Principales diferencias entre la planificación de inventario para productos terminados y para MRO y repuestos

¿En qué se diferencia la planificación de inventario para mantenimiento, reparación y operaciones (MRO) en comparación con la planificación de inventario en entornos de fabricación y distribución? En resumen, es la naturaleza de los patrones de demanda combinada con la falta de conocimiento empresarial procesable.

Patrones de demanda

Los fabricantes y distribuidores tienden a centrarse en los mejores vendedores que generan la mayor parte de sus ingresos. Estos artículos suelen tener una demanda alta que es relativamente fácil de pronosticar con modelos tradicionales de series de tiempo que aprovechan tendencias y/o estacionales predecibles. Por el contrario, los planificadores de MRO casi siempre se ocupan de una demanda intermitente, que es más escasa, más aleatoria y más difícil de pronosticar. Además, las cantidades fundamentales de interés son diferentes. En última instancia, a los planificadores de MRO les importa más la pregunta “cuándo”: ¿Cuándo se romperá algo? Mientras que los demás se centran en la cuestión de “cuántas” unidades vendidas.

 

Conocimiento del negocio

Los planificadores de fabricación y distribución a menudo pueden contar con la recopilación de comentarios de los clientes y de ventas, que pueden combinarse con métodos estadísticos para mejorar la precisión de los pronósticos. Por otro lado, los rodamientos, engranajes, consumibles y piezas reparables rara vez están dispuestos a compartir sus opiniones. Con MRO, el conocimiento empresarial sobre qué piezas se necesitarán y cuándo simplemente no es confiable (excepto el mantenimiento planificado cuando se reemplazan piezas consumibles de mayor volumen). Por lo tanto, el éxito de la planificación de inventarios MRO llega sólo hasta donde los lleve la capacidad de sus modelos de probabilidad para predecir el uso futuro. Y como la demanda es tan intermitente, no pueden superar Go con los enfoques tradicionales.

 

Métodos para MRO

En la práctica, es común que las empresas de MRO y con uso intensivo de activos administren inventarios recurriendo a niveles mínimos y máximos estáticos basados en múltiplos subjetivos del uso promedio, complementados con anulaciones manuales ocasionales basadas en intuiciones. El proceso se convierte en una mala mezcla de estático y reactivo, con el resultado de que se pierde mucho tiempo y dinero en acelerarlo.

Existen métodos de planificación alternativos basados más en matemáticas y datos, aunque este estilo de planificación es menos común en MRO que en otros dominios. Hay dos enfoques principales para modelar averías de piezas y máquinas: modelos basados en la teoría de la confiabilidad y modelos de “mantenimiento basado en la condición” basados en monitoreo en tiempo real.

 

Modelos de confiabilidad

Los modelos de confiabilidad son los más simples de los dos y requieren menos datos. Suponen que todos los artículos del mismo tipo, digamos una determinada pieza de repuesto, son estadísticamente equivalentes. Su componente clave es una "función de riesgo", que describe el riesgo de fallo en el siguiente breve intervalo de tiempo. La función de riesgo se puede traducir en algo más adecuado para la toma de decisiones: la “función de supervivencia”, que es la probabilidad de que el artículo siga funcionando después de X cantidad de uso (donde X podría expresarse en días, meses, millas, usos, etc.). La Figura 1 muestra una función de riesgo constante y su correspondiente función de supervivencia.

 

Función MRO y Repuestos y su función de supervivencia.

Figura 1: Función de riesgo constante y su función de supervivencia

 

Una función de riesgo que no cambia implica que sólo los accidentes aleatorios provocarán una falla. Por el contrario, una función de riesgo que aumenta con el tiempo implica que el artículo se está desgastando. Y una función de riesgo decreciente implica que un elemento se está asentando. La Figura 2 muestra una función de riesgo creciente y su correspondiente función de supervivencia.

 

MRO y repuestos Aumento de la función de riesgo y de supervivencia

Figura 2: Función de riesgo creciente y su función de supervivencia

 

Los modelos de confiabilidad se utilizan a menudo para piezas económicas, como sujetadores mecánicos, cuyo reemplazo puede no ser ni difícil ni costoso (pero aún así puede ser esencial).

 

Mantenimiento bajo condiciones

Los modelos basados en monitoreo en tiempo real se utilizan para respaldar el mantenimiento basado en la condición (CBM) de artículos costosos como los motores a reacción. Estos modelos utilizan datos de sensores integrados en los propios elementos. Estos datos suelen ser complejos y propietarios, al igual que los modelos de probabilidad respaldados por los datos. La ventaja del monitoreo en tiempo real es que se pueden ver los problemas que se avecinan, es decir, el deterioro se hace visible y los pronósticos pueden predecir cuándo el elemento alcanzará su línea roja y, por lo tanto, deberá retirarse del campo de juego. Esto permite un mantenimiento o reemplazo individualizado y proactivo del artículo.

La Figura 3 ilustra el tipo de datos utilizados en CBM. Cada vez que se utiliza el sistema, se contribuye a su desgaste acumulativo. (Sin embargo, tenga en cuenta que a veces el uso puede mejorar el estado de la unidad, como cuando llueve ayuda a mantener fresca una pieza de maquinaria). Puede ver la tendencia general ascendente hacia una línea roja después de la cual la unidad requerirá mantenimiento. Puede extrapolar el desgaste acumulado para estimar cuándo llegará a la línea roja y planificar en consecuencia.

 

Monitoreo en tiempo real de MRO y repuestos para mantenimiento basado en condiciones

Figura 3: Ilustración del monitoreo en tiempo real para el mantenimiento basado en condiciones

 

Que yo sepa, nadie fabrica tales modelos de sus clientes de productos terminados para predecir cuándo y cuánto ordenarán su próximo pedido, tal vez porque los clientes se opondrían a usar monitores cerebrales todo el tiempo. Pero CBM, con su complejo monitoreo y modelado, está ganando popularidad para sistemas que no pueden fallar, como los motores a reacción. Mientras tanto, los modelos clásicos de confiabilidad todavía tienen mucho valor para gestionar grandes flotas de artículos más baratos pero aún esenciales.

 

El enfoque inteligente
Los enfoques de confiabilidad y mantenimiento basados en condiciones anteriores requieren una carga excesiva de recopilación y limpieza de datos que muchas empresas de MRO no pueden manejar. Para esas empresas, Smart ofrece un enfoque que no requiere el desarrollo de modelos de confiabilidad. En cambio, explota los datos de uso de una manera diferente. Aprovecha los modelos basados en probabilidad tanto de uso como de tiempos de entrega de proveedores para simular miles de escenarios posibles para tiempos de entrega de reabastecimiento y demanda. El resultado es una distribución precisa de la demanda y los plazos de entrega para cada pieza consumible que se puede aprovechar para determinar los parámetros óptimos de almacenamiento. La Figura 4 muestra una simulación que comienza con un escenario de demanda de repuestos (gráfico superior) y luego produce un escenario de suministro disponible para opciones particulares de valores mínimos y máximos (línea inferior). Los indicadores clave de rendimiento (KPI) se pueden estimar promediando los resultados de muchas de estas simulaciones.

MRO y Repuestos simulación de demanda e inventario disponible

Figura 4: Un ejemplo de simulación de demanda de repuestos e inventario disponible

Puede leer sobre el enfoque de Smart para la previsión de repuestos aquí: https://smartcorp.com/wp-content/uploads/2019/10/Probabilistic-Forecasting-for-Intermittent-Demand.pdf

 

 

Soluciones de software para la planificación de repuestos

El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

 

 

Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

 

Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

 

    5 pasos para mejorar el impacto financiero de la planificación de repuestos

    En el competitivo panorama empresarial actual, las empresas buscan constantemente formas de mejorar su eficiencia operativa y generar mayores ingresos. La optimización de la gestión de repuestos es un aspecto que a menudo se pasa por alto y que puede tener un impacto financiero significativo. Las empresas pueden mejorar la eficiencia general y generar importantes rendimientos financieros mediante la gestión eficaz del inventario de piezas de repuesto. Este artículo explorará las implicaciones económicas de la gestión optimizada de repuestos y cómo invertir en software de optimización de inventario y planificación de la demanda puede proporcionar una ventaja competitiva.

    La importancia de la planificación optimizada de piezas de servicio:

    La gestión optimizada de repuestos juega un papel vital en la mitigación de los riesgos de inventario y asegura la disponibilidad de repuestos críticos. Si bien la planificación subjetiva puede funcionar a pequeña escala, se vuelve insuficiente cuando se gestionan grandes inventarios de piezas de repuesto demandadas intermitentemente. Los enfoques de previsión tradicionales simplemente no logran dar cuenta con precisión de la extrema variabilidad de la demanda y los frecuentes períodos de demanda cero que son tan comunes con las piezas de repuesto. Esto da como resultado grandes asignaciones incorrectas de existencias, costos más altos y niveles de servicio deficientes.

    La clave para la gestión optimizada de repuestos radica en comprender el equilibrio entre servicio y costo. El software de optimización de inventario y planificación de la demanda con tecnología de pronóstico probabilístico y algoritmos de aprendizaje automático puede ayudar a las empresas a comprender mejor el costo frente al beneficio de cada decisión de inventario y manejar el inventario como un activo competitivo. Al generar pronósticos de demanda precisos y políticas de almacenamiento óptimas, como Mín./Máx., Niveles de existencias de seguridad y Puntos de pedido en segundos, las empresas pueden saber cuánto es demasiado y cuándo agregar más. Al manejar el inventario como un activo competitivo, las empresas pueden aumentar los niveles de servicio y reducir los costos.

    Mejore el resultado financiero de la planificación de piezas de repuesto

    1. La previsión precisa es fundamental para optimizar la planificación del inventario y satisfacer la demanda de los clientes de forma eficaz. El software de planificación de demanda de última generación predice con precisión los requisitos de inventario, incluso para patrones de demanda intermitentes. Al automatizar la previsión, las empresas pueden ahorrar tiempo, dinero y recursos al tiempo que mejoran la precisión.
    2. Satisfacer la demanda de los clientes es un aspecto crítico de la gestión de repuestos. Las empresas pueden mejorar la satisfacción y la lealtad del cliente y aumentar sus posibilidades de ganar contratos futuros para los equipos que venden con un uso intensivo de activos al garantizar la disponibilidad de repuestos cuando sea necesario. A través de una planificación eficaz de la demanda y la optimización del inventario, las organizaciones pueden reducir los plazos de entrega, minimizar los desabastecimientos y mantener los niveles de servicio, mejorando así el impacto financiero de todas las decisiones.
    3. Las ganancias financieras se pueden lograr a través de la planificación optimizada de piezas de servicio, incluida la reducción de costos de inventario y productos. El exceso de almacenamiento y el inventario obsoleto pueden ser cargas de costos significativas para las organizaciones. Al implementar el mejor software de optimización de inventario, las empresas pueden identificar soluciones rentables, aumentar los niveles de servicio y reducir los costos. Esto conduce a una mejor rotación de inventario, reducción de costos de mantenimiento y mayor rentabilidad.
    4. La planificación de adquisiciones es otro aspecto esencial de la gestión de repuestos. Las organizaciones pueden optimizar los niveles de inventario, reducir los plazos de entrega y evitar los desabastecimientos alineando las compras y las cantidades de pedido asociadas con pronósticos de demanda precisos. Por ejemplo, se pueden compartir pronósticos precisos con los proveedores para que se puedan realizar compromisos generales de compra. Esto proporciona al proveedor seguridad en los ingresos y, a cambio, puede mantener más inventario, lo que reduce los plazos de entrega.
    5. La planificación de la demanda intermitente es un desafío particular en la gestión de repuestos. Los enfoques de la regla empírica convencional se quedan cortos en el manejo efectivo de la variabilidad de la demanda. Esto se debe a que los enfoques tradicionales asumen que la demanda se distribuye normalmente cuando en realidad es cualquier cosa menos normal. Las piezas de repuesto demandan ráfagas aleatorias de gran demanda intercaladas con muchos períodos de demanda cero. La solución de Smart Software incorpora modelos estadísticos avanzados y algoritmos de aprendizaje automático para analizar patrones de demanda históricos, lo que permite una planificación precisa para la demanda intermitente. Las empresas pueden reducir significativamente los costos de falta de existencias y mejorar la eficiencia al abordar este desafío.

    Evidencia de los clientes de Smart Software:

    Invertir en el software de planificación de demanda y optimización de inventario de Smart Software permite a las empresas desbloquear ahorros de costos, elevar los niveles de servicio al cliente y mejorar la eficiencia operativa. A través de una previsión precisa de la demanda, una gestión de inventario optimizada y procesos de adquisición optimizados, las organizaciones pueden lograr ahorros financieros, satisfacer las demandas de los clientes de forma eficaz y mejorar el rendimiento empresarial general.

    • Metro-North Railroad (MNR) experimentó una reducción de 8% en el inventario de piezas, alcanzando un nivel de servicio al cliente récord de 98,7%, y redujo el crecimiento del inventario para nuevos equipos de 10% proyectados a solo 6%. Smart Software desempeñó un papel crucial en la identificación de las necesidades de piezas de servicio de varios años, la reducción de los plazos de entrega administrativos, la formulación de planes de reducción de existencias para las flotas que se retiran y la identificación del inventario inactivo para su eliminación. MNR ahorró costos, maximizó los beneficios de eliminación, mejoró los niveles de servicio y obtuvo información precisa para la toma de decisiones informada, lo que finalmente mejoró sus resultados y la satisfacción del cliente.
    • Seneca Companies, líder de la industria en servicios de petróleo automotriz, adoptó Smart Software para modelar la demanda de los clientes, controlar el rendimiento del inventario e impulsar el reabastecimiento. Los técnicos de servicio de campo aceptaron su uso, y la inversión total en inventario disminuyó en más de 25%, de $11 millones a $8 millones, manteniendo tasas de reparación por primera vez de 90%+.
    • Una compañía eléctrica líder implementó Smart IP&O en solo 3 meses y luego usó el software para optimizar sus puntos de pedido y las cantidades de pedido de más de 250 000 piezas de repuesto. Durante la primera fase de la implementación, la plataforma ayudó a la empresa de servicios públicos a reducir el inventario en $9,000,000 mientras mantenía los niveles de servicio. La implementación fue parte de la iniciativa de optimización de la cadena de suministro estratégica de la empresa.

    Optimización de la planificación de piezas de servicio para una ventaja competitiva

    La gestión optimizada de repuestos es crucial para las empresas que buscan mejorar la eficiencia, reducir costos y garantizar la disponibilidad de los repuestos necesarios. Las organizaciones pueden desbloquear un valor significativo en este campo invirtiendo en el software de optimización de inventario y planificación de la demanda de Smart Software. Las empresas pueden lograr un mejor desempeño financiero y obtener una ventaja competitiva en sus respectivos mercados a través de un mejor análisis de datos, automatización y planificación de inventario.

    Smart Software está diseñado para el mercado moderno, que es volátil y siempre cambiante. Puede manejar la proliferación de SKU, cadenas de suministro más largas, plazos de entrega menos predecibles y patrones de demanda más intermitentes y menos predecibles. También puede integrarse con prácticamente todas las soluciones ERP del mercado, mediante conexiones transparentes comprobadas en el campo o utilizando un proceso simple de importación/exportación respaldado por el modelo de datos y el motor de procesamiento de datos de Smart Software. Mediante el uso de Smart Software, las empresas pueden aprovechar el inventario como un activo competitivo, mejorar la satisfacción del cliente, aumentar los niveles de servicio, reducir los costos y ahorrar una cantidad considerable de dinero.

     

    Soluciones de software para la planificación de repuestos

    El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

    Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

     

     

    Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

     

    Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

     

      Impulse la eficiencia operativa y aumente la excelencia operativa

      Smart Software se complace en presentar nuestra nueva serie de seminarios web educativos, ofrecidos exclusivamente para usuarios de Epicor. Greg Hartunian, director ejecutivo de Smart Software, dirigirá un seminario web de 45 minutos que se centrará en enfoques específicos para la previsión de la demanda y la planificación del inventario que le permitirán aumentar la rentabilidad, mejorar los niveles de servicio y reducir los costos de mantenimiento de inventario. La presentación describirá los desafíos asociados con la planificación de inventario tradicional y los procesos de previsión de la demanda y cómo los nuevos métodos de optimización y previsión probabilística marcarán una gran diferencia en sus resultados. Finalmente, la presentación concluirá mostrando cómo aumentar la rentabilidad con procesos de planificación de inventario mejorados por software en una demostración en vivo.

      FORMULARIO DE REGISTRO AL SEMINARIO WEB

       

      Regístrese para asistir al seminario web. Si está interesado pero no puede asistir, regístrese de todos modos: grabaremos nuestra sesión y le enviaremos un enlace a la repetición.

      ¡Esperamos que pueda unirse a nosotros!

       

      SmartForecasts y Smart IP&O son marcas comerciales registradas de Smart Software, Inc. Todas las demás marcas comerciales son propiedad de sus respectivos dueños.


      Para obtener más información, comuníquese con Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
      Teléfono: 1-800-SMART-99 (800-762-7899); Correo electrónico: info@smartcorp.com

       

      Enero de 2022: maximice los niveles de servicio y minimice los costos de inventario

      Smart Software se especializa en ayudar a las empresas de operaciones de transporte de repuestos a optimizar su inventario. Por ejemplo, un cliente líder de servicios eléctricos implementó Smart IP&O en solo 90 días y redujo el inventario en $9,000,000 mientras mantenía los niveles de servicio.

      Nuestra plataforma Smart IP&O incluye un núcleo de pronóstico probabilístico patentado diseñado específicamente para piezas de repuesto demandadas intermitentemente. Únase a nuestro seminario web con Greg Hartunian, director ejecutivo de Smart Software, quien mostrará cómo planificar niveles de inventario óptimos y cantidades de compra para miles de artículos cuando la demanda es intermitente, cambia constantemente o se ve afectada por eventos inesperados. Este seminario web es una excelente oportunidad para aprender a reducir los desabastecimientos y los costos de inventario aprovechando las decisiones basadas en datos que identifican las compensaciones financieras asociadas con los cambios en la demanda, los plazos de entrega, los objetivos de nivel de servicio y los costos.

      FORMULARIO DE REGISTRO AL SEMINARIO WEB

       

      Regístrese para asistir al seminario web. Si está interesado pero no puede asistir, regístrese de todos modos: grabaremos nuestra sesión y le enviaremos un enlace a la repetición.

      ¡Esperamos que pueda unirse a nosotros!

       

      SmartForecasts y Smart IP&O son marcas comerciales registradas de Smart Software, Inc. Todas las demás marcas comerciales son propiedad de sus respectivos dueños.


      Para obtener más información, comuníquese con Smart Software, Inc., Four Hill Road, Belmont, MA 02478.
      Teléfono: 1-800-SMART-99 (800-762-7899); Correo electrónico: info@smartcorp.com

       

      Aumento de los ingresos mediante el aumento de la disponibilidad de piezas de repuesto

      El Blog de Smart

       Recomendaciones para la planificación de la demanda,

      previsión y optimización de inventario

      Comencemos reconociendo que el aumento de los ingresos es bueno para usted y que aumentar la disponibilidad de las piezas de repuesto que proporciona es bueno para sus clientes.

      Pero también reconozcamos que aumentar la disponibilidad de artículos no necesariamente conducirá a mayores ingresos. Si planifica incorrectamente y termina teniendo un exceso de inventario, el efecto neto puede ser bueno para sus clientes, pero definitivamente será malo para usted. Debe haber alguna forma correcta de hacer que esto sea beneficioso para todos, si tan solo se puede reconocer.

      Para tomar la decisión correcta aquí, debe pensar sistemáticamente sobre el problema. Eso requiere que utilice modelos probabilísticos del proceso de control de inventario.

       

      un escenario

      Consideremos un escenario específico y realista. Muchos factores influyen en los resultados:

      • El artículo: Una pieza de repuesto específica de bajo volumen.
      • Demanda media: promedio de 0,1 unidades por día (por lo tanto, altamente "intermitente")
      • Desviación estándar de la demanda: 0,35 unidades por día (por lo tanto, muy variable o “sobredispersada”).
      • Plazo medio de entrega del proveedor: 5 días.
      • Costo unitario: $100.
      • Costo de mantenimiento por año como % del costo unitario: 10%.
      • Costo de pedido por corte de orden de compra: $25.
      • Consecuencias del desabastecimiento: pérdida de ventas (por lo tanto, un mercado competitivo, sin pedidos pendientes).
      • Costo de escasez por venta perdida: $100.
      • Objetivo de nivel de servicio: 85% (por lo tanto, 15% de probabilidad de desabastecimiento en cualquier ciclo de reabastecimiento).
      • Política de control de inventario: revisión periódica/pedido hasta (también llamada política en (T,S))

       

      Política de control de inventario

      Una palabra sobre la política de control de inventario. La política (T,S) es una de varias que son comunes en la práctica. Aunque existen otras políticas más eficientes (p. ej., no esperan a que pasen T días para hacer el ajuste de stock), (T,S) es una de las más sencillas y, por lo tanto, bastante popular. Funciona de esta manera: cada T días, verifica cuántas unidades tiene en stock, digamos X unidades. Luego, solicita unidades SX, que aparecen después del tiempo de entrega del proveedor (en este caso, 5 días). La T en (T,S) es el “intervalo de pedido”, el número de días entre pedidos; la S es el "pedido hasta el nivel", la cantidad de unidades que desea tener disponibles al comienzo de cada ciclo de reposición.

      Para aprovechar al máximo esta política, debe elegir sabiamente los valores de T y S. Elegir sabiamente significa que no puede ganar adivinando o usando guías simples de reglas generales como "Mantenga un promedio de 3 veces la demanda promedio disponible". Las malas elecciones de T y S perjudican tanto a sus clientes como a sus resultados. Y quedarse demasiado tiempo con opciones que alguna vez fueron buenas puede resultar en un rendimiento deficiente si alguno de los factores anteriores cambia significativamente, por lo que los valores de T y S deben recalcularse de vez en cuando.

      La forma inteligente de elegir los valores correctos de T y S es usar modelos probabilísticos codificados en software avanzado. El uso de software es esencial cuando tiene que escalar y elegir valores de T y S que sean correctos no para un artículo sino para cientos o miles.

       

      Análisis de Escenario

      Pensemos en cómo ganar dinero en este escenario. ¿Cuál es el lado positivo? Si no hubiera gastos, este rubro podría generar un promedio de $3.650 por año: 0,1 unidades/día x 365 días x $100/unidad. Se restarán de eso los costos operativos, compuestos por costos de mantenimiento, pedidos y faltantes. Cada uno de ellos dependerá de sus elecciones de T y S.

      El software proporciona números específicos: la configuración de T = 321 días y S = 40 unidades dará como resultado costos operativos anuales promedio de $604, dando un margen esperado de $3,650 – $604 = $3,046. Ver Tabla 1, columna izquierda. Este uso de software se denomina "análisis predictivo" porque traduce las entradas del diseño del sistema en estimaciones de un indicador clave de rendimiento, el margen.

      Ahora piensa si puedes hacerlo mejor. El objetivo de nivel de servicio en este escenario es 85%, que es un estándar algo relajado que no llamará la atención. ¿Qué pasaría si pudiera ofrecer a sus clientes un nivel de servicio 99%? Eso suena como una clara ventaja competitiva, pero ¿reduciría su margen? No si ajusta correctamente los valores de T y S.

      Establecer T = 216 días y S = 35 unidades reducirá los costos operativos anuales promedio a $551 y aumentará el margen esperado a $3,650 – $551 = $3,099. Ver Tabla 1, columna derecha. Aquí está el ganar-ganar que queríamos: mayor satisfacción del cliente y aproximadamente 2% más de ingresos. Este uso del software se denomina "análisis de sensibilidad" porque muestra cuán sensible es el margen a la elección del objetivo de nivel de servicio.

      El software también puede ayudarlo a visualizar la dinámica compleja y aleatoria de los movimientos de inventario. Un subproducto del análisis que llenó la Tabla 1 son los gráficos que muestran las rutas aleatorias tomadas por las existencias a medida que disminuyen durante un ciclo de reabastecimiento. La figura 1 muestra una selección de 100 escenarios aleatorios para el escenario en el que el nivel de servicio objetivo es 99%. En la figura, solo 1 de los 100 escenarios resultó en un desabastecimiento, lo que confirma la precisión de la elección del pedido hasta el nivel.

       

      Resumen

      La gestión de los inventarios de piezas de repuesto a menudo se realiza al azar utilizando el instinto, el hábito o la regla empírica obsoleta. Volarlo de esta manera no es un camino confiable y reproducible hacia un mayor margen o una mayor satisfacción del cliente. La teoría de la probabilidad, destilada en modelos de probabilidad y luego codificada en software avanzado, es la base para una guía coherente y eficiente sobre cómo administrar las piezas de repuesto en función de los hechos: características de la demanda, plazos de entrega, objetivos de nivel de servicio, costos y otros factores. Los escenarios analizados aquí ilustran que es posible lograr niveles de servicio más altos y un margen más alto. Una multitud de escenarios que no se muestran aquí ofrecen formas de lograr niveles de servicio más altos pero pierden margen. Usa el programa.

      Escenarios con diferentes objetivos de nivel de servicio

      Stock disponible durante un ciclo de reposición

       

       

      Deja un comentario

      Artículos Relacionados

      Direct to the Brain of the Boss – Inventory Analytics and Reporting

      Directo al cerebro del jefe: análisis e informes de inventario

      In this blog, the spotlight is cast on the software that creates reports for management, the silent hero that translates the beauty of furious calculations into actionable reports. Watch as the calculations, intricately guided by planners utilizing our software, seamlessly converge into Smart Operational Analytics (SOA) reports, dividing five key areas: inventory analysis, inventory performance, inventory trending, supplier performance, and demand anomalies.

      ¿Cómo vamos? KPI y KPP

      ¿Cómo vamos? KPI y KPP

      Lidiar con el día a día de la gestión de inventario puede mantenerle ocupado. Pero sabes que tienes que levantar la cabeza de vez en cuando para ver hacia dónde te diriges. Para eso, su software de inventario debe mostrarle métricas (y no solo una, sino un conjunto completo de métricas o KPI): indicadores clave de rendimiento.

      ¿Confundido acerca de la IA y el aprendizaje automático?

      ¿Confundido acerca de la IA y el aprendizaje automático?

      ¿Está confundido acerca de qué es la IA y qué es el aprendizaje automático? ¿No está seguro de por qué saber más le ayudará con su trabajo de planificación de inventario? No te desesperes. Estarás bien y te mostraremos cómo algo de lo que sea puede ser útil.

      Mensajes recientes

      • Directo al cerebro del jefe: análisis de inventarioDirecto al cerebro del jefe: análisis e informes de inventario
        In this blog, the spotlight is cast on the software that creates reports for management, the silent hero that translates the beauty of furious calculations into actionable reports. Watch as the calculations, intricately guided by planners utilizing our software, seamlessly converge into Smart Operational Analytics (SOA) reports, dividing five key areas: inventory analysis, inventory performance, inventory trending, supplier performance, and demand anomalies. […]
      • Necesitas asociarte con los algoritmos para la gestión de inventario.Necesitas formar equipo con los algoritmos
        This article is about the real power that comes from the collaboration between you and our software that happens at your fingertips. We often write about the software itself and what goes on “under the hood”. This time, the subject is how you should best team up with the software. […]
      • Repensar la precisión del pronóstico: un cambio de la precisión a las métricas de errorRepensar la precisión del pronóstico: un cambio de la precisión a las métricas de error
        Sin lugar a dudas, medir la precisión de los pronósticos es una parte importante del proceso de planificación de la demanda. Este cuadro de mando de pronóstico podría construirse basándose en uno de dos puntos de vista contrastantes para calcular métricas. El punto de vista del error pregunta: "¿a qué distancia estaba el pronóstico de lo real?" El punto de vista de la precisión pregunta: "¿Qué tan cerca estuvo el pronóstico de lo real?" Ambas son válidas, pero las métricas de error proporcionan más información. […]
      • Uso de predicciones clave de rendimiento para planificar políticas de almacenamiento
        No puedo imaginarme ser un planificador de inventarios en repuestos, distribución o fabricación y tener que crear niveles de stock de seguridad, puntos de reorden y sugerencias de pedidos sin utilizar predicciones clave de desempeño de niveles de servicio, tasas de cumplimiento y costos de inventario. […]
      • Cada modelo de pronóstico es bueno para aquello para lo que fue diseñado.Cada modelo de pronóstico es bueno para lo que está diseñado
        Con tanto entusiasmo en torno al nuevo aprendizaje automático (ML) y los métodos de pronóstico probabilístico, los métodos tradicionales de pronóstico estadístico “extrapolativo” o de “series de tiempo” parecen estar recibiendo la espalda. Sin embargo, vale la pena recordar que estas técnicas tradicionales (como el suavizado exponencial simple y doble, los promedios móviles lineales y simples y los modelos de Winters para artículos estacionales) a menudo funcionan bastante bien para datos de mayor volumen. Cada método es bueno para lo que fue diseñado. Simplemente aplique cada uno de manera apropiada, como por ejemplo, no lleve un cuchillo a un tiroteo y no use un martillo neumático cuando un simple martillo de mano será suficiente. […]

        Optimización de inventario para fabricantes, distribuidores y MRO

        • Principales diferencias entre la planificación de inventario para productos terminados y para MRO y repuestosPrincipales diferencias entre la planificación de inventario para productos terminados y para MRO y repuestos
          En el competitivo panorama empresarial actual, las empresas buscan constantemente formas de mejorar su eficiencia operativa y generar mayores ingresos. La optimización de la gestión de repuestos es un aspecto que a menudo se pasa por alto y que puede tener un impacto financiero significativo. Las empresas pueden mejorar la eficiencia general y generar importantes rendimientos financieros mediante la gestión eficaz del inventario de piezas de repuesto. Este artículo explorará las implicaciones económicas de la gestión optimizada de repuestos y cómo invertir en software de optimización de inventario y planificación de la demanda puede proporcionar una ventaja competitiva. […]
        • Ley de centrado Piezas de repuesto Sincronización Precios y confiabilidadLey de centrado: sincronización, precio y confiabilidad de los repuestos
          En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]
        • 5 pasos para mejorar el impacto financiero de la planificación de repuestos5 pasos para mejorar el impacto financiero de la planificación de repuestos
          En el competitivo panorama empresarial actual, las empresas buscan constantemente formas de mejorar su eficiencia operativa y generar mayores ingresos. La optimización de la gestión de repuestos es un aspecto que a menudo se pasa por alto y que puede tener un impacto financiero significativo. Las empresas pueden mejorar la eficiencia general y generar importantes rendimientos financieros mediante la gestión eficaz del inventario de piezas de repuesto. Este artículo explorará las implicaciones económicas de la gestión optimizada de repuestos y cómo invertir en software de optimización de inventario y planificación de la demanda puede proporcionar una ventaja competitiva. […]
        • Estrategias de resultados para el software de planificación de piezas de repuestoEstrategias de resultados para la planificación de piezas de repuesto
          La gestión de piezas de repuesto presenta numerosos desafíos, como averías inesperadas, horarios cambiantes y patrones de demanda inconsistentes. Los métodos de pronóstico tradicionales y los enfoques manuales son ineficaces para hacer frente a estas complejidades. Para superar estos desafíos, este blog describe estrategias clave que priorizan los niveles de servicio, utilizan métodos probabilísticos para calcular los puntos de pedido, ajustan periódicamente las políticas de almacenamiento e implementan un proceso de planificación dedicado para evitar un inventario excesivo. Explore estas estrategias para optimizar el inventario de repuestos y mejorar la eficiencia operativa. […]