Las 3 razones principales por las que su hoja de cálculo no funcionará para optimizar los puntos de pedido de piezas de repuesto

A menudo nos encontramos con métodos de planificación de puntos de pedido basados en Excel. En esta publicación, detallamos un enfoque que utilizó un cliente antes de continuar con Smart. Describimos cómo funcionaba su hoja de cálculo, los enfoques estadísticos en los que se basaba, los pasos que los planificadores siguieron en cada ciclo de planificación y sus motivaciones declaradas para usar (y realmente gustarles) esta hoja de cálculo desarrollada internamente.

Su proceso mensual consistía en actualizar un nuevo mes de datos reales en la "hoja de puntos de pedido". Una fórmula incrustada volvió a calcular el punto de pedido (ROP) y el nivel de pedido hasta (máx.). Funcionó así:

  • ROP = Demanda LT + Stock de Seguridad
  • Demanda LT = demanda diaria promedio x días de tiempo de entrega (se supone constante para simplificar las cosas)
  • Inventario de seguridad para piezas con plazos de entrega prolongados = Desviación estándar x 2,0
  • Stock de seguridad para piezas con plazos de entrega cortos = Desviación estándar x 1,2
  • Max = ROP + cantidad mínima de pedido dictada por el proveedor

Los promedios históricos y las desviaciones estándar utilizaron 52 semanas de historial continuo (es decir, la semana más nueva reemplazó a la semana más antigua en cada período). La desviación estándar de la demanda se calculó utilizando la función "stdevp" en Excel.

Cada mes, se volvió a calcular un nuevo ROP. Tanto la demanda promedio como la desviación estándar fueron modificadas por la demanda de la nueva semana, que a su vez actualizó la ROP.

El ROP predeterminado siempre se basa en la lógica anterior. Sin embargo, los planificadores harían cambios bajo ciertas condiciones:

1. Los planificadores aumentarían el Min para piezas económicas para reducir el riesgo de recibir un golpe de entrega a tiempo (OTD) en una pieza económica.

2. La hoja de Excel identificó cualquier parte con una ROP recién calculada que era ± 20% diferente de la ROP actual.

3. Los planificadores revisaron las piezas que superaban el umbral de excepción, propusieron cambios y obtuvieron la aprobación de un gerente.

4. Los planificadores revisaron los elementos con aciertos OTD y aumentaron el ROP en función de su intuición. Los planificadores continuaron monitoreando esas partes durante varios períodos y bajaron el ROP cuando sintieron que era seguro.

5. Una vez que se determinaron el ROP y la cantidad máxima, el archivo de resultados revisados se envió a TI, quien lo cargó en su ERP.

6. El sistema ERP luego gestionaba el reabastecimiento diario y la gestión de pedidos.

Objetivamente, este fue quizás un enfoque superior al promedio para la gestión de inventario. Por ejemplo, algunas empresas desconocen el vínculo entre la variabilidad de la demanda y los requisitos de existencias de seguridad y confían exclusivamente en la regla de los métodos o la intuición. Sin embargo, hay problemas con su enfoque:

1. Actualizaciones manuales de datos
Las hojas de cálculo requerían actualización manual. Para volver a calcular, se requerían varios pasos, cada uno con su propia dependencia. Primero, era necesario ejecutar un volcado de datos desde el sistema ERP. En segundo lugar, un planificador necesitaría abrir la hoja de cálculo y revisarla para asegurarse de que los datos se hayan importado correctamente. En tercer lugar, necesitaban revisar el resultado para asegurarse de que se calculó como se esperaba. En cuarto lugar, se requerían pasos manuales para devolver los resultados al sistema ERP.

2. Talla única para todas las existencias de seguridad
O en este caso, “una de dos tallas sirve para todos”. La elección de utilizar una desviación estándar de 2x y 1,2x para artículos con plazos de entrega largos y cortos, respectivamente, equivale a niveles de servicio de 97,71 TP3T y 88,41 TP3T. Este es un gran problema ya que es lógico que no todas las partes de cada grupo requieran el mismo nivel de servicio. Algunas partes tendrán un mayor dolor por falta de existencias que otras y viceversa. Por lo tanto, los niveles de servicio deben especificarse en consecuencia y ser proporcionales a la importancia del artículo. Descubrimos que estaban experimentando golpes OTD en aproximadamente 20% de sus piezas de repuesto críticas, lo que requería anulaciones manuales del ROP. La causa raíz fue que en todos los artículos con plazos de entrega cortos estaban planificando un objetivo de nivel de servicio de 88.4%. Por lo tanto, lo mejor que pudieron haber obtenido fue almacenar 12% de ese momento, incluso si "según el plan". Hubiera sido mejor planificar objetivos de nivel de servicio de acuerdo con la importancia de la pieza.

3. El inventario de seguridad es inexacto.  Los artículos que se planean para esta empresa son repuestos para apoyar equipos de diagnóstico. La demanda en la mayoría de estas partes es muy intermitente y esporádica. Por lo tanto, la elección de usar un promedio para calcular la demanda de tiempo de entrega no era irrazonable si acepta la necesidad de ignorar la variabilidad en los tiempos de entrega. Sin embargo, la confianza en un Distribución normal determinar el inventario de seguridad fue un gran error que resultó en inventarios de seguridad inexactos. La empresa declaró que sus niveles de servicio para artículos con plazos de entrega prolongados se encontraban en el rango de 90% en comparación con su objetivo de 97,7%, y que compensaron la diferencia con los envíos urgentes. Los niveles de servicio logrados para artículos con plazos de entrega más cortos fueron de aproximadamente 80%, a pesar de que el objetivo era 88,4%. Calcularon las existencias de seguridad de forma incorrecta porque su demanda no tiene "forma de campana", pero eligieron las existencias de seguridad asumiendo que así era. Esta simplificación da como resultado la falta de objetivos de nivel de servicio, lo que obliga a la revisión manual de muchos elementos que luego deben ser "supervisados manualmente durante varios períodos" por un planificador. ¿No sería mejor asegurarse de que el punto de reorden cumpliera con el nivel de servicio exacto que deseaba desde el principio? Esto garantizaría que alcance sus niveles de servicio y minimice la intervención manual innecesaria.

Hay un cuarto problema que no está en la lista pero que vale la pena mencionar. La hoja de cálculo no pudo rastrear tendencias o patrones estacionales. Los promedios históricos ignoran la tendencia y la estacionalidad, por lo que la demanda acumulada durante el tiempo de entrega utilizada en el ROP será sustancialmente menos precisa para las piezas de tendencia o estacionales. El equipo de planificación reconoció esto pero no sintió que fuera un problema legítimo, razonando que la mayor parte de la demanda era intermitente y no tenía estacionalidad. Es importante que el modelo detecte la tendencia y la estacionalidad de los datos intermitentes, si existen, pero no encontramos que sus datos exhiban estos patrones. Entonces, acordamos que esto no era un problema. para ellos. Pero a medida que el ritmo de planificación aumenta hasta el punto de que la demanda se reparte a diario, incluso la demanda intermitente muy a menudo resulta tener una estacionalidad de día de la semana y, a veces, de semana del mes. Si no corre a una frecuencia más alta ahora, tenga en cuenta que puede verse obligado a hacerlo pronto para mantenerse al día con una competencia más ágil. En ese momento, el procesamiento basado en hojas de cálculo simplemente no podrá mantenerse al día.

En conclusión, no use hojas de cálculo. No conducen a análisis hipotéticos significativos, requieren demasiado trabajo y la lógica subyacente debe simplificarse para que el proceso sea lo suficientemente rápido como para que sea útil. En resumen, opte por soluciones especialmente diseñadas. Y asegúrese de que se ejecuten en la nube.

 

Soluciones de software para la planificación de repuestos

El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

 

 

Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

 

Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

 

    Por qué las curvas de compensación de piezas de repuesto son de misión crítica para la planificación de piezas

    Apuesto a que sus equipos de mantenimiento y reparación estarían de acuerdo con incurrir en mayores riesgos de falta de existencias uno alguno piezas de repuesto si supieran que los ahorros de reducción de inventario se utilizarían para distribuir la inversión en inventario de manera más efectiva para otro repuestos y aumentar los niveles generales de servicio.

    Duplicaré que su equipo de finanzas, a pesar de que siempre se enfrenta al desafío de reducir los costos, respaldaría un aumento saludable del inventario si pudiera ver claramente que los ingresos se benefician de un mayor tiempo de actividad, menos agilidades y mejoras en el nivel de servicio claramente superan los costos de inventario adicionales y riesgo

    La curva de compensación de piezas de repuesto permitirá a los equipos de planificación de repuestos comunicar adecuadamente los riesgos y costos de cada decisión de inventario. Es una misión crítica para la planificación de piezas y la única forma de ajustar los parámetros de almacenamiento de forma proactiva y precisa para cada pieza. Sin él, los planificadores, para todos los efectos, están "planificando" con los ojos vendados porque no podrán comunicar las verdaderas compensaciones asociadas con las decisiones de almacenamiento.

    Por ejemplo, si se recomienda un aumento propuesto a los niveles mínimos/máximos de un importante grupo de productos básicos de repuestos, ¿cómo sabe si el aumento es demasiado alto, demasiado bajo o correcto? ¿Cómo se puede afinar el cambio para miles de repuestos? No lo harás y no puedes. Su toma de decisiones de inventario se basará en decisiones reactivas, viscerales y generales que causan que los niveles de servicio se resientan y los costos de inventario se disparen.

    Entonces, ¿qué es exactamente una curva de compensación de repuestos?

    Es una predicción numérica basada en hechos que detalla cómo los cambios en los niveles de existencias influirán en el valor del inventario, los costos de mantenimiento y los niveles de servicio. Por cada cambio de unidad en el nivel de inventario hay un costo y un beneficio. La curva de compensación de repuestos identifica estos costos y beneficios a través de diferentes niveles de existencias. Permite a los planificadores descubrir el nivel de existencias que mejor equilibra los costes y los beneficios de cada artículo individual.

    Aquí hay dos ejemplos simplificados. En la Figura 1, la curva de compensación de repuestos muestra cómo cambia el nivel de servicio (probabilidad de no agotarse) según el nivel de pedido. Cuanto mayor sea el nivel de reorden, menor será el riesgo de falta de existencias. Es fundamental saber cuánto servicio está ganando dada la inversión en inventario. Aquí puede justificar que un aumento de inventario de un punto de pedido de 35 a 45 bien vale la pena la inversión de 10 unidades adicionales de stock porque los niveles de servicio saltan de poco menos de 70% a 90%, lo que reduce el riesgo de falta de existencias para la pieza de repuesto de 30% a 10%!

     

    Costo vs niveles de servicio para la planificación de inventario

    Figura 1: Costo versus nivel de servicio

     

    Tamaño del inventario frente a niveles de servicio para MRO

    Figura 2: Nivel de servicio frente al tamaño del inventario

    En este ejemplo (Figura 2), la curva de compensación expone un problema común con el inventario de repuestos. A menudo, los niveles de existencias son tan altos que generan rendimientos negativos. Después de una cierta cantidad de existencias, cada unidad adicional de existencias no compra más beneficios en forma de un mayor nivel de servicio. Las disminuciones de inventario pueden justificarse cuando está claro que el nivel de existencias ha superado con creces el punto de rendimientos decrecientes. Una curva de compensación precisa expondrá el punto en el que ya no es ventajoso agregar stock.

    Mediante el aprovechamiento #pronóstico probabilístico para impulsar la planificación de piezas, puede comunicar estas compensaciones con precisión, hacerlo a escala en cientos de miles de piezas, evitar malas decisiones de inventario y equilibrar los niveles de servicio y los costos. En Smart Software, nos especializamos en ayudar a los planificadores de repuestos, directores de administración de materiales y ejecutivos financieros que administran MRO, repuestos y repuestos para comprender y explotar estas relaciones.

     

    Soluciones de software para la planificación de repuestos

    El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

    Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

     

     

    Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

     

    Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

     

      Cómo seleccionar el método de pronóstico correcto con Epicor Smart IPO

      Smart Software se complace en presentar nuestra nueva serie de seminarios web educativos, ofrecidos exclusivamente para usuarios de Epicor. En este seminario web, Erik Subatis, ingeniero de soluciones empresariales de Smart Software, revelará los modelos estadísticos que utiliza Epicor Smart IP&O para pronosticar y cómo funciona el sistema automático de "mejor elección". Si bien el modelado automático es invaluable para el pronóstico a gran escala, en ocasiones, estos pronósticos no reflejan nuestras expectativas y/o conocimiento comercial. Comprender cómo y cuándo anular la selección del modelo puede ser una herramienta valiosa en la caja de herramientas de un pronosticador. Finalmente, la presentación concluirá mostrando cómo aumentar la rentabilidad con procesos de planificación de inventario mejorados por software en una demostración en vivo.

      Al asistir a este seminario web, aprenderá sobre los modelos estadísticos que utiliza Smart IP&O para pronosticar y cómo detectar las excepciones para que pueda aprovechar al máximo su herramienta de pronóstico.

      FORMULARIO DE REGISTRO AL SEMINARIO WEB

       

      Regístrese para asistir al seminario web. Si está interesado pero no puede asistir, regístrese de todos modos: grabaremos nuestra sesión y le enviaremos un enlace a la repetición.

      ¡Esperamos que pueda unirse a nosotros!

       

      SmartForecasts y Smart IP&O son marcas comerciales registradas de Smart Software, Inc. Todas las demás marcas comerciales son propiedad de sus respectivos dueños.


      Para obtener más información, comuníquese con Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
      Teléfono: 1-800-SMART-99 (800-762-7899); Correo electrónico: info@smartcorp.com

       

      Los objetivos de suministro diarios no funcionan al calcular las existencias de seguridad

      Los objetivos de suministro diarios no funcionan al calcular las existencias de seguridad

      Los CFO nos dicen que necesitan gastar menos en inventario y sin que afecte a las ventas. Una forma de hacerlo es dejar de usar los objetivos diarios de suministro para determinar los puntos de pedido y las reservas de existencias de seguridad. Así es como funciona un modelo de suministro diario:

      1. Calcule el promedioa de la demanda diaria y multiplique la demanda diaria por el tiempo de entrega del proveedor por días para obtener la demanda de tiempo de entrega
      2. Elija un búfer de suministro por días (es decir, 15, 30, 45 días, etc.). Use búferes más grandes para elementos más importantes y búferes más pequeños para elementos menos importantes.
      3. Agregue los días de reserva deseados del suministro a la demanda durante el tiempo de entrega para obtener el punto de reorden. Pida más cuando el inventario disponible esté por debajo del punto de reorden.

      Este enfoque es erroneo por las siguientes razones:

      1. El promedio no tiene en cuenta la estacionalidad ni la tendencia: no verá patrones obvios a menos que pase mucho tiempo ajustándolos manualmente.
      2. El promedio no tiene en cuenta cuán predecible es un artículo: tendrá un exceso de existencias de artículos predecibles y una escasez de artículos menos predecibles. Esto se debe a que los mismos días de suministro para diferentes artículos generan un riesgo de agotamiento de existencias muy diferente.
      3. El promedio no le dice a un planificador cómo el nivel de inventario afecta el riesgo de falta de existencias: no tendrá idea de si tiene existencias insuficientes, excesivas o si tiene suficiente.

      Hay muchos otros enfoques de "regla general" que son igualmente problemáticos. Puedes aprender más sobre ellos en este blog

      Una mejor manera de planificar la cantidad correcta del inventario de seguridad es aprovechar los modelos de probabilidad que identifican exactamente cuánto inventario se necesita contando el riesgo de desabastecimiento que está dispuesto a aceptar. A continuación se muestra una captura de pantalla de Smart Inventory Optimization que hace exactamente eso. En primer lugar, detalla los niveles de servicio previstos (probabilidad de no agotarse) asociados con la lógica de suministro de los días actuales. El planificador ahora puede ver las partes en las que el nivel de servicio previsto es demasiado bajo o demasiado costoso. Luego pueden hacer correcciones inmediatas enfocándose en los niveles de servicio deseados y el nivel de inversión en inventario. Sin esta información, un planificador no sabrá si los días previstos de existencias de seguridad son demasiado, demasiado poco o simplemente correctos, lo que resulta en excesos y escasez que cuestan participación de mercado e ingresos. 

      Informática de existencias de seguridad 2

       

      Smart Software para dirigir un seminario web como parte del Programa de socios de soluciones WERC

      Belmont, MA, – Smart Software, Inc., proveedor de soluciones de optimización de inventario, planificación y pronóstico de la demanda líderes en la industria, anunció hoy que Greg Hartunian, presidente y director ejecutivo de Smart Software, dirigirá un seminario web de 30 minutos como parte del Programa de socios de soluciones WERC 

      La presentación se centrará en cómo una compañía eléctrica líder implementó la planificación y optimización de inventario inteligente (Smart IP&O) como parte de la iniciativa de optimización estratégica de la cadena de suministro (SCO) de la empresa. Smart IP&O se implementó en solo 90 días, lo que permitió a la empresa de servicios públicos optimizar sus puntos de pedido y las cantidades de pedido de más de 250 000 piezas de repuesto. Durante la primera fase de la implementación, la plataforma ayudó a la empresa de servicios eléctricos a reducir el inventario en $9,000,000 mientras mantenía los niveles de servicio.

      Finalmente, el seminario web concluirá mostrando Smart IP&O en una demostración en vivo.

       

      Consejo de Investigación y Educación sobre Almacenamiento (WERC)

      WERC es una organización profesional centrada en la gestión logística y su papel en la cadena de suministro. Desde su fundación en 1977, WERC ha mantenido una visión estratégica para ofrecer continuamente recursos que ayuden a los proveedores y profesionales de la distribución a mantenerse en la cima en nuestro campo dinámico y variable. En un mundo cada vez más complejo, los profesionales de la logística de distribución le dan sentido a las cosas para que las personas obtengan sus productos y servicios, las empresas cumplan con sus compromisos, las economías crezcan y las comunidades prosperen.

      WERC impulsa a los profesionales de la logística de distribución a hacer su trabajo, sobresalir en sus carreras y marcar una diferencia en el mundo. WERC ayuda a sus miembros y empresas a tener éxito mediante la creación de experiencias de aprendizaje incomparables, ofreciendo oportunidades de creación de redes de calidad y accediendo a información de la industria impulsada por la investigación.

       

      Acerca de Smart Software, Inc.
      Fundada en 1981, Smart Software, Inc. es líder en proporcionar a las empresas soluciones de optimización de inventario, planificación y previsión de la demanda en toda la empresa. Las soluciones de optimización de inventario y pronóstico de la demanda de Smart Software han ayudado a miles de usuarios en todo el mundo, incluidos clientes de empresas medianas y compañías Fortune 500, como Otis Elevator, Mitsubishi, Siemens, Disney, FedEx, MARS y The Home Depot. Smart Inventory Planning & Optimization brinda a los planificadores de la demanda las herramientas para manejar la estacionalidad de las ventas, las promociones, los productos nuevos y antiguos, las jerarquías multidimensionales y las piezas de servicio y los bienes de capital demandados de manera intermitente. También proporciona a los gerentes de inventario estimaciones precisas del inventario óptimo y el stock de seguridad requerido para cumplir con los pedidos futuros y lograr los niveles de servicio deseados. Smart Software tiene su sede en Belmont,

       


      Para obtener más información, comuníquese con Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
      Teléfono: 1-800-SMART-99 (800-762-7899); FAX: 1-617-489-2748; Correo electrónico: info@smartcorp.com