales para encontrar el que más se acercó en general. Ese método elegido automáticamente se alimenta de todo el historial para producir el pronóstico. Consulte este blog para obtener más información sobre la selección de modelos. https://smartcorp.com/uncategorized/statistical-forecasting-how-automatic-method-selection-works/

Para la mayoría de las series temporales, este proceso puede capturar tendencias, estacionalidad y volumen promedio con precisión. Pero a veces, un método elegido se acerca matemáticamente a la predicción del historial retenido, pero no lo proyecta hacia adelante de una manera que tenga sentido. Eso significa que el método seleccionado por el sistema no es el mejor y, para algunos, es "difícil de pronosticar".

 

Artículos difíciles de pronosticar

Los artículos difíciles de pronosticar pueden tener picos grandes e impredecibles en la demanda, o por lo general no hay demanda pero hay irregularidades aleatorias o actividad reciente inusual. El ruido en los datos a veces se desplaza aleatoriamente hacia arriba o hacia abajo, y el método automatizado de mejor selección podría pronosticar una tendencia desbocada o una reducción a cero. Lo hará peor que el sentido común y en un pequeño porcentaje de cualquier grupo razonablemente variado de elementos. Por lo tanto, deberá identificar estos casos y responder anulando el pronóstico o cambiando las entradas del pronóstico.

 

Cómo encontrar las excepciones

La mejor práctica es filtrar u ordenar los elementos pronosticados para identificar aquellos en los que la suma del pronóstico durante el próximo año es significativamente diferente al historial correspondiente del año pasado. La suma del pronóstico puede ser mucho más baja que el historial o viceversa. Utilice las métricas proporcionadas para identificar estos elementos; luego puede optar por aplicar anulaciones al pronóstico o modificar la configuración del pronóstico.

 

Cómo arreglar las excepciones

A menudo, cuando el pronóstico parece extraño, un método de promediación, como el suavizado exponencial único o incluso un promedio simple con estilo libre, producirá un pronóstico más razonable. Si la tendencia es posiblemente válida, puede eliminar solo los métodos estacionales para evitar un resultado falsamente estacional. O haga lo contrario y use solo métodos estacionales si se espera estacionalidad pero no se proyectó en el pronóstico predeterminado. Puede usar las funciones hipotéticas para crear cualquier cantidad de pronósticos, evaluar y comparar, y continuar ajustando la configuración hasta que se sienta cómodo con el pronóstico.

Limpiar el historial, con o sin cambiar la selección automática del método, también es efectivo para producir pronósticos razonables. Puede incrustar parámetros de previsión para reducir la cantidad de historial utilizado para pronosticar esos elementos o la cantidad de períodos pasados en el algoritmo, de modo que ya no se tenga en cuenta el historial anterior y desactualizado. Puede editar picos o caídas en el historial de demanda que son anomalías conocidas para que no influyan en el resultado. También puede trabajar con el equipo de Smart para implementar la detección y eliminación automática de valores atípicos para que los datos antes de ser pronosticados ya estén limpios de estas anomalías.

Si la demanda es realmente intermitente, será casi imposible pronosticar "con precisión" por período. Si un promedio de nivel de carga no es aceptable, el manejo del artículo mediante el establecimiento de una política de inventario con un pronóstico de tiempo de entrega puede ser efectivo. Alternativamente, puede optar por utilizar modelos "igual que el año pasado" que, si bien no son propensos a la precisión, serán generalmente aceptados por la empresa dadas las previsiones alternativas.

Finalmente, si el elemento se introdujo tan recientemente que los algoritmos no tienen suficiente entrada para pronosticar con precisión, lo mejor puede ser un promedio simple o un pronóstico manual. Puede identificar elementos nuevos filtrando por el número de períodos históricos.

 

Selección manual de métodos.

Una vez que haya identificado las filas en las que el pronóstico no tiene sentido para el ojo humano, puede elegir un subconjunto más pequeño de todos los métodos para permitir la ejecución del pronóstico y compararlo con el historial. Smart le permitirá usar un conjunto restringido de métodos solo para una ejecución de pronóstico o incrustar el conjunto restringido para usarlo en todas las ejecuciones de pronóstico en el futuro. Diferentes métodos proyectarán la historia hacia el futuro de diferentes maneras. Tener una idea de cómo funciona cada uno lo ayudará a elegir cuál permitir.

 

Confíe en su herramienta de previsión

Cuanto más utilice Smart period over period para incorporar sus decisiones sobre cómo pronosticar y qué datos históricos considerar, menos a menudo se enfrentará a las excepciones que se describen en este blog. Ingresar parámetros de pronóstico es una tarea manejable cuando se comienza con artículos críticos o de alto impacto. Incluso si no integra ninguna decisión manual en los métodos de pronóstico, el pronóstico se vuelve a ejecutar cada período con nuevos datos. Por lo tanto, un artículo con un resultado extraño hoy puede volverse fácilmente predecible en el tiempo.

 

 

Pronóstico estadístico: cómo funciona la selección automática de métodos en Smart IP&O

Smart IP&O ofrece pronósticos estadísticos automatizados que seleccionan el método de pronóstico correcto que mejor pronostica los datos. Hace esto para cada serie de tiempo en el conjunto de datos. Este blog ayudará a los legos a comprender cómo se eligen automáticamente los métodos de pronóstico.

Smart pone a disposición muchos métodos, incluidos el suavizado exponencial simple y doble, el promedio móvil lineal y simple y los modelos de Winters. Cada modelo está diseñado para capturar un tipo diferente de patrón. El criterio para elegir automáticamente un método estadístico de un conjunto de opciones se basa en qué método estuvo más cerca de predecir correctamente el historial retenido.

El historial de demanda anterior se pasa a cada método y el resultado se compara con los datos reales para encontrar el que más se acerca en general. Ese método "ganador" elegido automáticamente se alimenta de todo el historial de ese artículo para producir el pronóstico.

La naturaleza general del patrón de demanda del artículo se captura manteniendo diferentes partes de la historia para que un valor atípico ocasional no influya indebidamente en la elección del método. Puede visualizarlo usando el siguiente diagrama donde cada fila representa un pronóstico de 3 períodos en el historial retenido, basado en diferentes cantidades del historial anterior en rojo. Las variaciones de cada pase se promedian juntas para determinar la clasificación general del método frente a todos los demás métodos.

Automatic Forecasting and Statistical Forecasting App

Para la mayoría de las series temporales, este proceso puede capturar con precisión las tendencias, la estacionalidad y el volumen promedio. Pero a veces, un método elegido se acerca matemáticamente a la predicción del historial retenido, pero no lo proyecta hacia adelante de una manera que tenga sentido.

Los usuarios pueden corregir esto utilizando los informes de excepción del sistema y las funciones de filtrado para identificar los elementos que merecen revisión. Luego pueden configurar los métodos de pronóstico automático que desean que se consideren para ese artículo.

 

 

¿Cuánto tiempo se debe tomar para calcular los pronósticos estadísticos?
Los principales factores que afectan la velocidad de su motor de pronóstico 

¿Cuánto tiempo debe tomar para calcular un pronóstico de demanda usando métodos estadísticos? Esta pregunta la hacen a menudo los clientes actuales y potenciales. La respuesta realmente depende. Los resultados del pronóstico para un solo elemento se pueden calcular en un abrir y cerrar de ojos, en tan solo unas pocas centésimas de segundo, pero a veces pueden requerir hasta cinco segundos. Para comprender las diferencias, es importante entender que hay más cosas involucradas que solo repasar la aritmética del pronóstico en sí. Aquí hay seis factores que influyen en la velocidad de su motor de pronóstico.

1) Método de pronóstico.  Las técnicas tradicionales de extrapolación de series de tiempo (como el suavizado exponencial y los métodos de promedio móvil), cuando están codificadas inteligentemente, son muy rápidas. Por ejemplo, el motor de pronóstico automático Smart Forecast que aprovecha estas técnicas y potencia nuestro software de optimización de inventario y planificación de demanda puede generar pronósticos estadísticos sobre 1,000 artículos en 1 segundo. Los métodos de extrapolación producen un pronóstico esperado y una medida resumida de la incertidumbre del pronóstico. Sin embargo, los modelos más complejos en nuestra plataforma que generan escenarios de demanda probabilísticos toman mucho más tiempo con los mismos recursos informáticos. Esto se debe en parte a que crean un volumen de producción mucho mayor, por lo general miles de secuencias de demanda futura plausibles. Más tiempo, sí, pero no tiempo perdido, ya que estos resultados son mucho más completos y forman la base para la optimización posterior de los parámetros de control de inventario.

2) Recursos informáticos.  Cuantos más recursos arroje al cálculo, más rápido será. Sin embargo, los recursos cuestan dinero y puede que no sea económico invertir en estos recursos. Por ejemplo, para hacer que ciertos tipos de pronósticos basados en aprendizaje automático funcionen, el sistema necesitará realizar cálculos de subprocesos múltiples en varios servidores para entregar resultados rápidamente. Por lo tanto, asegúrese de comprender los recursos informáticos asumidos y los costos asociados. Nuestros cálculos se realizan en la nube de Amazon Web Services, por lo que es posible pagar una gran cantidad de cómputo paralelo si se desea.

3) Número de series temporales.  ¿Tiene que pronosticar solo unos pocos cientos de artículos en una sola ubicación o muchos miles de artículos en docenas de ubicaciones? Cuanto mayor sea el número de combinaciones de SKU x Ubicación, mayor será el tiempo requerido. Sin embargo, es posible recortar el tiempo para obtener pronósticos de demanda mediante una mejor clasificación de la demanda. Por ejemplo, no es importante pronosticar cada combinación de SKU x Ubicación. El software moderno de planificación de la demanda primero puede subdividir los datos en función de las clasificaciones de volumen/frecuencia antes de ejecutar el motor de pronóstico. Hemos observado situaciones en las que existían más de un millón de combinaciones SKU x Ubicación, pero solo el diez por ciento tenía demanda en los doce meses anteriores.

4) Clasificación histórica. ¿Está pronosticando utilizando intervalos de tiempo diarios, semanales o mensuales? Cuanto más granular sea la agrupación, más tiempo llevará calcular los pronósticos estadísticos. Muchas empresas se preguntarán: "¿Por qué alguien querría pronosticar diariamente?" Sin embargo, el software de pronóstico de demanda de última generación puede aprovechar los datos diarios para detectar patrones simultáneos de días de la semana y semanas del mes que, de otro modo, quedarían ocultos con los grupos de demanda mensuales tradicionales. Y la velocidad de los negocios continúa acelerándose, amenazando la viabilidad competitiva del ritmo de planificación mensual tradicional.

5) Cantidad de Historia. ¿Está limitando el modelo alimentándolo solo con el historial de demanda más reciente, o está introduciendo todo el historial disponible en el software de previsión de demanda? Cuanto más historial alimente el modelo, más datos se deben analizar y más tiempo llevará.

6) Procesamiento analítico adicional.  Hasta ahora, hemos imaginado ingresar el historial de demanda de los artículos y obtener pronósticos. Pero el proceso también puede implicar pasos analíticos adicionales que pueden mejorar los resultados. Ejemplos incluyen:

a) Detección y eliminación de valores atípicos para minimizar la distorsión causada por eventos únicos como daños por tormentas.

b) Aprendizaje automático que decide cuánto historial se debe usar para cada elemento detectando el cambio de régimen.

C) Modelado causal que identifica cómo los cambios en los impulsores de la demanda (como el precio, la tasa de interés, la opinión del cliente, etc.) afectan la demanda futura.

d) Informe de excepción que utiliza el análisis de datos para identificar situaciones inusuales que ameritan una mayor revisión por parte de la gerencia.

 

El resto de la historia. También es fundamental comprender que el tiempo para obtener una respuesta implica más que la velocidad de los cálculos de pronóstico. per se. Los datos deben cargarse en la memoria antes de que pueda comenzar la computación. Una vez que se calculan los pronósticos, su navegador debe cargar los resultados para que puedan mostrarse en la pantalla para que usted interactúe con ellos. Si vuelve a pronosticar un producto, puede optar por guardar los resultados. Si está trabajando con jerarquías de productos (agregando pronósticos de artículos hasta familias de productos, familias hasta líneas de productos, etc.), el nuevo pronóstico afectará la jerarquía y todo debe conciliarse. Todo esto lleva tiempo.

¿Lo suficientemente rápido para ti? Cuando está evaluando el software para ver si su necesidad de velocidad será satisfecha, todo esto puede probarse como parte de una prueba de concepto o prueba ofrecida por los proveedores de soluciones de software de planificación de la demanda. Pruébelo y asegúrese de que el calcular, cargar y guardar los tiempos son aceptables dado el volumen de datos y los métodos de pronóstico que desea utilizar para respaldar su proceso.

 

 

 

¿Sus pronósticos estadísticos sufren el efecto de oscilación?

 ¿Qué es el efecto de oscilación? 

Es cuando su pronóstico estadístico predice incorrectamente los altibajos observados en su historial de demanda cuando realmente no hay un patrón. Es importante asegurarse de que sus pronósticos no cambien a menos que haya un patrón real.

Aquí hay una transcripción de un cliente reciente donde se discutió este problema:

Cliente: “El pronóstico no sigue los patrones que veo en el historial. ¿Por qué no?" 

Inteligente: “Si miras de cerca, los altibajos que ves no son patrones. Es realmente ruido”.  

Cliente: “Pero si no predecimos los máximos, nos agotamos”.

Smart: “Si el pronóstico 'se moviera', sería mucho menos preciso. El sistema pronosticará cualquier patrón que sea evidente, en este caso una tendencia alcista muy leve. Protegeremos el ruido con existencias de seguridad. Los meneos se utilizan para establecer las existencias de seguridad”.

Cliente: “Está bien. Tiene sentido ahora. 

Do your statistical forecasts suffer from the wiggle effect graphic

El movimiento parece tranquilizador pero, en este caso, está dando como resultado un pronóstico de demanda incorrecto. Los altibajos en realidad no ocurren a la misma hora cada mes. Un mejor pronóstico estadístico se muestra en verde claro.

 

 

Cómo manejar pronósticos estadísticos de cero

Un pronóstico estadístico de cero puede causar mucha confusión a los pronosticadores, especialmente cuando la demanda histórica no es cero. Claro, es obvio que la demanda tiene una tendencia a la baja, pero ¿debería tener una tendencia a cero? Cuando la demanda anterior es mucho mayor que la demanda más reciente y la demanda más reciente tiene un volumen muy bajo (es decir, 1,2,3 unidades demandadas), la respuesta es, estadísticamente hablando, sí. Sin embargo, esto podría no coincidir con el conocimiento comercial del planificador y el nivel mínimo esperado de demanda. Entonces, ¿qué debe hacer un pronosticador para corregir esto? Aquí hay tres sugerencias:

 

  1. Limite los datos históricos alimentados al modelo. En una situación de tendencia a la baja, los datos más antiguos a menudo se mucho mayor que los datos recientes. Cuando se ignora la demanda de volumen mucho mayor anterior, la tendencia a la baja no será tan significativa. Todavía pronosticará una tendencia a la baja, pero es más probable que los resultados estén en línea con las expectativas comerciales.
  1. Pruebe la amortiguación de tendencias. Smart Demand Planner tiene una función llamada "cobertura de tendencias" que permite a los usuarios definir cómo una tendencia debe desaparecer con el tiempo. Cuanto mayor sea la cobertura de tendencia porcentual (0-100%), más pronunciada será la amortiguación de tendencia. Esto significa que una tendencia pronosticada no continuará durante todo el horizonte de pronóstico. Esto significa que el pronóstico de demanda comenzará a aplanarse antes de que llegue a cero en una tendencia bajista.
  1. Cambiar el modelo de pronóstico. Cambie de un método de tendencia, como Suavizado exponencial doble o Promedio móvil lineal, a un método sin tendencia, como Suavizado exponencial único o Promedio móvil simple. No pronosticará una tendencia a la baja, pero al menos su pronóstico no será cero y, por lo tanto, es más probable que la empresa lo acepte.