Gestión del inventario de repuestos: mejores prácticas

La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y de la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Una gestión eficiente del inventario de repuestos El sistema ayuda a prevenir desabastecimientos que pueden provocar tiempos de inactividad operativos y demoras costosas, al tiempo que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costos de mantenimiento.

En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, enfatizando la importancia de optimizar los niveles de existencias y mantener niveles de servicioy utilizar herramientas inteligentes para ayudar en la toma de decisiones.

En muchas industrias, especialmente en el sector manufacturero, de transporte, de servicios públicos y cualquier sector que dependa de maquinaria compleja, las piezas de repuesto son la columna vertebral de las operaciones de mantenimiento. Una gestión ineficaz puede dar lugar a pérdidas significativas. falta del tiempo Cuando no hay piezas críticas disponibles, se producen interrupciones en la producción, interrupciones del servicio e insatisfacción del cliente. Por otro lado, el exceso de existencias de artículos que no se pueden utilizar con prontitud inmoviliza el capital de explotación, aumenta los costes de almacenamiento y puede provocar obsolescencia.

Dado que muchas piezas de repuesto tienen una demanda intermitente e impredecible, es esencial contar con una estrategia clara y proactiva para gestionarlas. Una gestión eficaz del inventario de piezas de repuesto garantiza la eficiencia operativa, el ahorro de costes y la fiabilidad, lo que puede proporcionar una ventaja competitiva en el mercado.

 

Estrategias clave para gestionar el inventario de repuestos

1. Previsión de la demanda intermitente. Repuestos a menudo exhiben patrones de demanda irregulares Se caracteriza por largos períodos de demanda cero, interrumpidos por picos repentinos cuando se producen fallas en los equipos. Los métodos de pronóstico tradicionales, que se basan en tendencias de datos históricos consistentes, pueden no predecir con precisión un uso tan errático, lo que puede provocar un exceso de existencias o una falta de existencias.

Utilizando herramientas de previsión especializadas como IP&O inteligentes Los algoritmos patentados de previsión de demanda intermitente pueden proporcionar predicciones más precisas. Estos modelos avanzados analizan datos históricos de uso, tasas de fallas de equipos y programas de mantenimiento para ajustarse a la variabilidad de la demanda. Al incorporar de pronóstico probabilístico , aprendizaje automático y técnicas de inteligencia artificial, ahora podemos evitar tanto la escasez que podría detener las operaciones como el exceso de inventario que consume recursos innecesariamente.

2. Establecer niveles óptimos de stock de seguridad. El stock de seguridad es esencial para mitigar el riesgo de falta de existencias, especialmente en el caso de repuestos críticos. El stock de seguridad debe tener en cuenta la variabilidad del tiempo de entrega, las fluctuaciones de la demanda y la criticidad de la pieza. El uso de sistemas que calculen los niveles óptimos de stock de seguridad en función de estos factores garantiza que sus piezas estén disponibles cuando las necesite sin un exceso de stock. exceso de existencias. Las configuraciones de stock de seguridad deben revisarse periódicamente como parte de un proceso continuo de optimización del inventario.

3. Uso de políticas de inventario mínimo/máximo. Un enfoque común para el inventario de repuestos es el uso de políticas de mínimo/máximo, donde el inventario se repone hasta un nivel máximo una vez que cae por debajo de un umbral mínimo. Este sistema permite flexibilidad y garantiza que los niveles de existencias se mantengan sin necesidad de un control constante. Ajustar estos parámetros en función de los objetivos de nivel de servicio puede garantizar que no tenga un exceso de inventario y, al mismo tiempo, satisfaga la demanda.

4. Optimización del inventario implica equilibrar los costos de almacenamiento, los costos de desabastecimiento y los niveles de servicio deseados para lograr la estrategia de gestión de inventario más rentable. Soluciones de software como IP&O inteligente Puede simular varios escenarios de demanda y oferta y calcular las políticas de inventario óptimas.

Al aprovechar algoritmos avanzados de IA y análisis de datos, IP&O inteligente Ayuda a las organizaciones a determinar los niveles de inventario adecuados para cada repuesto, teniendo en cuenta factores como la variabilidad de la demanda, los plazos de entrega y las limitaciones de costos. Esto garantiza que se mantenga el equilibrio adecuado entre tener un inventario suficiente para satisfacer la demanda y minimizar los costos asociados con exceso de existenciasAdemás, las herramientas de optimización permiten realizar ajustes continuos basados en datos en tiempo real y patrones de demanda cambiantes, lo que permite a las organizaciones responder de manera proactiva a los cambios del mercado o de la cadena de suministro.

5. Revisión periódica de los plazos de entrega de los proveedores El desempeño de los proveedores y los plazos de entrega pueden afectar significativamente su estrategia de repuestos. Los retrasos en las entregas pueden provocar desabastecimiento si no se tienen en cuenta en la planificación. El control de los plazos de entrega reales en comparación con el desempeño esperado ayuda a ajustar los puntos de reorden y los niveles de stock de seguridad en consecuencia. Sistemas como IP&O inteligente Proporcionar informes detallados sobre el desempeño de los proveedores, incluida la variabilidad del tiempo de entrega, las tasas de entrega a tiempo y las métricas de calidad. Con acceso a esta información, puede identificar riesgos potenciales en su cadena de suministro y tomar medidas proactivas, como buscar proveedores alternativos o ajustar las políticas de inventario, para mitigar el impacto de la falta de confiabilidad de los proveedores.

6. Gestión de la obsolescencia. Las piezas de repuesto suelen quedar obsoletas cuando se actualiza o se elimina un equipo. Mantener un inventario obsoleto inmoviliza el capital y ocupa un valioso espacio en el almacén. Revisar periódicamente el inventario para detectar artículos que estén a punto de quedar obsoletos puede evitar el exceso de existencias. Los métodos como el uso de cálculos de stock de ciclo y de stock de seguridad basados ​​en la demanda pueden ayudar a mitigar los riesgos de mantener un inventario obsoleto.

7. Automatización de procesos de inventarioLa automatización en la gestión de inventario puede reducir significativamente los errores manuales, aumentar la eficiencia y garantizar la reposición oportuna de piezas de repuesto. Herramientas como IP&O inteligente automatizar muchas tareas de previsión, optimización y reposición que de otro modo requerirían mucha mano de obra y serían propensas a errores humanos.

Al integrar estas herramientas con las existentes  Sistemas ERPLas organizaciones pueden lograr actualizaciones y ajustes sin inconvenientes en función de los datos más recientes sobre la demanda y la oferta. La automatización permite una visibilidad en tiempo real de los niveles de inventario, las tendencias de la demanda y las interrupciones de la cadena de suministro, lo que permite una toma de decisiones más rápida y una mejor capacidad de respuesta a los cambios. Además, la automatización libera al personal para que se concentre en tareas estratégicas en lugar de en la entrada de datos y los cálculos rutinarios.

La gestión eficaz del inventario de repuestos garantiza la continuidad operativa y evita costes innecesarios. Al aprovechar herramientas avanzadas de previsión, establecer niveles óptimos de stock de seguridad y utilizar estrategias inteligentes de optimización del inventario, las empresas pueden minimizar las faltantes de stock, reducir los costes de mantenimiento y mejorar los niveles generales de servicio. La mejora continua y la integración de la tecnología en el proceso de gestión del inventario proporcionan importantes beneficios a largo plazo para cualquier organización que dependa de repuestos. La adopción de estas mejores prácticas no solo contribuye a la eficiencia operativa, sino que también respalda objetivos estratégicos como la reducción de costes, la satisfacción del cliente y la ventaja competitiva. 

Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

 

Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

 

    7 tendencias clave en planificación de la demanda que están dando forma al futuro

    La planificación de la demanda va más allá de la simple previsión de las necesidades de productos; se trata de garantizar que su empresa satisfaga las demandas de los clientes con precisión, eficiencia y rentabilidad. La última tecnología de planificación de la demanda aborda desafíos clave como la precisión de las previsiones, la gestión de inventarios y la capacidad de respuesta al mercado. En este blog, presentaremos tendencias críticas de planificación de la demanda, que incluyen información basada en datos, previsión probabilística, planificación por consenso, análisis predictivo, modelado de escenarios, visibilidad en tiempo real y previsión multinivel. Estas tendencias le ayudarán a mantenerse a la vanguardia, optimizar su cadena de suministro, reducir costes y mejorar la satisfacción del cliente, posicionando a su empresa para el éxito a largo plazo.

    Perspectivas basadas en datos

    La analítica avanzada, el aprendizaje automático y la inteligencia artificial (IA) se están convirtiendo en elementos fundamentales de la planificación de la demanda. Tecnologías como Smart UP&O permiten a las empresas analizar conjuntos de datos complejos, identificar patrones y realizar predicciones más precisas. Este cambio hacia información basada en datos ayuda a las empresas a responder rápidamente a los cambios del mercado, lo que minimiza los desabastecimientos y reduce el exceso de inventario.

    Predicción Probabilística

    La previsión probabilística se centra en predecir una variedad de resultados posibles en lugar de una sola cifra. Esta tendencia es particularmente importante para gestionar la incertidumbre y el riesgo en la planificación de la demanda. Ayuda a las empresas a prepararse para diversos escenarios de demanda, mejorando la gestión del inventario y reduciendo la probabilidad de desabastecimiento o exceso de existencias.

    Pronóstico por consenso

    La fabricación moderna está avanzando hacia un enfoque integrado en el que los departamentos y las partes interesadas colaboran más estrechamente. La previsión colaborativa implica compartir información a lo largo de la cadena de suministro, desde los proveedores hasta los distribuidores y los equipos internos. Este enfoque elimina los silos y garantiza que todos trabajen hacia un objetivo común, lo que conduce a una cadena de suministro más sincronizada y eficiente.

    Análisis predictivo y prescriptivo

    El análisis predictivo pronostica resultados futuros en función de datos históricos y tendencias, lo que ayuda a las empresas a anticipar las fluctuaciones de la demanda. Por ejemplo, Smart Demand Planner (SDP) automatiza la previsión para ajustar los niveles de inventario y producción en consecuencia.

    El análisis prescriptivo va más allá y ofrece recomendaciones prácticas. Por ejemplo, Smart Inventory Planning and Optimization (IP&O) prescribe políticas de inventario óptimas en función de los niveles de servicio, los costos y los riesgos. En conjunto, estas herramientas permiten tomar decisiones proactivas, lo que permite a las empresas predecir y optimizar sus respuestas a los desafíos futuros.

    Modelado de escenarios

    El modelado de escenarios se está convirtiendo en una parte clave de la planificación de la demanda, ya que permite a las empresas simular diferentes escenarios y evaluar su impacto en las operaciones. Este método ayuda a las empresas a crear estrategias adaptables para gestionar las incertidumbres de manera eficaz. Smart IP&O mejora esta capacidad al ofrecer ¿Qué pasaría si…? Escenarios que permiten a los usuarios probar diferentes políticas de inventario antes de implementarlas. Al ajustar variables como los niveles de servicio o las cantidades de pedidos, las empresas pueden visualizar los efectos en los costos y los niveles de servicio, lo que les permite seleccionar la estrategia óptima para minimizar los riesgos y controlar los costos.

    Visibilidad en tiempo real

    A medida que las cadenas de suministro se vuelven más globales e interconectadas, la visibilidad en tiempo real de los inventarios y las actividades de la cadena de suministro es crucial. Una mejor colaboración con proveedores y distribuidores, combinada con datos en tiempo real, permite a las empresas tomar decisiones más rápidas e informadas. Esto ayuda a optimizar los niveles de inventario, reducir los plazos de entrega y mejorar la resiliencia general de la cadena de suministro.

    Pronóstico multinivel

    Esto implica realizar previsiones en diferentes niveles de la jerarquía de productos, como artículos individuales, familias de productos o incluso líneas de productos completas. La previsión multinivel es vital para las empresas con carteras de productos complejas, ya que garantiza que las previsiones sean precisas tanto a nivel micro como macro.

     

    La planificación de la demanda es un aspecto decisivo de la gestión moderna de la cadena de suministro, que ofrece a las empresas la capacidad de mejorar la eficiencia operativa, reducir los costes y satisfacer mejor las demandas de los clientes. El uso de plataformas avanzadas como Smart IP&O mejora significativamente la precisión de las previsiones y la gestión del inventario, lo que permite responder con rapidez a las fluctuaciones del mercado. Las previsiones estadísticas automatizadas, combinadas con funciones como la previsión jerárquica y las anulaciones de previsiones, garantizan que las previsiones sean precisas y adaptables, lo que conduce a decisiones de planificación más realistas. Además, con herramientas como el modelado de escenarios, las empresas pueden explorar varios escenarios de demanda en toda su jerarquía de productos, lo que facilita la toma de decisiones informada al proporcionar información sobre los posibles resultados y riesgos. Este enfoque permite a las empresas anticipar el impacto de los cambios de políticas, tomar mejores decisiones y, en última instancia, optimizar su inventario y la gestión general de la cadena de suministro, manteniéndose a la vanguardia de las tendencias clave en el proceso.

     

     

     

    Innovando en el mercado de repuestos OEM con optimización de inventario impulsada por IA

    El sector de posventa ofrece a los fabricantes de equipos originales una ventaja decisiva al ofrecer un flujo de ingresos constante y fomentar la lealtad del cliente mediante la entrega confiable y oportuna de piezas de repuesto. Sin embargo, la gestión del inventario y la previsión de la demanda en el mercado de posventa está plagada de desafíos, incluidos patrones de demanda impredecibles, amplias gamas de productos y la necesidad de entregas rápidas. Los métodos tradicionales a menudo no son suficientes debido a la complejidad y variabilidad de la demanda en el mercado de posventa. Las últimas tecnologías pueden analizar grandes conjuntos de datos para predecir la demanda futura con mayor precisión y optimizar los niveles de inventario, lo que conduce a un mejor servicio y menores costos.

    Este blog explora cómo las últimas tecnologías impulsadas por IA pueden transformar el mercado de repuestos OEM mediante el análisis de grandes conjuntos de datos para predecir la demanda futura con mayor precisión, optimizar los niveles de inventario, mejorar la precisión de los pronósticos y mejorar la satisfacción del cliente, lo que en última instancia conduce a un mejor servicio y menores costos.

     

    Mejora de la precisión de los pronósticos con IA  

    Utilizando tecnología de última generación, las organizaciones pueden mejorar significativamente la precisión de los pronósticos analizando datos históricos, reconociendo patrones y prediciendo la demanda futura. Nuestra última tecnología de optimización y planificación de inventario (IP&O) utiliza inteligencia artificial para proporcionar información en tiempo real y automatizar los procesos de toma de decisiones. Emplea técnicas de pronóstico adaptativo para garantizar que los pronósticos sigan siendo relevantes a medida que cambian las condiciones del mercado. El sistema integra algoritmos avanzados para gestionar datos intermitentes y realizar modificaciones en tiempo real mientras maneja cálculos complejos y considera factores como plazos de entrega, errores de pronóstico, estacionalidad y tendencias del mercado. Al aprovechar mejores entradas de datos y análisis avanzados, las empresas pueden reducir significativamente los errores de pronóstico y minimizar los costos asociados con el exceso de existencias y el desabastecimiento. Nuestra plataforma IP&O está diseñada para manejar las complejidades y desafíos exclusivos de la gestión de repuestos, como la demanda intermitente y una gran variedad de repuestos.

    Módulo de Reparación y Devolución: La plataforma simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el actual conjunto de repuestos rotativos. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si esperar a que se completen las reparaciones y vuelvan a estar en servicio o comprar repuestos de servicio adicionales a los proveedores, evitando compras y gastos innecesarios. tiempo de inactividad del equipo.

     Previsión de demanda intermitente: La tecnología patentada de pronóstico de demanda intermitente de IP&O proporciona pronósticos altamente precisos para artículos con patrones de demanda esporádicos típicos del mercado de repuestos. Esta capacidad es crucial para optimizar los niveles de inventario y garantizar que las piezas críticas estén disponibles cuando sea necesario sin exceso de existencias.

    Optimización de inventario en tiempo real: Nuestra tecnología ajusta dinámicamente las políticas de inventario para alinearse con los patrones cambiantes de la demanda y las condiciones del mercado. Calcula los puntos de reorden óptimos y las cantidades de pedidos, equilibrando los niveles de servicio con los costos de inventario. Esto garantiza que los OEM puedan mantener altos niveles de servicio y al mismo tiempo minimizar el exceso de inventario y los costos de mantenimiento relacionados.

    Planificación de escenarios y análisis hipotético: IP&O permite a los usuarios crear múltiples escenarios de inventario para evaluar el impacto de diferentes políticas de inventario en los niveles y costos de servicio. Esta capacidad ayuda a los OEM a tomar decisiones informadas sobre estrategias de almacenamiento y responder de manera proactiva a los cambios del mercado o las interrupciones de la cadena de suministro.

    Integración perfecta de ERP: La plataforma ofrece una integración perfecta con los principales sistemas ERP, como Epicor y NetSuite, lo que permite la sincronización automática de pronósticos y datos de inventario. Esta integración facilita la ejecución eficiente de órdenes de reabastecimiento y garantiza que los niveles de inventario estén continuamente alineados con los últimos pronósticos de demanda.

    Precisión de pronóstico e informes:  Nuestro sistema avanzado proporciona informes detallados y paneles de control que rastrean la precisión de los pronósticos, el rendimiento del inventario y la confiabilidad de los proveedores. Al analizar estas métricas, los OEM pueden perfeccionar continuamente sus modelos de pronóstico y mejorar el desempeño general de la cadena de suministro.

     

    Los ejemplos del mundo real ilustran el impacto sustancial de la previsión y la optimización del inventario impulsadas por la IA en el mercado de repuestos OEM. Prevost Parts, una división de un fabricante canadiense líder de autobuses interurbanos y carrocerías de autocares, utilizó IP&O para abordar la demanda intermitente de más de 25.000 piezas activas. Al integrar pronósticos de ventas precisos y requisitos de existencias de seguridad en su sistema ERP, respaldados por inteligencia artificial y ajustes de aprendizaje automático en tiempo real, redujeron los pedidos pendientes en 65%, perdieron ventas en 59% y aumentaron las tasas de cumplimiento de 93% a 96% en solo tres meses. Esta transformación mejoró significativamente su asignación de inventario, reduciendo los costos de transporte e inventario.

     

    La incorporación de IA y ML en los procesos de IP&O no es solo una actualización tecnológica sino un movimiento estratégico que puede transformar el mercado de repuestos OEM. La tecnología IP&O garantiza una mejor calidad del servicio y la satisfacción del cliente al mejorar la precisión de los pronósticos, optimizar los niveles de inventario y reducir los costos. A medida que el sector del mercado de repuestos siga creciendo y evolucionando, adoptar la IA será clave para seguir siendo competitivo y satisfacer las expectativas de los clientes de manera eficiente.

     

     

    Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

     

    Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

     

      Haga de la optimización de inventario impulsada por IA un aliado para su organización
      En este blog, exploraremos cómo las organizaciones pueden lograr una eficiencia y precisión excepcionales con la optimización del inventario impulsada por la IA. Los métodos tradicionales de gestión de inventario a menudo resultan insuficientes debido a su naturaleza reactiva y su dependencia de procesos manuales. Mantener niveles óptimos de inventario es fundamental para satisfacer la demanda de los clientes y minimizar los costos. La introducción de la optimización del inventario impulsada por la IA puede reducir significativamente la carga de los procesos manuales, brindando alivio a los gerentes de la cadena de suministro de tareas tediosas. Con la IA, podemos predecir la demanda con mayor precisión, reducir el exceso de existencias, evitar desabastecimientos y, en última instancia, mejorar los resultados de nuestra organización. Exploremos cómo este enfoque no solo aumenta las ventas y la eficiencia operativa, sino que también eleva la satisfacción del cliente al garantizar que los productos estén siempre disponibles cuando sea necesario.

       

      Información para mejorar la toma de decisiones en la gestión de inventarios

      1. Precisión de pronóstico mejorada Los algoritmos avanzados de aprendizaje automático analizan datos históricos para identificar patrones que los humanos podrían pasar por alto. Técnicas como la agrupación, la detección de cambios de régimen, la detección de anomalías y el análisis de regresión proporcionan información profunda sobre los datos. Medir el error de pronóstico es esencial para perfeccionar los modelos de pronóstico; por ejemplo, técnicas como el error absoluto medio (MAE) y el error cuadrático medio (RMSE) ayudan a cuantificar la precisión de los pronósticos. Las empresas pueden mejorar la precisión monitoreando y ajustando continuamente los pronósticos en función de estas métricas de error. como el Planificador de demanda en un minorista de hardware declarado, "Con las mejoras en nuestros pronósticos y planificación de inventario que permitió Smart Software, hemos podido reducir el stock de seguridad en 20% y al mismo tiempo reducir los desabastecimientos en 35%".
      1. Análisis de datos en tiempo real Los sistemas de última generación pueden procesar grandes cantidades de datos en tiempo real, lo que permite a las empresas ajustar sus niveles de inventario de forma dinámica en función de las tendencias actuales de la demanda y las condiciones del mercado. Los algoritmos de detección de anomalías pueden identificar y corregir automáticamente picos o caídas repentinas en la demanda, garantizando que los pronósticos sigan siendo precisos. Una historia de éxito notable proviene de Smart IP&O, que permitió a una empresa reducir el inventario en 20% mientras mantenía los niveles de servicio mediante el análisis continuo de datos en tiempo real y el ajuste de los pronósticos en consecuencia. Destacado Gerente de Materiales de FedEx Tech, "Cualquiera que sea la solicitud, debemos cumplir con nuestro compromiso de servicio al día siguiente: Smart nos permite ajustar el riesgo de nuestro inventario para asegurarnos de que tenemos los productos y piezas disponibles para lograr los niveles de servicio que nuestros clientes requieren".
      1. Mejora de la eficiencia de la cadena de suministro Las plataformas tecnológicas inteligentes pueden optimizar toda la cadena de suministro, desde la adquisición hasta la distribución, prediciendo los plazos de entrega y optimizando las cantidades de los pedidos. Esto reduce el riesgo de exceso y falta de existencias. Por ejemplo, al utilizar la gestión de inventario basada en pronósticos, Smart Software ayudó a un fabricante a optimizar su cadena de suministro, reduciendo los tiempos de entrega en 15% y mejorando la eficiencia general. El vicepresidente de operaciones de Procon Pump declaró: "Una de las cosas que me gusta de esta nueva herramienta... es que puedo evaluar las consecuencias de las decisiones sobre el almacenamiento del inventario antes de implementarlas".
      1. Toma de decisiones mejorada La IA proporciona información y recomendaciones prácticas, lo que permite a los gerentes tomar decisiones informadas. Esto incluye identificar artículos de baja rotación, pronosticar la demanda futura y optimizar los niveles de existencias. El análisis de regresión, por ejemplo, puede relacionar las ventas con variables externas como la estacionalidad o indicadores económicos, proporcionando una comprensión más profunda de los impulsores de la demanda. Uno de los clientes de Smart Software informó una mejora significativa en los procesos de toma de decisiones, lo que resultó en un aumento de 30% en los niveles de servicio y al mismo tiempo redujo el exceso de inventario en 15%. "Smart IP&O nos permitió modelar la demanda en cada ubicación de almacenamiento y, utilizando una planificación basada en el nivel de servicio, determinar cuánto almacenar para lograr el nivel de servicio que requerimos", señaló el Responsable de Compras en Empresas Seneca.
      1. Reducción de costo Al optimizar los niveles de inventario, las empresas pueden reducir los costos de mantenimiento y minimizar las pérdidas por productos obsoletos o caducados. Los sistemas impulsados por IA también reducen la necesidad de realizar comprobaciones manuales de inventario, lo que ahorra tiempo y costes laborales. Un estudio de caso reciente muestra cómo se logró la implementación de la planificación y optimización del inventario (IP&O) dentro de los 90 días posteriores al inicio del proyecto. Durante los seis meses siguientes, IP&O permitió ajustar los parámetros de almacenamiento de varios miles de artículos, lo que resultó en reducciones de inventario de $9,0 millones y al mismo tiempo mantuvo los niveles de servicio objetivo.

       

      Al aprovechar algoritmos avanzados y análisis de datos en tiempo real, las empresas pueden mantener niveles óptimos de inventario y mejorar el rendimiento general de su cadena de suministro. La planificación y optimización del inventario (IP&O) es una herramienta poderosa que puede ayudar a su organización a alcanzar estos objetivos. La incorporación de optimización de inventario de última generación en su organización puede generar mejoras significativas en la eficiencia, la reducción de costos y la satisfacción del cliente.

       

       

      Cómo afrontar un pronóstico de demanda

      Para algunos de nuestros clientes, el clima tiene una influencia significativa en la demanda. Los fenómenos meteorológicos extremos de corto plazo, como incendios, sequías, olas de calor, etc., pueden tener una influencia significativa en el corto plazo sobre la demanda.

      Hay dos formas de incluir el clima en un pronóstico de demanda: indirecta y directamente. La ruta indirecta es más fácil utilizando el enfoque basado en escenarios de Planificador de la demanda. El enfoque directo requiere un proyecto especial personalizado que requiere datos adicionales y modelos hechos a mano.

      Contabilidad indirecta del tiempo

      El modelo estándar integrado Planificador de la demanda (SDP) se adapta a los efectos climáticos de cuatro maneras:

      1. Si el mundo se está calentando, enfriando, secando o humedeciendo constantemente de maneras que impactan sus ventas, SDP detecta estas tendencias automáticamente y las incorpora a los escenarios de demanda que genera.
      2. Si tu negocio tiene un ritmo regular en el que ciertos días de la semana o ciertos meses del año tienen consistentemente una demanda mayor o menor que el promedio, SDP también detecta automáticamente esta estacionalidad y la incorpora a sus escenarios de demanda.
      3. A menudo es la aleatoriedad del clima lo que interfiere con la precisión del pronóstico. A menudo nos referimos a este efecto como "ruido". El ruido es un término general que incorpora todo tipo de problemas aleatorios. Además del clima, un estallido geopolítico, la quiebra sorpresa de un banco regional o el atascamiento de un barco en el Canal de Suez pueden agregar sorpresas a la demanda de productos, y lo han hecho. SDP evalúa la volatilidad de la demanda y la reproduce en sus escenarios de demanda.
      4. Anulaciones de gestión. La mayoría de las veces, los clientes permiten que SDP genere automáticamente decenas de miles de escenarios de demanda. Pero si los usuarios sienten la necesidad de modificar pronósticos específicos utilizando su conocimiento interno, SDP puede hacerlo mediante anulaciones de la administración.

      Contabilidad directa del clima

      A veces, un usuario podrá articular su experiencia en la materia vinculando factores externos a su empresa (como tasas de interés, costos de materias primas o tendencias tecnológicas) con sus propias ventas agregadas. En estas situaciones, Smart Software puede organizar proyectos especiales únicos que proporcionen modelos alternativos ("causales") para complementar nuestros modelos de pronóstico estadístico estándar. Póngase en contacto con su representante de Smart Software para analizar un posible proyecto de modelado causal.

      Mientras tanto, no olvides tu paraguas.