Gestión del inventario para promociones

El Blog de Smart

 Recomendaciones para la planificación de la demanda,

previsión y optimización de inventario

en un Publicación anterior, analicé uno de los problemas más espinosos que a veces enfrentan los planificadores de demanda: trabajar con datos de demanda de productos caracterizados por lo que los estadísticos llaman sesgo, una situación que puede requerir costosas inversiones en inventario. Este tipo de datos problemáticos se encuentran en varios escenarios diferentes. En al menos uno, la combinación de demanda intermitente y promociones de ventas muy efectivas, el problema se presta a una solución efectiva.

Revisando los términos, recuerde que el “nivel de servicio” es la probabilidad de no agotarse mientras espera que llegue una orden de reposición, mientras que la “tasa de llenado” es el porcentaje de la demanda que se satisface inmediatamente con el stock. En mi publicación anterior, "El flagelo de la asimetría", señalé que cierto tipo de distribución de la demanda, que tiene una "cola larga a la derecha", conducirá a tasas de llenado que pueden ser mucho más bajas que los niveles de servicio. También señalé que, a veces, la única forma de mejorar la tasa de llenado es aumentar el nivel de servicio objetivo a un nivel inusualmente alto, lo que puede resultar costoso.

En esta publicación, analizaré la solución del problema en un caso especial: la asimetría resultante de promociones de ventas efectivas combinadas con "demanda intermitente". La demanda intermitente tiene una gran proporción de valores cero, con valores distintos de cero mezclados al azar. Las promociones de ventas exitosas, obviamente positivas, tienen un inconveniente: pueden confundir la "señal de demanda" con picos en su historial de demanda y pueden socavar los pronósticos y sesgar los cálculos de existencias de seguridad. Cuando la demanda intermitente y las promociones de ventas efectivas son la fuente de la asimetría de sus datos, existen métodos para solucionar el problema y lograr tasas de cumplimiento más altas y pronósticos de demanda más precisos.

Cómo las promociones aumentan la asimetría

Las promociones exitosas aumentan abruptamente la demanda de artículos. Esto crea anomalías, o "valores atípicos", que contribuyen a formar una distribución sesgada. Sabiendo cuándo ocurrieron promociones en el pasado, podemos ajustar el registro de demanda pasada de un artículo. Producimos un historial de demanda alternativo como si no hubiera habido promociones, reemplazando los valores atípicos con valores más representativos del nivel "natural" de demanda. Estos ajustes reducen la asimetría de la demanda. La reducción del sesgo puede conducir a reducciones significativas tanto en los pronósticos esperados como en las existencias de seguridad, que se suman para formar puntos de pedido.

Es probable que se repitan las promociones exitosas. Cuando eso sucede, los efectos de promoción se pueden agregar a los pronósticos de demanda para aumentar su precisión. El efecto de las futuras promociones en la gestión del inventario será aumentar el riesgo de desabastecimiento, por lo que una respuesta sensata es trabajar a nivel operativo para generar un suministro temporal, en una cantidad ajustada al impacto estimado de las promociones anteriores en los artículos afectados.

 

Uso del modelado de eventos para mejorar la previsión de la demanda

Es posible modelar el impacto de eventos similares y aplicarlo a eventos planificados en el futuro. Si lo hace, puede mejorar su pronóstico de dos maneras importantes: al proyectar la sacudida de la demanda que espera de un evento planificado; y racionalizando los picos en el pasado que fueron causados por eventos, haciendo que su actividad de referencia sea más visible y predecible con mayor precisión. Hacemos mucho de esto en SmartForecasts, así que permítame usar nuestra experiencia allí para mostrarle lo que quiero decir.

El modelado de eventos implica los siguientes pasos:
• Estimación automática del impacto de promociones anteriores (que es un resultado útil en sí mismo).
• Ajuste de la demanda histórica para eliminar estadísticamente el efecto de las promociones.
• Creación de previsiones sin promoción.
• Revisar las previsiones de los períodos de tiempo futuros en los que se prevén promociones.

A este tipo de análisis lo llamamos “pronóstico de promociones”. Usamos la palabra "promociones" para describir lo que hace usted mismo para mejorar sus resultados. Usamos "eventos" para describir lo que el mundo te hace, generalmente en detrimento tuyo; los ejemplos incluyen huelgas, cortes de energía, incendios en almacenes y otros sucesos desafortunados.

Para comprender cómo el modelado de eventos puede ayudarlo a lidiar con la asimetría al hacer pronósticos de demanda para artículos de gran volumen, considere las Figuras 1-3.

La Figura 1 muestra que el patrón de demanda de este artículo es claramente estacional, y el pronóstico es estacional y "ajustado", lo que significa que el intervalo de incertidumbre del pronóstico ("margen de error", que se muestra en líneas cian) es muy estrecho.

La figura 2 muestra una historia alternativa en la que una promoción en junio de 2014 revirtió el mínimo estacional habitual asociado con las ventas de junio. Este patrón de demanda se pronosticó mediante el torneo de pronóstico automático en SmartForecasts, como se muestra en la figura 1. Esta vez, la promoción alteró el patrón estacional lo suficiente como para crear un pronóstico no estacional inapropiado y que tiene un margen de error mucho mayor.

Finalmente, la Figura 3 muestra cómo el pronóstico de promoción maneja el mismo escenario promocionado, conservando un pronóstico estacional e incorporando al pronóstico una estimación del efecto de una promoción repetida planificada en 2015.

El caso de la demanda intermitente

En la Figura 1, el artículo era un bien terminado de gran volumen y la tarea era la previsión de la demanda. El modelado de promociones también es útil cuando se trata de la tarea de establecer existencias de seguridad y puntos de pedido para artículos con demanda intermitente, ya sean productos terminados, componentes o repuestos. La demanda intermitente muy a menudo tiene una distribución sesgada que dificulta lograr una alta disponibilidad de artículos con una pequeña inversión en inventario.

La Figura 4 ilustra el problema que una promoción exitosa puede crear accidentalmente para la gestión de inventario. Si tal aumento surge de la demanda natural no promovida, entonces la única forma de mantener altas tasas de llenado es proporcionar existencias de seguridad lo suficientemente grandes como para hacer frente a estos aumentos repentinos. En este caso, el gran aumento de la demanda de 500 unidades en febrero de 2013 fue el resultado de una promoción única.

Tener en cuenta las promociones para mejorar la gestión de inventario

Sin darse cuenta, tratar el pico en el ejemplo anterior como parte de la variabilidad natural de la demanda da como resultado una tasa de cumplimiento deficiente. Para lograr un nivel de servicio objetivo de, digamos, 95% con un plazo de entrega de un mes, se requeriría un punto de pedido de 38 unidades, calculado como la suma de un pronóstico esperado durante el plazo de entrega de reabastecimiento de un mes de 21 unidades complementado con un inventario de seguridad de 17 unidades. Esta inversión daría como resultado una tasa de llenado decepcionante de solo 36%.

Sin embargo, reconocer que el pico es una promoción única y reemplazar las 500 unidades con 0 obviamente marcaría una gran diferencia. El punto de pedido caería de 38 unidades a 31 (la suma de una demanda esperada de 7 unidades y un stock de seguridad de 24 unidades) y la tasa de llenado aumentaría a 94%.

Por supuesto, no está bien descartar picos de demanda inconvenientes cuando hacen que la vida sea incómoda; tiene que haber una “historia comercial” válida detrás del ajuste de la demanda histórica. Si el pico es el resultado de un error de procesamiento de datos, entonces, por supuesto, arréglelo. Si el pico coincide con una promoción, reemplazar el pico con, digamos, la demanda media (a menudo cero, como en este ejemplo) dará como resultado una inversión en inventario mucho más sostenible que aún cumple con los objetivos de rendimiento agresivos. Las futuras promociones del mismo tipo en el mismo artículo requerirán un esfuerzo adicional para prepararse para el aumento temporal de la demanda, pero el punto de reorden recomendado será correcto a largo plazo.

Thomas Willemain, PhD, cofundó Smart Software y actualmente se desempeña como vicepresidente sénior de investigación. El Dr. Willemain también se desempeña como Profesor Emérito de Ingeniería Industrial y de Sistemas en el Instituto Politécnico Rensselear y como miembro del personal de investigación en el Centro de Ciencias de la Computación, Instituto de Análisis de Defensa.

Deja un comentario

Artículos Relacionados

Forecast-Based Inventory Management for Better Planning

Gestión de inventario basada en pronósticos para una mejor planificación

La gestión de inventario basada en pronósticos, o lógica MRP (planificación de requisitos de materiales), es un método de planificación anticipada que ayuda a las empresas a satisfacer la demanda sin exceso o falta de existencias. Al anticipar la demanda y ajustar los niveles de inventario, mantiene un equilibrio entre satisfacer las necesidades de los clientes y minimizar los costos excesivos de inventario. Este enfoque optimiza las operaciones, reduce el desperdicio y mejora la satisfacción del cliente.

Future-Proofing Utilities: Advanced Analytics for Supply Chain Optimization

Utilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro

Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental.

Leveraging Epicor Kinetic Planning BOMs with Smart IP&O to Forecast Accurately

Aprovechando las listas de materiales de Epicor Kinetic Planning con Smart IP&O para pronosticar con precisión

En este blog, exploramos cómo aprovechar las listas de materiales de Epicor Kinetic Planning con Smart IP&O puede transformar su enfoque de pronóstico en un entorno de fabricación altamente configurable. Descubra cómo Smart, una solución de optimización de inventario y planificación de la demanda basada en IA de vanguardia, puede simplificar las complejidades de predecir la demanda de productos terminados, especialmente cuando se trata de componentes intercambiables. Descubra cómo la planificación de listas de materiales y las técnicas avanzadas de previsión permiten a las empresas anticipar las necesidades de los clientes con mayor precisión, garantizando la eficiencia operativa y manteniéndose a la vanguardia en un mercado competitivo.

Mensajes recientes

  • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
    En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
  • 5 Ways to Improve Supply Chain Decision Speed5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro
    La promesa de una cadena de suministro digital ha transformado la forma en que operan las empresas. En esencia, permite tomar decisiones rápidas basadas en datos y, al mismo tiempo, garantizar la calidad y la eficiencia en todas las operaciones. Sin embargo, no se trata solo de tener acceso a más datos. Las organizaciones necesitan las herramientas y plataformas adecuadas para convertir esos datos en información procesable. Aquí es donde la toma de decisiones se vuelve fundamental, especialmente en un panorama en el que las nuevas soluciones de cadena de suministro digital y las plataformas impulsadas por IA pueden ayudarlo a agilizar muchos procesos dentro de la matriz de decisiones. […]
  • Two employees checking inventory in temporary storage in a distribution warehouse.12 causas del exceso de stock y soluciones prácticas
    Gestionar el inventario de manera eficaz es fundamental para mantener un balance saludable y garantizar que los recursos se asignen de manera óptima. A continuación, se analizan en profundidad las principales causas del exceso de existencias, sus implicaciones y posibles soluciones. […]
  • FAQ Mastering Smart IP&O for Better Inventory ManagementPreguntas frecuentes: Cómo dominar la IP&O inteligente para una mejor gestión del inventario.
    Una gestión eficaz de la cadena de suministro y del inventario es esencial para lograr la eficiencia operativa y la satisfacción del cliente. Este blog ofrece respuestas claras y concisas a algunas preguntas básicas y otras preguntas comunes de nuestros clientes de Smart IP&O, ofreciendo información práctica para superar los desafíos típicos y mejorar sus prácticas de gestión de inventario. Centrándonos en estas áreas clave, lo ayudamos a transformar problemas complejos de inventario en acciones estratégicas y manejables que reducen los costos y mejoran el rendimiento general con Smart IP&O. […]
  • 7 Key Demand Planning Trends Shaping the Future7 tendencias clave en planificación de la demanda que están dando forma al futuro
    La planificación de la demanda va más allá de la simple previsión de las necesidades de productos; se trata de garantizar que su empresa satisfaga las demandas de los clientes con precisión, eficiencia y rentabilidad. La última tecnología de planificación de la demanda aborda desafíos clave como la precisión de las previsiones, la gestión de inventarios y la capacidad de respuesta al mercado. En este blog, presentaremos tendencias críticas de planificación de la demanda, que incluyen información basada en datos, previsión probabilística, planificación por consenso, análisis predictivo, modelado de escenarios, visibilidad en tiempo real y previsión multinivel. Estas tendencias le ayudarán a mantenerse a la vanguardia, optimizar su cadena de suministro, reducir costes y mejorar la satisfacción del cliente, posicionando a su empresa para el éxito a largo plazo. […]

    Optimización de inventario para fabricantes, distribuidores y MRO

    • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
      En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
    • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovando en el mercado de repuestos OEM con optimización de inventario impulsada por IA
      El sector de posventa ofrece a los fabricantes de equipos originales una ventaja decisiva al ofrecer un flujo de ingresos constante y fomentar la lealtad del cliente mediante la entrega confiable y oportuna de piezas de repuesto. Sin embargo, la gestión del inventario y la previsión de la demanda en el mercado de posventa está plagada de desafíos, incluidos patrones de demanda impredecibles, amplias gamas de productos y la necesidad de entregas rápidas. Los métodos tradicionales a menudo no son suficientes debido a la complejidad y variabilidad de la demanda en el mercado de posventa. Las últimas tecnologías pueden analizar grandes conjuntos de datos para predecir la demanda futura con mayor precisión y optimizar los niveles de inventario, lo que conduce a un mejor servicio y menores costos. […]
    • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationUtilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro
      Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental. […]
    • Centering Act Spare Parts Timing Pricing and ReliabilityLey de centrado: sincronización, precio y confiabilidad de los repuestos
      En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]

      Como gestionar la curva de compensación

      El Blog de Smart

       Recomendaciones para la planificación de la demanda,

      previsión y optimización de inventario

      Contra qué nos enfrentamos

      Como fanático de la tercera generación de los Medias Rojas de Boston, no estoy dispuesto a aceptar el consejo de ningún jugador de béisbol de los Yankees de Nueva York, ni siquiera de uno excelente, pero debo admitir que, a veces, solo necesitas tomar una decisión. Sin embargo, ¿no sería mejor si supiéramos las ventajas y desventajas asociadas con cada decisión? Quizás un camino es más pintoresco pero toma más tiempo mientras que el otro es más directo pero aburrido. Entonces no tendría que simplemente "tomarlo", sino que podría tomar una decisión informada basada en las ventajas/desventajas de cada enfoque.

      En el mundo de la planificación de la cadena de suministro, la decisión más fundamental es cómo equilibrar la disponibilidad de artículos con el costo de mantener esa disponibilidad (niveles de servicio y tasas de llenado). En un extremo, puede tener un exceso de existencias y nunca quedarse sin hasta que arruine y tenga que cerrar la tienda para no gastar todo su efectivo en un inventario que no se vende. En el otro extremo, puede tener una gran escasez de existencias y ahorrar un montón en costos de mantenimiento de inventario, pero arruinarse y tener que cerrar la tienda porque todos sus clientes llevaron sus negocios a otra parte.

      No hay escapatoria a esta tensión fundamental. La forma de sobrevivir y prosperar es encontrar un equilibrio productivo y sostenible. Para hacer eso, se requieren compensaciones basadas en hechos basadas en los números. Para obtener los números se requiere software.

      La deriva general de las cosas es obvia. Si decide mantener más inventario, tendrá más costos de mantenimiento, menores costos de escasez y posiblemente menores costos de pedido. Es imposible saber si esto cuesta o ahorra dinero sin un análisis sofisticado, pero generalmente el resultado es que el costo total aumenta. Pero si invierte en más inventario, ganará algo, porque ofrecerá a sus clientes niveles de servicio y tasas de llenado más altos. Cuánto más alto requiere, como puede suponer, un análisis sofisticado.

      Muéstrame los números

      Este blog expone cómo se ve un análisis de este tipo. No existe una solución universal que le indique la decisión "correcta". Puede pensar que la decisión correcta es la que mejor se ajusta a sus resultados. Pero para obtener esos números, necesitaría algo que rara vez se ve: un modelo preciso del comportamiento del cliente con respecto al nivel de servicio (consulte nuestro artículo “Cómo elegir un nivel de servicio objetivo”) Por ejemplo, ¿en qué momento un cliente se irá y llevará su negocio a otra parte? ¿Será después de que agote 1% del tiempo, 5% del tiempo, 10% del tiempo? ¿Seguirá manteniendo su negocio siempre y cuando complete los pedidos rápidamente? ¿Será después de un pedido pendiente de 1 día, 2 días? ¿3 semanas? ¿Será después de que esto suceda una vez en una parte importante o muchas veces en muchas partes? Si bien modelar el nivel de servicio preciso que le permitirá mantener a su cliente mientras minimiza los costos parece un ideal inalcanzable, otro tipo de análisis sofisticado es más pragmático. 

      El software de optimización y pronóstico de inventario puede tener en cuenta todos los costos asociados, como el costo de agotamiento de existencias, el costo de mantener el inventario y el costo de ordenar el inventario para prescribir un objetivo de nivel de servicio óptimo que produzca el costo total más bajo. Sin embargo, incluso ese nivel de servicio "óptimo" es sensible a los cambios en los costos, lo que hace que los resultados sean potencialmente cuestionables. Por ejemplo, si no estima con precisión los costos precisos (los costos de escasez son los más difíciles), será difícil afirmar definitivamente algo como "Si aumento mi inventario disponible en un promedio de una unidad para todos los artículos en un importante familia de productos, mi empresa verá una ganancia neta de $170,500. Esa ganancia aumenta hasta llegar a 4 unidades. A 4 unidades o más, el rendimiento disminuye debido a los excesivos costos de tenencia. Por lo tanto, la mejor decisión al tener en cuenta la retención, el pedido y el agotamiento de existencias proyectados es aumentar el inventario en 3 unidades para ver una ganancia neta de más de $500,000.  

      A falta de ese ideal, puede hacer algo que es más simple pero extremadamente valioso: cuantificar la curva de compensación entre el costo del inventario y la disponibilidad del artículo. Si bien no necesariamente sabrá el nivel de servicio al que debe apuntar, conocerá los costos de los diferentes niveles de servicio. Luego, puede ganar mucho dinero encontrando un buen lugar para estar en esa curva de compensación y comunicando dónde está en riesgo, dónde no, y estableciendo expectativas con los clientes y las partes interesadas internas. Sin la curva de compensación para guiarlo, está volando a ciegas sin forma de modificar racionalmente la política de almacenamiento.

      Un escenario del que aprender

      Esbocemos una curva de compensación realista. Comenzamos con un escenario que requiere una decisión de gestión. El escenario que usaremos y los supuestos asociados sobre la demanda, los plazos de entrega y los costos se detallan a continuación:

      Política de inventario

      • Revisión periódica: reordenar las decisiones tomadas cada 30 días
      • Orden hasta el nivel ("S") - Variado de 30 a 60 unidades
      • Política de escasez: permite pedidos pendientes, sin pedidos perdidos

      Pedir

      • La demanda es intermitente
      • Promedio = 0,8 unidades por día
      • Desviación estándar = 1,2 unidades por día
      • Mayor demanda en un año ≈ 9
      • % de días sin demanda = 53%

      Tiempo de espera

      • Aleatorio a los 7, 14 o 21 días con probabilidades 70%, 20% y 10%, respectivamente

      Parámetros de costo

      • Costo de mantenimiento = $1 por día
      • Costo de pedido = $10 por pedido sin importar el tamaño del pedido
      • Costo de escasez = $100 por unidad que no se envía inmediatamente del stock

      Imaginamos una política de control de inventario que se conoce en el comercio como una política de "revisión periódica" o (T,S). En este caso, el Período de revisión ("T") es de 30 días, lo que significa que cada 30 días se verifica la posición del inventario y se toma una decisión de pedido. La cantidad del pedido es la diferencia entre el número observado de unidades disponibles y la cantidad del pedido hasta el final ("S"). Entonces, si el inventario de fin de mes es de 12 unidades y S = 20, la cantidad del pedido sería S – 12 = 20 -1 2 = 8. El próximo mes, es probable que la cantidad del pedido sea diferente. Si el inventario alguna vez se vuelve negativo (pedidos atrasados) durante un período de revisión, el próximo pedido intenta restaurar el equilibrio ordenando más para llenar esos pedidos atrasados. Por ejemplo, si el inventario es -5 (es decir, 5 unidades ordenadas por no disponibles para envío, el siguiente pedido sería S – (-5) = S + 5. Detalles del flujo de demanda hipotético, plazos de entrega del proveedor y elementos de costo se muestran a continuación en la Figura 1. La Figura 2 muestra una muestra de la demanda diaria y el inventario diario durante cinco períodos de revisión. intermitente, como ocurre a menudo con las piezas de repuesto y, por lo tanto, es difícil planificarlo.

      Figura 1: Diferentes opciones de política de inventario (pedir hasta), costos asociados y niveles de servicio

      Figura 2: Detalle de cinco meses de operación del sistema dada una de las políticas

       

      El software de planificación de inventario es nuestro amigo

      El software codifica la lógica de la operación del sistema (T,S), genera muchos escenarios de demanda hipotéticos pero realistas, calcula cómo se desarrolla cada uno de esos escenarios y luego mira hacia atrás en la operación simulada (aquí, 10 años o 3650 días consecutivos) para calcular las métricas de costo y rendimiento.

      Para revelar la curva de compensación, realizamos varios experimentos computacionales en los que variamos el nivel de pedido hasta el nivel, S. Las gráficas de la Figura 2 muestran el comportamiento del inventario disponible en la alternativa "más rica" con S = 60. En el fragmento que se muestra en la Figura 2, el inventario disponible nunca se acerca a agotarse. Puedes leer eso también. Una, un poco ingenua, es decir “Bien, estamos bien protegidos”. La otra, más agresiva, es decir, “Oh no, estamos hinchados. Me pregunto qué pasaría si redujéramos S.”

      La curva de compensación revelada

      La Figura 3 muestra los resultados de reducir S de 60 a 30 en pasos de 5 unidades. La tabla muestra que el Costo total es la suma del Costo de mantenimiento, el Costo de pedido y el Costo de escasez. Para la póliza (T,S), el costo de pedido es siempre el mismo, ya que un pedido se realiza como un reloj cada 30 días. Pero los otros componentes del costo responden a los cambios en S.

      Figura 3: Los resultados experimentales y la curva de compensación correspondiente que muestra cómo cambiar el nivel de pedido hasta el nivel ("S") afecta tanto el nivel de servicio como el costo anual total

      Tenga en cuenta que el nivel de servicio siempre es más bajo que la tasa de llenado en estos escenarios. Como profesor, siempre pienso en esta diferencia en términos de calificación de exámenes. Cada ciclo de reabastecimiento es como una prueba. El nivel de servicio se trata de la probabilidad de un desabastecimiento, por lo que es como la calificación en el examen de aprobación/reprobación con una pregunta que debe responderse a la perfección. Si no hay desabastecimiento en un ciclo, es una A. Si hay desabastecimiento, es una F. No importa si es una unidad que no se suministra o 50, sigue siendo una F. Pero la tasa de llenado es como una pregunta que se califica con crédito parcial. Por lo tanto, si le falta una de diez unidades, obtiene una tasa de llenado de 90% para ese ciclo, no 0%. Es importante comprender la diferencia entre estas dos métricas importantes para la planificación del inventario: consulte este vlog que describe nivel de servicio frente a tasa de llenado a través de un ejercicio interactivo en Excel.

      La trama en la Figura 3 es la verdadera noticia. Combina el costo total y el nivel de servicio para varios niveles de S. Si lee el gráfico de derecha a izquierda, nos dice que se pueden obtener ahorros de costos drásticos al reducir S con una penalización muy pequeña en términos de disponibilidad reducida de artículos. Por ejemplo, la reducción de S de 60 a 55 ahorra cerca de $800 por año en este artículo, mientras que reduce un poco el nivel de servicio de (esencialmente) 100% a un aún impresionante 99%. Cortar S un poco más hace lo mismo, aunque no tan dramáticamente. Si lee el gráfico de izquierda a derecha, verá que pasar de S = 30 a S = 35 cuesta alrededor de $1000 por año, pero mejora el nivel de servicio de un grado F (45%) a al menos un grado C (71%). Después de eso, empujar S más alto cuesta progresivamente más mientras se gana progresivamente menos.

      La curva de compensación no le da una respuesta sobre cómo establecer el nivel de orden hasta el nivel, pero le permite evaluar los costos y beneficios de cada respuesta posible. Tómese un minuto y finja que este es su problema: ¿Dónde le gustaría estar a lo largo de la curva de compensación?

      Puede objetar y decir que odia sus elecciones y quiere cambiar el juego. ¿Hay escape de la curva? No de la curva general, pero es posible que pueda moldear una curva menos dolorosa. ¿Cómo?

      Puede que tengas otras cartas para jugar. Una vía es tratar de “moldear” la demanda para que sea menos variable. El diagrama de demanda en la Figura 2 muestra mucha variabilidad. Si pudiera suavizar la demanda, toda la curva de compensación se desplazaría hacia abajo, haciendo que cada elección fuera menos costosa. Una segunda vía es tratar de reducir la media y la variabilidad de los plazos de entrega de los proveedores. Lograr cualquiera de los dos también desplazaría la curva hacia abajo para que la elección fuera menos dolorosa. Consulta nuestro artículo sobre cómo los proveedores influyen en sus costos de inventario

      Resumen

      La curva de compensación siempre está con nosotros. A veces podemos hacerlo más amigable, pero siempre elegimos nuestro lugar a lo largo de él. Es mejor saber lo que está obteniendo con cualquier elección de política de inventario que tratar de adivinar, y la curva le da eso. Cuando tiene una estimación precisa de esa curva, ya no está volando a ciegas cuando se trata de la planificación del inventario. 

       

       

       

      Deja un comentario

      Artículos Relacionados

      Innovating the OEM Aftermarket with AI-Driven Inventory Optimization

      Innovando en el mercado de repuestos OEM con optimización de inventario impulsada por IA

      El sector de posventa ofrece a los fabricantes de equipos originales una ventaja decisiva al ofrecer un flujo de ingresos constante y fomentar la lealtad del cliente mediante la entrega confiable y oportuna de piezas de repuesto. Sin embargo, la gestión del inventario y la previsión de la demanda en el mercado de posventa está plagada de desafíos, incluidos patrones de demanda impredecibles, amplias gamas de productos y la necesidad de entregas rápidas. Los métodos tradicionales a menudo no son suficientes debido a la complejidad y variabilidad de la demanda en el mercado de posventa. Las últimas tecnologías pueden analizar grandes conjuntos de datos para predecir la demanda futura con mayor precisión y optimizar los niveles de inventario, lo que conduce a un mejor servicio y menores costos.

      Forecast-Based Inventory Management for Better Planning

      Gestión de inventario basada en pronósticos para una mejor planificación

      La gestión de inventario basada en pronósticos, o lógica MRP (planificación de requisitos de materiales), es un método de planificación anticipada que ayuda a las empresas a satisfacer la demanda sin exceso o falta de existencias. Al anticipar la demanda y ajustar los niveles de inventario, mantiene un equilibrio entre satisfacer las necesidades de los clientes y minimizar los costos excesivos de inventario. Este enfoque optimiza las operaciones, reduce el desperdicio y mejora la satisfacción del cliente.

      Make AI-Driven Inventory Optimization an Ally for Your Organization

      Haga de la optimización de inventario impulsada por IA un aliado para su organización

      En este blog, exploraremos cómo las organizaciones pueden lograr una eficiencia y precisión excepcionales con la optimización del inventario impulsada por la IA. Los métodos tradicionales de gestión de inventario a menudo resultan insuficientes debido a su naturaleza reactiva y su dependencia de procesos manuales. Mantener niveles óptimos de inventario es fundamental para satisfacer la demanda de los clientes y minimizar los costos. La introducción de la optimización del inventario impulsada por la IA puede reducir significativamente la carga de los procesos manuales, brindando alivio a los gerentes de la cadena de suministro de tareas tediosas.

      Mensajes recientes

      • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
        En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
      • 5 Ways to Improve Supply Chain Decision Speed5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro
        La promesa de una cadena de suministro digital ha transformado la forma en que operan las empresas. En esencia, permite tomar decisiones rápidas basadas en datos y, al mismo tiempo, garantizar la calidad y la eficiencia en todas las operaciones. Sin embargo, no se trata solo de tener acceso a más datos. Las organizaciones necesitan las herramientas y plataformas adecuadas para convertir esos datos en información procesable. Aquí es donde la toma de decisiones se vuelve fundamental, especialmente en un panorama en el que las nuevas soluciones de cadena de suministro digital y las plataformas impulsadas por IA pueden ayudarlo a agilizar muchos procesos dentro de la matriz de decisiones. […]
      • Two employees checking inventory in temporary storage in a distribution warehouse.12 causas del exceso de stock y soluciones prácticas
        Gestionar el inventario de manera eficaz es fundamental para mantener un balance saludable y garantizar que los recursos se asignen de manera óptima. A continuación, se analizan en profundidad las principales causas del exceso de existencias, sus implicaciones y posibles soluciones. […]
      • FAQ Mastering Smart IP&O for Better Inventory ManagementPreguntas frecuentes: Cómo dominar la IP&O inteligente para una mejor gestión del inventario.
        Una gestión eficaz de la cadena de suministro y del inventario es esencial para lograr la eficiencia operativa y la satisfacción del cliente. Este blog ofrece respuestas claras y concisas a algunas preguntas básicas y otras preguntas comunes de nuestros clientes de Smart IP&O, ofreciendo información práctica para superar los desafíos típicos y mejorar sus prácticas de gestión de inventario. Centrándonos en estas áreas clave, lo ayudamos a transformar problemas complejos de inventario en acciones estratégicas y manejables que reducen los costos y mejoran el rendimiento general con Smart IP&O. […]
      • 7 Key Demand Planning Trends Shaping the Future7 tendencias clave en planificación de la demanda que están dando forma al futuro
        La planificación de la demanda va más allá de la simple previsión de las necesidades de productos; se trata de garantizar que su empresa satisfaga las demandas de los clientes con precisión, eficiencia y rentabilidad. La última tecnología de planificación de la demanda aborda desafíos clave como la precisión de las previsiones, la gestión de inventarios y la capacidad de respuesta al mercado. En este blog, presentaremos tendencias críticas de planificación de la demanda, que incluyen información basada en datos, previsión probabilística, planificación por consenso, análisis predictivo, modelado de escenarios, visibilidad en tiempo real y previsión multinivel. Estas tendencias le ayudarán a mantenerse a la vanguardia, optimizar su cadena de suministro, reducir costes y mejorar la satisfacción del cliente, posicionando a su empresa para el éxito a largo plazo. […]

        Optimización de inventario para fabricantes, distribuidores y MRO

        • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
          En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
        • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovando en el mercado de repuestos OEM con optimización de inventario impulsada por IA
          El sector de posventa ofrece a los fabricantes de equipos originales una ventaja decisiva al ofrecer un flujo de ingresos constante y fomentar la lealtad del cliente mediante la entrega confiable y oportuna de piezas de repuesto. Sin embargo, la gestión del inventario y la previsión de la demanda en el mercado de posventa está plagada de desafíos, incluidos patrones de demanda impredecibles, amplias gamas de productos y la necesidad de entregas rápidas. Los métodos tradicionales a menudo no son suficientes debido a la complejidad y variabilidad de la demanda en el mercado de posventa. Las últimas tecnologías pueden analizar grandes conjuntos de datos para predecir la demanda futura con mayor precisión y optimizar los niveles de inventario, lo que conduce a un mejor servicio y menores costos. […]
        • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationUtilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro
          Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental. […]
        • Centering Act Spare Parts Timing Pricing and ReliabilityLey de centrado: sincronización, precio y confiabilidad de los repuestos
          En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]

          El problema de la asimetría

          El Blog de Smart

           Recomendaciones para la planificación de la demanda,

          previsión y optimización de inventario

          Los planificadores de demanda tienen que hacer frente a múltiples problemas para realizar su trabajo. La primera es la dificultad de la intermitencia. El carácter "ahora lo ves, ahora no" de la demanda intermitente, con su fuerte mezcla de valores cero, obliga al uso de métodos estadísticos avanzados, como el algoritmo Markov Bootstrap patentado de Smart Software. Pero incluso dentro del oscuro reino de la demanda intermitente, existen grados de dificultad: los planificadores deben hacer frente aún más al Azote de la asimetría, potencialmente costoso.

          La asimetría es un término estadístico que describe el grado en que la distribución de la demanda no es simétrica. La clásica (y en gran medida mítica) curva "en forma de campana" es simétrica, con las mismas posibilidades de que la demanda en cualquier período de tiempo caiga por debajo o por encima del promedio. Por el contrario, una distribución sesgada está desequilibrada, con la mayoría de los valores por encima o por debajo del promedio. En la mayoría de los casos, los datos de demanda tienen un sesgo positivo, con una cola larga de valores que se extiende hacia el extremo superior de la escala de demanda.

          Gráficos de barras de dos series de tiempo
          Figura 1: Dos series de demanda intermitente con diferentes niveles de asimetría
          La figura 1 muestra dos series temporales de 60 meses de demanda intermitente. Ambos tienen un sesgo positivo, pero los datos del panel inferior están más sesgados. Ambas series tienen casi la misma demanda promedio, pero la de arriba es una mezcla de 0, 1 y 2, mientras que la de abajo es una mezcla de 0, 1 y 4.

          Lo que hace que la asimetría positiva sea un problema es que reduce la tasa de llenado de un elemento. La tasa de llenado es importante la gestión del inventario métrica de rendimiento. Mide el porcentaje de la demanda que se satisface inmediatamente con el inventario disponible. Cualquier pedido pendiente o pérdida de ventas reduce la tasa de cumplimiento (además de desperdiciar la buena voluntad del cliente).

          La tasa de relleno es un complemento de la otra métrica de rendimiento clave: el nivel de servicio. El nivel de servicio mide la posibilidad de que un artículo se agote durante el tiempo de reposición. El tiempo de entrega se mide desde el momento en que el inventario cae por debajo del punto de pedido de un artículo, lo que genera un pedido de reabastecimiento, hasta la llegada del inventario de reemplazo.

          El software de gestión de inventario, como SmartForecasts de Smart Software, puede analizar los patrones de demanda para calcular el punto de pedido necesario para lograr un objetivo de nivel de servicio específico. Para alcanzar un nivel de servicio 95% para el artículo en el panel superior de la Figura 1, suponiendo un tiempo de entrega de 1 mes, el punto de reorden requerido es 3; para el artículo inferior, el punto de reorden es 1. (El primer punto de reorden es 3 para permitir la clara posibilidad de que los valores de la demanda futura excedan los valores más grandes, 2, observados hasta ahora. De hecho, son posibles valores tan grandes como 8 .) Consulte la figura 2.

          Histogramas de dos series temporales
          Figura 2: Distribuciones de la demanda total durante un plazo de reposición de 1 mes
          (La Figura 2 traza la distribución prevista de la demanda durante el tiempo de entrega. Las barras verdes representan la probabilidad de que se materialice cualquier nivel particular de demanda).

          Usando el punto de pedido requerido de 3 unidades, la tasa de llenado para el artículo menos sesgado es un 93% saludable. Sin embargo, la tasa de relleno para el artículo más sesgado es un 44% preocupante, aunque este artículo también alcanza un nivel de servicio de 95%. Este es el flagelo de la asimetría.

          La explicación de la diferencia en las tasas de llenado es el grado de asimetría. El punto de reorden para el artículo más sesgado es 1 unidad. Tener 1 unidad disponible al comienzo del plazo de entrega será suficiente para manejar 95% de las demandas que lleguen durante un plazo de entrega de 1 mes. Sin embargo, la demanda mensual podría superar las 15 unidades, por lo que cuando se agote la unidad más sesgada, se "agotará a lo grande", perdiendo una cantidad mucho mayor de unidades.

          La mayoría de los planificadores de demanda estarían orgullosos de lograr un nivel de servicio 95% y una tasa de llenado de 93%. La mayoría estaría preocupada y desconcertada al lograr el nivel de servicio 95% pero solo una tasa de llenado de 44%. Esta falla parcial no sería su culpa: se puede atribuir directamente a la desagradable asimetría en la distribución de los valores de la demanda mensual.

          No existe una solución indolora para este problema. La única forma de aumentar la tasa de llenado en esta situación es elevar el objetivo de nivel de servicio, lo que a su vez impulsará el punto de pedido, lo que finalmente reducirá tanto la frecuencia de los desabastecimientos como su tamaño cada vez que ocurran. En este ejemplo, aumentar el punto de pedido de 1 unidad a 3 unidades logrará un nivel de servicio de 99% y aumentará la tasa de cumplimiento a un respetable, pero no sobresaliente, 84%. Esta mejora tendría el costo de esencialmente triplicar los dólares invertidos en la gestión de este elemento más sesgado.

          Thomas Willemain, PhD, cofundó Smart Software y actualmente se desempeña como vicepresidente sénior de investigación. El Dr. Willemain también se desempeña como Profesor Emérito de Ingeniería Industrial y de Sistemas en el Instituto Politécnico Rensselear y como miembro del personal de investigación en el Centro de Ciencias de la Computación, Instituto de Análisis de Defensa.

          Deja un comentario

          Artículos Relacionados

          Forecast-Based Inventory Management for Better Planning

          Gestión de inventario basada en pronósticos para una mejor planificación

          La gestión de inventario basada en pronósticos, o lógica MRP (planificación de requisitos de materiales), es un método de planificación anticipada que ayuda a las empresas a satisfacer la demanda sin exceso o falta de existencias. Al anticipar la demanda y ajustar los niveles de inventario, mantiene un equilibrio entre satisfacer las necesidades de los clientes y minimizar los costos excesivos de inventario. Este enfoque optimiza las operaciones, reduce el desperdicio y mejora la satisfacción del cliente.

          Future-Proofing Utilities: Advanced Analytics for Supply Chain Optimization

          Utilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro

          Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental.

          Leveraging Epicor Kinetic Planning BOMs with Smart IP&O to Forecast Accurately

          Aprovechando las listas de materiales de Epicor Kinetic Planning con Smart IP&O para pronosticar con precisión

          En este blog, exploramos cómo aprovechar las listas de materiales de Epicor Kinetic Planning con Smart IP&O puede transformar su enfoque de pronóstico en un entorno de fabricación altamente configurable. Descubra cómo Smart, una solución de optimización de inventario y planificación de la demanda basada en IA de vanguardia, puede simplificar las complejidades de predecir la demanda de productos terminados, especialmente cuando se trata de componentes intercambiables. Descubra cómo la planificación de listas de materiales y las técnicas avanzadas de previsión permiten a las empresas anticipar las necesidades de los clientes con mayor precisión, garantizando la eficiencia operativa y manteniéndose a la vanguardia en un mercado competitivo.

          Mensajes recientes

          • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
            En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
          • 5 Ways to Improve Supply Chain Decision Speed5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro
            La promesa de una cadena de suministro digital ha transformado la forma en que operan las empresas. En esencia, permite tomar decisiones rápidas basadas en datos y, al mismo tiempo, garantizar la calidad y la eficiencia en todas las operaciones. Sin embargo, no se trata solo de tener acceso a más datos. Las organizaciones necesitan las herramientas y plataformas adecuadas para convertir esos datos en información procesable. Aquí es donde la toma de decisiones se vuelve fundamental, especialmente en un panorama en el que las nuevas soluciones de cadena de suministro digital y las plataformas impulsadas por IA pueden ayudarlo a agilizar muchos procesos dentro de la matriz de decisiones. […]
          • Two employees checking inventory in temporary storage in a distribution warehouse.12 causas del exceso de stock y soluciones prácticas
            Gestionar el inventario de manera eficaz es fundamental para mantener un balance saludable y garantizar que los recursos se asignen de manera óptima. A continuación, se analizan en profundidad las principales causas del exceso de existencias, sus implicaciones y posibles soluciones. […]
          • FAQ Mastering Smart IP&O for Better Inventory ManagementPreguntas frecuentes: Cómo dominar la IP&O inteligente para una mejor gestión del inventario.
            Una gestión eficaz de la cadena de suministro y del inventario es esencial para lograr la eficiencia operativa y la satisfacción del cliente. Este blog ofrece respuestas claras y concisas a algunas preguntas básicas y otras preguntas comunes de nuestros clientes de Smart IP&O, ofreciendo información práctica para superar los desafíos típicos y mejorar sus prácticas de gestión de inventario. Centrándonos en estas áreas clave, lo ayudamos a transformar problemas complejos de inventario en acciones estratégicas y manejables que reducen los costos y mejoran el rendimiento general con Smart IP&O. […]
          • 7 Key Demand Planning Trends Shaping the Future7 tendencias clave en planificación de la demanda que están dando forma al futuro
            La planificación de la demanda va más allá de la simple previsión de las necesidades de productos; se trata de garantizar que su empresa satisfaga las demandas de los clientes con precisión, eficiencia y rentabilidad. La última tecnología de planificación de la demanda aborda desafíos clave como la precisión de las previsiones, la gestión de inventarios y la capacidad de respuesta al mercado. En este blog, presentaremos tendencias críticas de planificación de la demanda, que incluyen información basada en datos, previsión probabilística, planificación por consenso, análisis predictivo, modelado de escenarios, visibilidad en tiempo real y previsión multinivel. Estas tendencias le ayudarán a mantenerse a la vanguardia, optimizar su cadena de suministro, reducir costes y mejorar la satisfacción del cliente, posicionando a su empresa para el éxito a largo plazo. […]

            Optimización de inventario para fabricantes, distribuidores y MRO

            • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
              En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
            • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovando en el mercado de repuestos OEM con optimización de inventario impulsada por IA
              El sector de posventa ofrece a los fabricantes de equipos originales una ventaja decisiva al ofrecer un flujo de ingresos constante y fomentar la lealtad del cliente mediante la entrega confiable y oportuna de piezas de repuesto. Sin embargo, la gestión del inventario y la previsión de la demanda en el mercado de posventa está plagada de desafíos, incluidos patrones de demanda impredecibles, amplias gamas de productos y la necesidad de entregas rápidas. Los métodos tradicionales a menudo no son suficientes debido a la complejidad y variabilidad de la demanda en el mercado de posventa. Las últimas tecnologías pueden analizar grandes conjuntos de datos para predecir la demanda futura con mayor precisión y optimizar los niveles de inventario, lo que conduce a un mejor servicio y menores costos. […]
            • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationUtilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro
              Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental. […]
            • Centering Act Spare Parts Timing Pricing and ReliabilityLey de centrado: sincronización, precio y confiabilidad de los repuestos
              En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]

              Un control sobre la automatización de pronósticos con el índice de atención

              El Blog de Smart

              Recomendaciones para la planificación de la demanda,

              previsión y optimización de inventario

              Una nueva métrica que llamamos "Índice de atención" ayudará a los pronosticadores a identificar situaciones en las que "los datos se comportan mal" pueden distorsionar los pronósticos estadísticos automáticos (ver el poema adyacente). Identifica rápidamente aquellos elementos que probablemente requieran anulaciones de pronósticos, lo que proporciona una forma más eficiente de poner a trabajar la experiencia comercial y otra inteligencia humana para maximizar la precisión de los pronósticos. ¿Como funciona?

              Clásico métodos de pronóstico, como los diversos sabores de suavizado exponencial y promedios móviles, insisten en un acto de fe. Requieren que confiemos en que las condiciones presentes persistirán en el futuro. Si las condiciones actuales persisten, entonces es sensato utilizar estos métodos extrapolativos, métodos que cuantifican el nivel actual, la tendencia, la estacionalidad y el “ruido” de una serie temporal y los proyectan hacia el futuro.

              Pero si no persisten, los métodos de extrapolación pueden causarnos problemas. Lo que había estado subiendo podría estar bajando de repente. Lo que solía estar centrado en un nivel puede saltar repentinamente a otro. O podría suceder algo realmente extraño que está completamente fuera de patrón. En estas circunstancias sorprendentes, la precisión de los pronósticos se deteriora, los cálculos de inventario fallan y se produce un descontento general.

              Una forma de hacer frente a este problema es confiar en modelos de pronóstico más complejos que tengan en cuenta los factores externos que impulsan la variable que se pronostica. Por ejemplo, las promociones de ventas intentan interrumpir los patrones de compra y moverlos en una dirección positiva, por lo que incluir la actividad de promoción en el proceso de pronóstico puede mejorar el pronóstico de ventas. A veces, los indicadores macroeconómicos, como la construcción de viviendas o las tasas de inflación, se pueden utilizar para mejorar la precisión de los pronósticos. Pero los modelos más complejos requieren más datos y más experiencia, y es posible que no sean útiles para algunos problemas, como la gestión de piezas o subsistemas, en lugar de productos terminados.

              Si uno está atascado usando métodos extrapolativos simples, es útil tener una forma de marcar elementos que serán difíciles de pronosticar. Este es el índice de atención. Como sugiere el nombre, los elementos que se van a pronosticar con un índice de atención alto requieren un manejo especial, al menos una revisión y, por lo general, algún tipo de ajuste de pronóstico.

               

               

              El Índice de Atención detecta tres tipos de problemas:

              Un valor atípico en el historial de demanda de un artículo.
              Un cambio abrupto en el nivel de un elemento.
              Un cambio abrupto en la tendencia de un artículo.
              Usando software como SmartForecasts™, el pronosticador puede lidiar con un valor atípico reemplazándolo con un valor más típico.

              Un cambio abrupto en el nivel o la tendencia se puede abordar omitiendo, de los cálculos de pronóstico, todos los datos anteriores a la "ruptura" en el patrón de demanda, suponiendo que el artículo haya cambiado a un nuevo régimen que hace que los datos anteriores sean irrelevantes.

              Si bien ningún índice es perfecto, el Índice de atención hace un buen trabajo al centrar la atención en los historiales de demanda más problemáticos. Esto se demuestra en las dos figuras a continuación, que se produjeron con datos de la competencia M3, muy conocida en el mundo de los pronósticos. La Figura 1 muestra los 20 ítems (de los 3.003 del concurso) con las puntuaciones más altas en el Índice de Atención; todos estos tienen grotescos valores atípicos y rupturas. La Figura 2 muestra los 20 ítems con las puntuaciones más bajas del Índice de Atención; la mayoría (pero no todos) de los ítems con puntajes bajos tienen patrones relativamente benignos.

              Si tiene miles de elementos para pronosticar, el nuevo índice de atención será muy útil para centrar su atención en aquellos elementos que probablemente sean problemáticos.

              Thomas Willemain, PhD, cofundó Smart Software y actualmente se desempeña como vicepresidente sénior de investigación. El Dr. Willemain también se desempeña como Profesor Emérito de Ingeniería Industrial y de Sistemas en el Instituto Politécnico Rensselaer y como miembro del personal de investigación en el Centro de Ciencias de la Computación, Instituto de Análisis de Defensa.

              Deja un comentario

              Artículos Relacionados

              Daily Demand Scenarios

              Escenarios de demanda diaria

              En este Videoblog explicaremos cómo la previsión de series temporales se ha convertido en una herramienta fundamental, especialmente a nivel diario, en la que Smart Software ha sido pionero desde sus inicios hace más de cuarenta años. La evolución de las prácticas comerciales de incrementos temporales anuales a incrementos temporales más refinados, como el análisis de datos mensual y ahora diario, ilustra un cambio significativo en las estrategias operativas.

              The Methods of Forecasting

              Los métodos de previsión

              El software de planificación de la demanda y pronóstico estadístico desempeña un papel fundamental en la gestión empresarial eficaz al incorporar funciones que mejoran significativamente la precisión de los pronósticos. Un aspecto clave implica la utilización de modelos extrapolativos o basados en suavizado, que permiten a las empresas hacer predicciones rápidamente basadas únicamente en datos históricos. Esta base basada en el desempeño pasado es crucial para comprender tendencias y patrones, especialmente en variables como las ventas o la demanda de productos. El software de pronóstico va más allá del mero análisis de datos al permitir combinar el juicio profesional con pronósticos estadísticos, reconociendo que el pronóstico no es un proceso único para todos. Esta flexibilidad permite a las empresas incorporar conocimientos humanos y de la industria en el modelo de pronóstico, lo que garantiza una predicción más matizada y precisa.

              Can Randomness be an Ally in the Forecasting Battle?

              ¿Puede la aleatoriedad ser un aliado en la batalla de los pronósticos?

              Cuando intentamos comprender el complejo mundo de la logística, la aleatoriedad juega un papel fundamental. Esto introduce una paradoja interesante: en una realidad donde se valoran la precisión y la certeza, ¿podría la naturaleza impredecible de la oferta y la demanda servir realmente como un aliado estratégico?
              La búsqueda de pronósticos precisos no es sólo un ejercicio académico; es un componente crítico del éxito operativo en numerosas industrias. Para los planificadores de la demanda que deben anticipar la demanda de un producto, las ramificaciones de hacerlo bien (o mal) son fundamentales. Por lo tanto, reconocer y aprovechar el poder de la aleatoriedad no es simplemente un ejercicio teórico; es una necesidad de resiliencia y adaptabilidad en un entorno en constante cambio.

              Mensajes recientes

              • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
                En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
              • 5 Ways to Improve Supply Chain Decision Speed5 formas de mejorar la velocidad de toma de decisiones en la cadena de suministro
                La promesa de una cadena de suministro digital ha transformado la forma en que operan las empresas. En esencia, permite tomar decisiones rápidas basadas en datos y, al mismo tiempo, garantizar la calidad y la eficiencia en todas las operaciones. Sin embargo, no se trata solo de tener acceso a más datos. Las organizaciones necesitan las herramientas y plataformas adecuadas para convertir esos datos en información procesable. Aquí es donde la toma de decisiones se vuelve fundamental, especialmente en un panorama en el que las nuevas soluciones de cadena de suministro digital y las plataformas impulsadas por IA pueden ayudarlo a agilizar muchos procesos dentro de la matriz de decisiones. […]
              • Two employees checking inventory in temporary storage in a distribution warehouse.12 causas del exceso de stock y soluciones prácticas
                Gestionar el inventario de manera eficaz es fundamental para mantener un balance saludable y garantizar que los recursos se asignen de manera óptima. A continuación, se analizan en profundidad las principales causas del exceso de existencias, sus implicaciones y posibles soluciones. […]
              • FAQ Mastering Smart IP&O for Better Inventory ManagementPreguntas frecuentes: Cómo dominar la IP&O inteligente para una mejor gestión del inventario.
                Una gestión eficaz de la cadena de suministro y del inventario es esencial para lograr la eficiencia operativa y la satisfacción del cliente. Este blog ofrece respuestas claras y concisas a algunas preguntas básicas y otras preguntas comunes de nuestros clientes de Smart IP&O, ofreciendo información práctica para superar los desafíos típicos y mejorar sus prácticas de gestión de inventario. Centrándonos en estas áreas clave, lo ayudamos a transformar problemas complejos de inventario en acciones estratégicas y manejables que reducen los costos y mejoran el rendimiento general con Smart IP&O. […]
              • 7 Key Demand Planning Trends Shaping the Future7 tendencias clave en planificación de la demanda que están dando forma al futuro
                La planificación de la demanda va más allá de la simple previsión de las necesidades de productos; se trata de garantizar que su empresa satisfaga las demandas de los clientes con precisión, eficiencia y rentabilidad. La última tecnología de planificación de la demanda aborda desafíos clave como la precisión de las previsiones, la gestión de inventarios y la capacidad de respuesta al mercado. En este blog, presentaremos tendencias críticas de planificación de la demanda, que incluyen información basada en datos, previsión probabilística, planificación por consenso, análisis predictivo, modelado de escenarios, visibilidad en tiempo real y previsión multinivel. Estas tendencias le ayudarán a mantenerse a la vanguardia, optimizar su cadena de suministro, reducir costes y mejorar la satisfacción del cliente, posicionando a su empresa para el éxito a largo plazo. […]

                Optimización de inventario para fabricantes, distribuidores y MRO

                • Managing Spare Parts Inventory: Best PracticesGestión del inventario de repuestos: mejores prácticas
                  En este blog, exploraremos varias estrategias efectivas para administrar el inventario de repuestos, haciendo hincapié en la importancia de optimizar los niveles de existencias, mantener los niveles de servicio y usar herramientas inteligentes para ayudar en la toma de decisiones. La gestión del inventario de repuestos es un componente fundamental para las empresas que dependen del tiempo de funcionamiento de los equipos y la fiabilidad del servicio. A diferencia de los artículos de inventario habituales, los repuestos suelen tener patrones de demanda impredecibles, lo que hace que sea más difícil gestionarlos de forma eficaz. Un sistema de gestión de inventario de repuestos eficiente ayuda a evitar la falta de existencias que puede provocar tiempos de inactividad operativa y retrasos costosos, a la vez que evita el exceso de existencias que inmoviliza innecesariamente el capital y aumenta los costes de mantenimiento. […]
                • Innovating the OEM Aftermarket with AI-Driven Inventory Optimization XLInnovando en el mercado de repuestos OEM con optimización de inventario impulsada por IA
                  El sector de posventa ofrece a los fabricantes de equipos originales una ventaja decisiva al ofrecer un flujo de ingresos constante y fomentar la lealtad del cliente mediante la entrega confiable y oportuna de piezas de repuesto. Sin embargo, la gestión del inventario y la previsión de la demanda en el mercado de posventa está plagada de desafíos, incluidos patrones de demanda impredecibles, amplias gamas de productos y la necesidad de entregas rápidas. Los métodos tradicionales a menudo no son suficientes debido a la complejidad y variabilidad de la demanda en el mercado de posventa. Las últimas tecnologías pueden analizar grandes conjuntos de datos para predecir la demanda futura con mayor precisión y optimizar los niveles de inventario, lo que conduce a un mejor servicio y menores costos. […]
                • Future-Proofing Utilities. Advanced Analytics for Supply Chain OptimizationUtilidades preparadas para el futuro: análisis avanzados para la optimización de la cadena de suministro
                  Los servicios públicos en los campos de la electricidad, el gas natural, el agua urbana y las telecomunicaciones requieren muchos activos y dependen de una infraestructura física que debe mantenerse, actualizarse y mejorarse adecuadamente con el tiempo. Maximizar el tiempo de actividad de los activos y la confiabilidad de la infraestructura física exige una gestión eficaz del inventario, la previsión de piezas de repuesto y la gestión de proveedores. Una empresa de servicios públicos que ejecuta estos procesos de manera efectiva superará a sus pares, brindará mejores retornos para sus inversores y mayores niveles de servicio para sus clientes, al mismo tiempo que reducirá su impacto ambiental. […]
                • Centering Act Spare Parts Timing Pricing and ReliabilityLey de centrado: sincronización, precio y confiabilidad de los repuestos
                  En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio. […]