Preguntas frecuentes: Cómo dominar la IP&O inteligente para una mejor gestión del inventario.

Una gestión eficaz de la cadena de suministro y del inventario es esencial para lograr la eficiencia operativa y la satisfacción del cliente. Este blog ofrece respuestas claras y concisas a algunas preguntas básicas y otras preguntas comunes de nuestros clientes de Smart IP&O, ofreciendo información práctica para superar los desafíos típicos y mejorar sus prácticas de gestión de inventario. Centrándonos en estas áreas clave, lo ayudamos a transformar problemas complejos de inventario en acciones estratégicas y manejables que reducen los costos y mejoran el rendimiento general con Smart IP&O.

1. ¿Qué es la demanda de tiempo de entrega?
Se espera que la demanda se produzca durante el plazo de reposición. La demanda del plazo de reposición se determina por Métodos de previsión de Smart. 

2. ¿Qué es el Min y cómo se calcula?
El Min se muestra en la sección de controladores de S.I.O. es el punto de reorden y es la suma de la demanda del tiempo de entrega y el stock de seguridad. Cuando el inventario disponible cae por debajo del mínimo debido a la demanda, deberá pedir más. Smart también tiene un “mínimo” en el campo de “reglas de pedido” de S.I.O., que es la cantidad mínima de pedido que puede realizar a un proveedor. 

3. ¿Qué es el Max y cómo se calcula?
El máximo es la mayor cantidad de inventario que estará en el estante si se adhiere a la política de pedidos. El máximo es la suma del mínimo (punto de reorden) más el OQ definido. 

4. ¿Cómo se determina la cantidad del pedido (OQ)?
La cantidad del pedido se importa inicialmente desde su sistema ERP. Puede modificarse en función de una serie de opciones definidas por el usuario, entre las que se incluyen:

Demanda de múltiples plazos de entrega
Demanda múltiple mensual o semanal
OQ recomendado por Smart

5. ¿Qué es la cantidad económica de pedido?
Es la orden cantidad que minimizará los costos totales, considerando el costo de mantenimiento y los costos de pedido de inventario. 

6. ¿Cuál es el “OQ recomendado” que calcula Smart?
Es la cantidad económica del pedido más un ajuste si es necesario para asegurar que el tamaño del pedido sea mayor o igual a la demanda durante el tiempo de entrega.

7. ¿Por qué el sistema predice que tendremos un clima bajo? nivel de servicio?
Smart predice el nivel de servicio que resultará de la política de inventario especificada (Mín./Máx. o Punto de reorden/Cantidad de pedido), suponiendo que se cumpla esa política. Cuando el nivel de servicio previsto es bajo, puede significar que la demanda esperada durante el tiempo de entrega es mayor que el punto de reorden (Mín.). Cuando la demanda durante el tiempo de entrega de reposición es mayor que el punto de reorden, la probabilidad de que se agote el stock es mayor, lo que da como resultado un nivel de servicio bajo. También puede ser que el tiempo de entrega para la reposición no se haya ingresado con precisión. Si el tiempo de entrega ingresado es mayor que la realidad, el punto de reorden puede no cubrir la demanda durante el tiempo de entrega. Verifique sus entradas de tiempo de entrega.

8. ¿Por qué el nivel de servicio se muestra como cero cuando el punto de reorden (o mínimo) no es cero?
Smart predice el nivel de servicio que resultará de la política de inventario especificada (Mín/Máx o Punto de reorden/Cantidad de pedido), suponiendo que se respete esa política. Cuando el nivel de servicio previsto es bajo, puede significar que la demanda esperada durante el tiempo de entrega es mayor que el punto de reorden (Mín), a veces muchas veces mayor, lo que prácticamente garantizaría un desabastecimiento. Cuando la demanda durante el tiempo de entrega de reposición es mayor que el punto de reorden, la probabilidad de desabastecimiento es mayor, lo que da como resultado un bajo nivel de servicio. También puede ser que su tiempo de entrega para la reposición no se haya ingresado con precisión. Si el tiempo de entrega ingresado es más largo que la realidad, el punto de reorden puede no cubrir la demanda durante el tiempo de entrega. Verifique sus entradas de tiempo de entrega.

9. Pero mis niveles de servicio reales no son tan bajos como los que predice Smart, ¿por qué?
Eso puede ser cierto porque Smart predice su nivel de servicio si usted cumple con la política. Es posible que no esté cumpliendo con la política. la política en la que se basa la predicción del nivel de servicio.  Si su inventario disponible es mayor que la cantidad máxima, no está cumpliendo con la política. Verifique los supuestos ingresados para el tiempo de entrega. Los tiempos de entrega reales pueden ser mucho más cortos que los ingresados, lo que da como resultado un nivel de servicio previsto que es menor al esperado.

10. Smart parece recomendar demasiado inventario, o al menos más de lo que esperaba; ¿por qué?
Debe considerar la posibilidad de evaluar los datos de entrada, como el nivel de servicio y los plazos de entrega. Tal vez sus plazos de entrega reales no sean tan largos como el plazo de entrega que utiliza Smart. Hemos visto situaciones en las que los proveedores inflan artificialmente sus plazos de entrega cotizados para asegurarse de que siempre lleguen a tiempo. Si utiliza ese plazo de entrega al calcular sus existencias de seguridad, inevitablemente acumulará un exceso de existencias. Por lo tanto, revise su historial de plazos de entrega reales (Smart proporciona el informe de rendimiento del proveedor para esto) para tener una idea de los plazos de entrega reales y ajustarlos en consecuencia. O es posible que esté pidiendo un nivel de servicio muy alto que puede verse agravado aún más por un artículo muy volátil que tiene varios picos significativos en la demanda. Cuando la demanda fluctúa significativamente con respecto a la media, el uso de un objetivo de nivel de servicio alto (98%+) dará como resultado políticas de almacenamiento diseñadas para cubrir incluso picos muy grandes. Pruebe con un objetivo de nivel de servicio más bajo o reduzca el plazo de entrega (suponiendo que el plazo de entrega especificado ya no sea realista) y su inventario disminuirá, a veces de manera muy sustancial.

11. Smart está utilizando picos de demanda que no quiero que tenga en cuenta y está inflando el inventario. ¿Cómo puedo corregir esto?
Si está seguro de que el pico no volverá a ocurrir, puede eliminarlo de los datos históricos mediante una anulación con Smart Demand Planner. Deberá abrir el proyecto de pronóstico que contiene ese artículo, ajustar el historial y guardar el historial ajustado. Puede comunicarse con el soporte técnico para que lo ayude a configurarlo. Si los picos son parte de la aleatoriedad normal que a veces puede ocurrir, es mejor dejarlo así. En su lugar, considere un objetivo de nivel de servicio más bajo. El objetivo más bajo significa que los puntos de reorden no necesitan cubrir los valores extremos con tanta frecuencia, lo que da como resultado un inventario más bajo.

12. Cuando cambio la Cantidad de pedido o Máxima, mis niveles de servicio de ciclo no cambian, ¿por qué?
Smart informa sobre el “nivel de servicio del ciclo” y el “nivel de servicio”. Cuando cambia las cantidades de su pedido y las cantidades máximas, esto no afectará el “nivel de servicio del ciclo” porque los niveles de servicio del ciclo informan sobre el rendimiento solo durante el período de reposición. Esto se debe a que todo lo que lo protege de la falta de existencias después de que se realiza el pedido (y debe esperar hasta que llegue el pedido para la reposición) es el punto de reorden o el nivel mínimo. Cambiar el tamaño de la cantidad del pedido o el nivel máximo disponible (hasta niveles) no afectará sus niveles de servicio del ciclo. El nivel de servicio del ciclo solo se ve afectado por el tamaño de los puntos de reorden y la cantidad de stock de seguridad que se agrega, mientras que el “nivel de servicio” de Smart cambiará cuando modifique tanto los puntos de reorden como las cantidades del pedido.

13. Mi pronóstico parece inexacto. No muestra ninguno de los altibajos observados en el historial. ¿Por qué?
Un buen pronóstico es el número que se acerca más al real en comparación con otros números que podrían haberse predicho. Cuando los altibajos históricos no ocurren en intervalos predecibles, el mejor pronóstico es el que promedia o suaviza esos altibajos históricos. Un pronóstico que predice altibajos futuros que no ocurren en patrones obvios históricamente es más probable que sea menos preciso que uno que se pronostica solo en línea recta o de tendencia.

14. ¿Qué es la optimización? ¿Cómo funciona?
La optimización es una opción para establecer políticas de almacenamiento de existencias en las que el software elige la política de almacenamiento de existencias que genere el menor costo operativo total. Por ejemplo, si un artículo es muy costoso de mantener, una política que tenga más faltantes de existencias, pero menos inventario, generará costos totales más bajos que una política que tenga menos faltantes de existencias y más inventario. Por otro lado, si el artículo tiene un alto costo de faltante de existencias, entonces una política que genere menos faltantes de existencias pero requiera más inventario generará más beneficios financieros que una política que tenga menos inventario pero más faltantes de existencias. Al utilizar la función de optimización, el usuario debe especificar el nivel de servicio mínimo. El software decidirá entonces si un nivel de servicio más alto generará un mejor retorno. Si es así, las políticas de reordenamiento apuntarán al nivel de servicio más alto. Si no es así, las políticas de reordenamiento se basarán de manera predeterminada en el nivel de servicio mínimo definido por el usuario. Este seminario web proporciona detalles y explicaciones sobre las matemáticas detrás de la optimización.  https://www.screencast.com/t/3CfKJoMe2Uj

15. ¿Qué es un escenario hipotético?
Los escenarios hipotéticos le permiten probar distintas opciones de políticas de inventario definidas por el usuario y evaluar el impacto previsto en métricas como niveles de servicio, tasas de llenado y valor del inventario. Para explorar estos escenarios, haga clic en la pestaña Impulsores, ya sea en el nivel de resumen o en el nivel de “Artículos”, e ingrese los ajustes deseados. Luego, puede volver a calcular para ver cómo estos cambios afectarían el rendimiento general de su inventario. Esto le permite comparar varias estrategias y seleccionar el enfoque más rentable y eficiente para su cadena de suministro.

Al abordar preguntas y desafíos comunes, brindamos información útil para ayudarlo a mejorar sus prácticas de gestión de inventario. Con Smart IP&O, tiene las herramientas que necesita para tomar decisiones informadas sobre el inventario, reducir costos y mejorar el rendimiento general.

La importancia de definiciones claras de niveles de servicio en la gestión de inventario

 

El software de optimización de inventario que respalda el análisis hipotético expondrá el equilibrio entre los desabastecimientos y los costos excesivos de los distintos objetivos de nivel de servicio. Pero primero es importante identificar cómo se interpretan, miden y reportan los “niveles de servicio”. Esto evitará la falta de comunicación y la falsa sensación de seguridad que puede desarrollarse cuando se utilizan definiciones menos estrictas. Definir claramente cómo se calcula el nivel de servicio pone a todas las partes interesadas en la misma página. Esto facilita una mejor toma de decisiones.

Hay muchas diferencias en lo que quieren decir las empresas cuando mencionan sus "niveles de servicio". Esto puede variar de una empresa a otra e incluso de un departamento a otro dentro de una empresa. Aquí hay dos ejemplos:

 

  1. Nivel de servicio medido "desde el estante" versus un plazo de entrega cotizado por el cliente.
    El nivel de servicio medido "desde el estante" significa el porcentaje de unidades solicitadas que están inmediatamente disponibles en stock. Sin embargo, cuando un cliente realiza un pedido, a menudo no se envía de inmediato. El servicio de atención al cliente o ventas cotizarán cuándo se enviará el pedido. Si el cliente está de acuerdo con la fecha de envío prometida y el pedido se envía antes de esa fecha, se considera que se ha cumplido el nivel de servicio. Los niveles de servicio serán claramente más altos cuando se calculen según el tiempo de entrega cotizado por el cliente en comparación con "disponible en el estante".
  1. Nivel de servicio medido sobre el tiempo de entrega fijo versus variable cotizado por el cliente.
    Los altos niveles de servicio a menudo están sesgados porque los plazos de entrega cotizados por el cliente se ajustan posteriormente para permitir que casi todos los pedidos se surtan “a tiempo y en su totalidad”. Esto sucede cuando no se puede cumplir con el tiempo de entrega inicial, pero el cliente acepta tomar el pedido más tarde, y el campo de tiempo de entrega cotizado por el cliente que se utiliza para rastrear el nivel de servicio es ajustado por ventas o servicio al cliente.

Aclarar cómo se definen, miden y reportan los “niveles de servicio” es esencial para alinear las organizaciones y mejorar la toma de decisiones, lo que resulta en prácticas de gestión de inventario más efectivas.

 

La próxima frontera en análisis de la cadena de suministro

Creemos que la vanguardia del análisis de la cadena de suministro es el desarrollo de gemelos digitales de sistemas de inventario. Estos gemelos toman la forma de modelos de eventos discretos que utilizan la simulación Monte Carlo para generar y optimizar toda la gama de riesgos operativos. También afirmamos que nosotros y nuestros colegas de Smart Software hemos desempeñado un papel enorme en la creación de esa vanguardia. Pero no estamos solos: hay un pequeño número de otras empresas de software en todo el mundo que se están poniendo al día.

Entonces, ¿qué sigue para el análisis de la cadena de suministro? ¿Dónde está la próxima frontera? Podría implicar algún tipo de modelo de red neuronal de un sistema de distribución. Pero daríamos mejores probabilidades a una extensión de nuestros modelos de vanguardia de sistemas de inventario de “escalón único” a sistemas de inventario de “escalones múltiples”.

Las Figuras 1 y 2 ilustran la distinción entre sistemas de escalón único y múltiple. La Figura 1 muestra un fabricante que depende de una Fuente para reponer su stock de repuestos o componentes. Cuando se avecina un desabastecimiento, el fabricante solicita reabastecimiento de existencias a la Fuente.

Software de optimización de inventario multiescalón único AI

Figura 1: Un sistema de inventario de un solo escalón

 

Los modelos de escalón único no incluyen explícitamente detalles de la Fuente. Sigue siendo un misterio, un fantasma invisible cuya única característica relevante es el tiempo aleatorio que tarda en responder a una solicitud de reabastecimiento. Es importante destacar que se supone implícitamente que la Fuente nunca se agota. Esa suposición puede ser “suficientemente buena” para muchos propósitos, pero no puede ser literalmente cierta. Se maneja incorporando eventos de desabastecimiento de proveedores en la distribución del tiempo de entrega de reabastecimiento. Rechazar ese supuesto es la razón fundamental para el modelado multiescalón.

La Figura 2 muestra un sistema de inventario simple de dos escalones. Cambia los dominios de la fabricación a la distribución. Hay múltiples almacenes (WH) que dependen de un centro de distribución (DC) para el reabastecimiento. Ahora el DC es una parte explícita del modelo. Tiene una capacidad finita para procesar pedidos y requiere sus propios protocolos de reordenamiento. El DC se reabastece desde arriba en la cadena desde una Fuente. La Fuente podría ser el fabricante del artículo del inventario o quizás un “CD regional” o algo similar, pero ¿adivinen qué? – es otro fantasma. Al igual que en el modelo de un solo escalón, este fantasma tiene una característica visible: la distribución de probabilidad de su tiempo de reabastecimiento. (El chiste de un famoso chiste de física es "Pero señora, hay tortugas hasta abajo". En nuestro caso, "Son fantasmas hasta arriba").

Dos software de optimización de inventario multiescalón AI

Figura 2: Un sistema de inventario de dos niveles

 

El problema del diseño y optimización de procesos es mucho más difícil con dos niveles. La dificultad no es sólo la adición de dos parámetros de control más para cada WH (por ejemplo, un mínimo y un máximo para cada uno) más los mismos dos parámetros para el DC. Más bien, la parte más difícil es modelar la interacción entre los WH. En el modelo de un solo nivel, cada WH opera en su propio pequeño mundo y nunca escucha "Lo siento, estamos agotados" de la Fuente fantasmal. Pero en un sistema de dos niveles, hay múltiples WH que compiten por el reabastecimiento desde su DC compartido. Esta competencia crea la principal dificultad analítica: los WH no pueden modelarse de forma aislada sino que deben analizarse simultáneamente. Por ejemplo, si un DC da servicio a diez WH, hay 2+10×2 = 22 parámetros de control de inventario cuyos valores deben calcularse. En lenguaje nerd: no es trivial resolver un problema de optimización discreta restringido de 22 variables que tiene una función objetivo estocástica.

Si elegimos el diseño de sistema incorrecto, descubrimos un nuevo fenómeno inherente a los sistemas de múltiples niveles, que informalmente llamamos "fusión" o "catástrofe". En este fenómeno, el CD no puede satisfacer las demandas de reabastecimiento de los WH, por lo que eventualmente crea desabastecimientos a nivel de almacén. Luego, las solicitudes de reabastecimiento cada vez más frenéticas del WH agotan el inventario en el DC, que inicia sus propias solicitudes de reabastecimiento en pánico desde el DC regional. Si el CD regional tarda demasiado en reponer el CD, entonces todo el sistema se disuelve en una tragedia de desabastecimiento.

Una solución al problema de la fusión es sobrediseñar el CD para que casi nunca se agote, pero eso puede ser muy costoso, razón por la cual existe un CD regional en primer lugar. Por lo tanto, cualquier diseño de sistema asequible tiene un CC que sea lo suficientemente bueno como para durar mucho tiempo entre fusiones. Esta perspectiva implica un nuevo tipo de indicador clave de desempeño (KPI), como “La probabilidad de colapso dentro de X años es inferior al Y por ciento”.

La próxima frontera requerirá nuevos métodos y nuevas métricas, pero ofrecerá una nueva forma de diseñar y optimizar los sistemas de distribución. Nuestra fábrica de zorrillos ya está generando prototipos. Mira este espacio.

 

 

Superar la incertidumbre con tecnología de optimización de servicio e inventario

En este blog, analizaremos el mercado impredecible y de ritmo rápido de hoy y los constantes desafíos que enfrentan las empresas para administrar su inventario y niveles de servicio de manera eficiente. El tema principal de esta discusión, arraigado en el concepto de “Optimización probabilística del inventario”, se centra en cómo se puede aprovechar la tecnología moderna para lograr objetivos óptimos de servicio e inventario en medio de la incertidumbre. Este enfoque no sólo aborda los problemas tradicionales de gestión de inventarios, sino que también ofrece una ventaja estratégica para afrontar las complejidades de las fluctuaciones de la demanda y las interrupciones de la cadena de suministro.

Comprender e implementar la tecnología de optimización de inventario es importante por varias razones. En primer lugar, afecta directamente la capacidad de una empresa para satisfacer las demandas de los clientes con prontitud, afectando así la satisfacción y la lealtad del cliente. En segundo lugar, una gestión eficaz del inventario controla los costos operativos, reduciendo la retención innecesaria de existencias y minimizando el riesgo de desabastecimiento o exceso de existencias. En una era donde las condiciones del mercado cambian rápidamente, tener un sistema sólido para gestionar estos aspectos puede marcar la diferencia entre prosperar y simplemente sobrevivir.

En el corazón de la gestión de inventarios se encuentra una paradoja: la necesidad de estar preparado para la demanda fluctuante sin sucumbir a los peligros del exceso de existencias, que puede conducir a mayores costos de mantenimiento, obsolescencia y desperdicio de recursos. Por el contrario, la falta de existencias puede provocar desabastecimientos, pérdida de ventas y disminución de la satisfacción del cliente, lo que en última instancia afecta la reputación y los resultados de una empresa. La naturaleza impredecible de las demandas del mercado, agravada por posibles interrupciones en la cadena de suministro y cambios en el comportamiento de los consumidores, añade complejidad a este acto de equilibrio.

La tecnología juega un papel fundamental aquí. El software moderno de optimización de inventario integra modelos probabilísticos, algoritmos de pronóstico sofisticados y capacidades de simulación. Estos sistemas ayudan a las empresas a responder rápidamente a las condiciones cambiantes del mercado. Además, la adopción de dicha tecnología fomenta una cultura de toma de decisiones basada en datos, lo que garantiza que las empresas no simplemente reaccionen a las incertidumbres sino que elaboren estrategias de manera proactiva para mitigar sus impactos.

Aquí hay breves discusiones sobre las tecnologías algorítmicas relevantes.

Optimización probabilística del inventario: Los enfoques tradicionales de gestión de inventarios se basan en modelos deterministas que suponen un mundo estático y predecible. Estos modelos fallan ante la variabilidad y la incertidumbre. Ingrese a la optimización probabilística del inventario, un paradigma que abarca la aleatoriedad inherente a los procesos de la cadena de suministro. Este enfoque emplea modelos estadísticos para representar las incertidumbres en la oferta y la demanda, lo que permite a las empresas dar cuenta de una gama completa de resultados posibles.

Previsión avanzada:  Una piedra angular de la optimización eficaz del inventario es la capacidad de anticipar con precisión la demanda futura. Las técnicas de pronóstico avanzadas, como [no vendemos esto fuera de SmartForecasts o tal vez ya no esté allí, así que no lo menciones], el análisis de series de tiempo y el aprendizaje automático, extraen patrones explotables de datos históricos.

Cálculo del stock de seguridad: un escudo contra la incertidumbre:

Los pronósticos que incluyen estimaciones de su propia incertidumbre permiten calcular las existencias de seguridad. El stock de seguridad actúa como amortiguador contra la imprevisibilidad de la demanda y los plazos de entrega. Determinar el nivel óptimo de existencias de seguridad es un desafío crítico que los modelos probabilísticos abordan hábilmente. Con los niveles de stock de seguridad adecuados, las empresas pueden mantener altos niveles de servicio, asegurando la disponibilidad del producto sin la carga de un inventario excesivo.

Planificación de escenarios: preparación para múltiples futuros:

El futuro es intrínsecamente incierto y un único pronóstico nunca puede abarcar todos los escenarios posibles. Los métodos avanzados que crean una variedad de escenarios de demanda realistas son la forma esencial de optimización probabilística del inventario. Estas técnicas permiten a las empresas explorar las implicaciones de múltiples futuros, desde el mejor hasta el peor de los casos. Al planificar en función de estos escenarios, las empresas pueden mejorar su resiliencia frente a la volatilidad del mercado.

Navegando el futuro con confianza

El panorama incierto del entorno empresarial actual requiere un cambio de las prácticas tradicionales de gestión de inventarios a enfoques probabilísticos más sofisticados. Al adoptar los principios de optimización probabilística del inventario, las empresas pueden lograr un equilibrio duradero entre la excelencia del servicio y la eficiencia de costos. La integración de técnicas de pronóstico avanzadas, cálculos estratégicos de existencias de seguridad y planificación de escenarios, respaldados por Smart Inventory Planning and Optimization (Smart IP&O), equipa a las empresas para transformar la incertidumbre de un desafío a una oportunidad. Las empresas que adoptan este enfoque informan mejoras significativas en los niveles de servicio, reducciones en los costos de inventario y una mayor agilidad de la cadena de suministro.

Por ejemplo, los artículos menos críticos que se prevé alcanzarán los niveles de servicio 99%+ representan oportunidades para reducir el inventario. Al apuntar a niveles de servicio más bajos en artículos menos críticos, el inventario tendrá “el tamaño adecuado” con el tiempo para alcanzar el nuevo equilibrio, lo que disminuirá los costos de mantenimiento y el valor del inventario disponible. Un importante sistema de transporte público redujo el inventario en más de $4,000,000 y mejoró los niveles de servicio.

La optimización de los niveles de inventario también significa que los ahorros obtenidos en un subconjunto de artículos se pueden reasignar para mantener una cartera más amplia de artículos "en stock", lo que permite capturar ingresos que de otro modo se perderían en ventas. Un distribuidor líder pudo almacenar una cartera más amplia de piezas con ahorros gracias a la reducción de inventario y una mayor disponibilidad de piezas en 18%.

 

 

 

Ley de centrado: sincronización, precio y confiabilidad de los repuestos

Así como el renombrado astrónomo Copérnico transformó nuestra comprensión de la astronomía al colocar el sol en el centro de nuestro universo, hoy lo invitamos a volver a centrar su enfoque en la gestión de inventario. Y aunque no es tan esclarecedor, este consejo ayudará a su empresa a evitar quedar atrapada en la atracción gravitacional de los problemas de inventario, orbitando constantemente entre desabastecimientos, exceso de gravedad y los gastos cósmicos inesperados de la aceleración.

En este artículo, lo guiaremos a través del proceso de elaboración de un plan de inventario de repuestos que priorice las métricas de disponibilidad, como los niveles de servicio y las tasas de cumplimiento, al tiempo que garantiza la rentabilidad. Nos centraremos en un enfoque para la planificación de inventario llamado Optimización de inventario basada en el nivel de servicio. A continuación, analizaremos cómo determinar qué piezas debe incluir en su inventario y cuáles podrían no ser necesarias. Por último, exploraremos formas de mejorar consistentemente su plan de inventario basado en el nivel de servicio.

En las empresas orientadas a los servicios, las consecuencias del desabastecimiento suelen ser muy importantes. Lograr altos niveles de servicio depende de tener las piezas adecuadas en el momento adecuado. Sin embargo, tener las piezas adecuadas no es el único factor. Su equipo de cadena de suministro debe desarrollar un plan de inventario consensuado para cada pieza y luego actualizarlo continuamente para reflejar los cambios en tiempo real en la demanda, el suministro y las prioridades financieras.

 

Gestión del inventario con planificación basada en el nivel de servicio combina la capacidad de planificar miles de elementos con modelado estratégico de alto nivel. Esto requiere abordar los problemas centrales que enfrentan los ejecutivos de inventario:

  • Falta de control sobre el suministro y los plazos de entrega asociados.
  • Demanda intermitente impredecible.
  • Prioridades conflictivas entre los equipos mecánicos/de mantenimiento y la gestión de materiales.
  • Enfoque reactivo de “esperar y ver” para la planificación.
  • Inventario mal asignado, lo que provoca desabastecimiento y exceso.
  • Falta de confianza en los sistemas y procesos.

La clave para una gestión óptima de repuestos es lograr el equilibrio entre brindar un servicio excelente y controlar los costos. Para hacer esto, debemos comparar los costos del desabastecimiento con el costo de mantener un inventario adicional de repuestos. Los costos de un desabastecimiento serán mayores para repuestos críticos o de emergencia, cuando existe un acuerdo de nivel de servicio con clientes externos, para piezas utilizadas en múltiples activos, para piezas con plazos de entrega de proveedores más largos y para piezas con un solo proveedor. El costo del inventario se puede evaluar considerando los costos unitarios, las tasas de interés, el espacio de almacén que se consumirá y el potencial de obsolescencia (por ejemplo, las piezas utilizadas en una flota que pronto se retirará tienen un mayor riesgo de obsolescencia).

Para arbitrar cuántas existencias se deben almacenar para cada pieza, es fundamental establecer un consenso sobre las métricas clave deseadas que expongan las compensaciones que la empresa debe hacer para lograr los KPI deseados. Estos KPI incluirán niveles de servicio que le indican con qué frecuencia satisface las necesidades de uso sin quedarse corto de existencias, tasas de cumplimiento que le indican qué porcentaje de la demanda se satisface y costos de pedidos que detallan los gastos incurridos cuando realiza y recibe pedidos de reabastecimiento. También tiene costos de retención, que abarcan gastos como obsolescencia, impuestos y almacenamiento, y costos de escasez que pertenecen a los gastos incurridos cuando se produce un desabastecimiento.

Una empresa de MRO o un equipo de planificación de piezas de posventa podría desear un nivel de servicio 99% en todas las piezas; es decir, el riesgo mínimo de desabastecimiento que están dispuestos a aceptar es 1%. Pero ¿qué pasa si la cantidad de inventario necesaria para respaldar ese nivel de servicio es demasiado costosa? Para tomar una decisión informada sobre si habrá un retorno de esa inversión adicional en inventario, necesitará conocer los costos de desabastecimiento y compararlos con los costos de inventario. Para obtener los costos de desabastecimiento, multiplique dos elementos clave: el costo por desabastecimiento y el número proyectado de desabastecimientos. Para obtener el valor del inventario, multiplique las unidades requeridas por el costo unitario de cada pieza. Luego determine los costos anuales de mantenimiento (normalmente 25-35% del costo unitario). Elija la opción que produzca un costo total más bajo. En otras palabras, si el beneficio asociado con agregar más existencias (reducción de costos de escasez) supera el costo (mayores costos de mantenimiento de inventario), entonces hágalo. Una comprensión profunda de estas métricas y las compensaciones asociadas sirve como brújula para la toma de decisiones.

El software moderno ayuda en este proceso al permitirle simular una multitud de escenarios futuros. Al hacerlo, puede evaluar qué tan bien es probable que funcionen sus estrategias actuales de almacenamiento de inventario frente a diferentes patrones de oferta y demanda. Si algo se queda corto o sale mal, es hora de recalibrar su enfoque, teniendo en cuenta los datos actuales sobre el historial de uso, los plazos de entrega de los proveedores y los costos para evitar situaciones de desabastecimiento y exceso de existencias.

 

Mejore constantemente su plan de inventario basado en el nivel de servicio.

En conclusión, es crucial evaluar continuamente su plan basado en el nivel de servicio. Al construir y perfeccionar sistemáticamente escenarios de rendimiento, puede definir métricas y objetivos clave, comparar el rendimiento esperado y automatizar el cálculo de las políticas de almacenamiento para todos los artículos. Este proceso iterativo implica monitorear, revisar y repetir cada ciclo de planificación.

La profundidad de su análisis dentro de estas políticas de almacenamiento depende de los datos a su disposición y de las capacidades de configuración de su sistema de planificación. Para lograr resultados óptimos, es imperativo mantener un análisis de datos continuo. Esto implica que un enfoque manual para el examen de datos suele ser insuficiente para las necesidades de la mayoría de las organizaciones.

Para obtener información sobre cómo Smart Software puede ayudarle a alcanzar los objetivos de su cadena de suministro de servicios con una planificación basada en servicios y más, visite los siguientes blogs.

–   "Explicando qué significa nivel de servicio en su software de optimización de inventario"  Las recomendaciones de almacenamiento pueden resultar desconcertantes, especialmente cuando chocan con las necesidades del mundo real. En esta publicación, desglosaremos qué significa el nivel de servicio 99% y por qué es crucial para administrar el inventario de manera efectiva y mantener a los clientes satisfechos en el panorama competitivo actual.

– “Planificación basada en el nivel de servicio para empresas de repuestos” La planificación de piezas de servicio basada en el nivel de servicio es un proceso de cuatro pasos que va más allá de la previsión simplificada y las existencias de seguridad como regla general. Proporciona a los planificadores de repuestos soporte para tomar decisiones ajustadas al riesgo y basadas en datos.

–   “Cómo elegir un nivel de servicio objetivo.“Esta es una decisión estratégica sobre la gestión del riesgo de inventario, considerando los niveles de servicio actuales y las tasas de cumplimiento, los plazos de reabastecimiento y las compensaciones entre capital, existencias y costos de oportunidad. Aprenda enfoques que puedan ayudar.

–   “La métrica de precisión de pronóstico adecuada para la planificación de inventarios”.  Sólo porque establezca un objetivo de nivel de servicio no significa que realmente lo alcanzará. Si está interesado en optimizar los niveles de stock, concéntrese en la precisión de la proyección del nivel de servicio. Aprender cómo.

 

Soluciones de software para la planificación de repuestos

El software de previsión de piezas de servicio de Smart IP&O utiliza un método empírico único de pronóstico probabilístico , que está diseñado para la demanda intermitente. Para piezas de repuesto consumibles, nuestro método patentado y ganador del premio APICS genera rápidamente decenas de miles de escenarios de demanda sin depender de las suposiciones sobre la naturaleza de las distribuciones de demanda implícitas en los métodos de pronóstico tradicionales. El resultado son estimaciones muy precisas del stock de seguridad, los puntos de pedido y los niveles de servicio, lo que conduce a niveles de servicio más altos y costos de inventario más bajos. Para repuestos reparables el Módulo de Reparación y Devolución de Smart simula con precisión los procesos de avería y reparación de piezas. Predice el tiempo de inactividad, los niveles de servicio y los costos de inventario asociados con el grupo de repuestos rotativo actual. Los planificadores sabrán cuántos repuestos almacenar para lograr los requisitos de nivel de servicio a corto y largo plazo y, en entornos operativos, si deben esperar a que se completen las reparaciones y se vuelvan a poner en servicio o comprar repuestos de servicio adicionales de los proveedores, evitando compras innecesarias y tiempo de inactividad del equipo.

Comuníquese con nosotros para obtener más información sobre cómo esta funcionalidad ha ayudado a nuestros clientes en los sectores de MRO, eléctricas, servicios públicos, minería y transporte público a optimizar su inventario. También puede descargar el documento informativo aquí.

 

 

Lo que necesita saber sobre la previsión y la planificación de piezas de servicio

 

Este documento describe la metodología patentada de Smart Software para pronosticar la demanda, las existencias de seguridad y los puntos de pedido de artículos tales como repuestos y componentes con demanda intermitente, y brinda varios ejemplos de clientes de éxito.

 

    Operaciones irregulares

    FONDO

    La mayoría de los blogs, seminarios web y documentos técnicos de Smart Software describen el uso de nuestro software en "operaciones normales". Este trata sobre “operaciones irregulares”. Smart Software está en el proceso de adaptar nuestros productos para ayudarle a afrontar sus propias operaciones irregulares. Esto es una vista previa.

    Escuché por primera vez el término “operaciones irregulares” cuando cumplía un período sabático en la Administración Federal de Aviación de Estados Unidos en Washington, DC. La FAA abrevia el término "IROPS" y lo utiliza para describir situaciones en las que el clima, problemas mecánicos u otros problemas interrumpen el flujo normal de la aeronave.

    Smart Inventory Optimization® (“SIO”) actualmente trabaja para proporcionar lo que se conoce como políticas de “estado estable” para administrar artículos de inventario. Eso significa, por ejemplo, que SIO calcula automáticamente los valores de los puntos de reorden (ROP) y las cantidades de pedido (OQ) que deben durar en el futuro previsible. Calcula estos valores basándose en simulaciones de operaciones diarias que se extienden años en el futuro. Si sucede lo imprevisible, nuestra Cambio de regimén El método de detección reacciona eliminando datos obsoletos y permitiendo volver a calcular los ROP y OQ.

    A menudo observamos la creciente velocidad de los negocios, lo que acorta la duración del “futuro previsible”. Algunos de nuestros clientes ahora están adoptando horizontes de planificación más cortos, como pasar de planes trimestrales a mensuales. Un efecto secundario de este cambio es que las IROPS se han vuelto más importantes. Si un plan se basa en tres años simulados de demanda diaria, un evento extraño, como un gran pedido sorpresa, no importa mucho en el gran esquema de las cosas. Pero si el horizonte de planificación es muy corto, una gran demanda sorpresa puede tener un efecto importante en los indicadores clave de desempeño (KPI) calculados en un intervalo más corto: no hay tiempo para “promediar”. El planificador puede verse obligado a realizar una orden de reabastecimiento de emergencia para hacer frente a la interrupción. ¿Cuándo se debe realizar el pedido para hacer el mayor bien? ¿Qué tan grande debería ser?

     

    ESCENARIO: OPS NORMALES

    Para concretar esto, considere el siguiente escenario. Tom's Spares, Inc. proporciona piezas de servicio críticas a sus clientes, incluido SKU723, una placa de circuito de repuesto vendida con el nombre comercial WIDGET. La demanda de WIDGET es intermitente, con menos de una unidad por día. Tom's Spares realiza pedidos de WIDGET a Acme Products, quienes tardan entre 7 y 10 días en cumplir con los pedidos de reabastecimiento.

    Tom's Spares opera con un horizonte de planificación de inventario corto de 28 días. La empresa opera en un entorno competitivo con clientes impacientes que sólo aceptan de mala gana los pedidos pendientes. La política de Tom es establecer ROP y OQ para mantener el inventario reducido y al mismo tiempo mantener una tasa de cumplimiento de al menos 90%. La gerencia monitorea los KPI mensualmente. En el caso de WIDGETS, estos objetivos de KPI se cumplen actualmente utilizando un ROP=3 y un OQ=4, lo que da como resultado un promedio disponible de aproximadamente 4 unidades y una tasa de cumplimiento promedio de 96%. Tom's Spares tiene algo bastante bueno con los WIDGETS.

    La Figura 1 muestra dos meses de información WIDGET. El panel superior izquierdo muestra la demanda unitaria diaria. La parte superior derecha muestra las unidades diarias disponibles. El panel inferior izquierdo muestra el momento y el tamaño de los pedidos de reabastecimiento a Acme Products. La parte inferior derecha muestra las unidades pendientes de pedido debido a desabastecimientos. En esta simulación, la demanda diaria era 0 o 1, con una demanda de 2 unidades. Las unidades disponibles comenzaron el mes en 7 y nunca cayeron por debajo de 1, aunque en el mes siguiente hubo un desabastecimiento que resultó en una sola unidad en espera. Durante los dos meses, se enviaron a Acme 4 pedidos de reabastecimiento de 4 unidades cada uno, y todos llegaron durante el período de simulación de dos meses.

    Operaciones irregulares en planificación de inventarios y previsión de demanda 01

     

    UN BUEN PROBLEMA INTERRUMPE LAS OPERACIONES NORMALES

    Ahora agregamos algunos “buenos problemas” al escenario: surge un pedido inusualmente grande a mitad del período de planificación. Es “bueno” porque más demanda implica más ingresos. Pero es un “problema” porque los parámetros normales de control de inventario de operaciones (ROP=3, OQ=4) no fueron elegidos para hacer frente a esta situación. El aumento de la demanda podría ser tan grande, y en un momento tan desventajoso, como para abrumar el sistema de inventario, creando desabastecimientos y los consiguientes pedidos pendientes. El informe de KPI a la gerencia para un mes así no sería agradable.

    La Figura 2 muestra un escenario en el que se produce un pico de demanda de 10 unidades en el tercer día del período de planificación. En este caso, el pico pone el inventario bajo agua durante el resto del mes y crea una cascada de pedidos pendientes que se extiende hasta el mes siguiente. Con un promedio de más de 1000 simulaciones, los KPI del mes 1 muestran un promedio disponible de 0,6 unidades y una miserable tasa de llenado de 44%.

    Operaciones irregulares en planificación de inventarios y previsión de demanda 02

     

    LUCHA CONTRA CON OPERACIONES IRREGULARES

    Tom's Spares puede responder a una situación irregular con un movimiento irregular creando una orden de reabastecimiento de emergencia. Para hacerlo bien, tienen que pensar en (a) cuándo realizar el pedido (b) qué tan grande debe ser el pedido y (c) si deben acelerar el pedido.

    La cuestión del momento parece obvia: reaccionar tan pronto como llegue la orden. Sin embargo, si el cliente avisara con antelación, Tom's Spares podría realizar el pedido con antelación y estar en mejor posición para limitar las interrupciones provocadas por el pico. Sin embargo, si la comunicación entre Tom's y el cliente que realiza el pedido grande es irregular, entonces el cliente podría avisar a Tom's más tarde o no avisarle en absoluto.

    El tamaño del pedido especial también parece obvio: haga un pedido anticipado del número de unidades requerido. Pero eso funciona mejor si Tom's Spares sabe cuándo se producirá el pico de demanda. De lo contrario, podría ser una buena idea realizar pedidos adicionales para limitar la duración de los pedidos pendientes. En general, cuanto menos alerta temprana se proporcione, mayor será el pedido que Tom's deberá realizar. Por supuesto, esta relación podría explorarse mediante simulación.

    La llegada del pedido de reposición podría dejarse a la operación habitual de Acme Products. En las simulaciones anteriores, Acme tenía las mismas probabilidades de responder en 7 o 14 días. Para un horizonte de planificación de 28 días, correr el riesgo de obtener una respuesta de 14 días podría generar problemas, por lo que puede ser especialmente valioso para Tom's pagarle a Acme por el envío acelerado. Quizás de la noche a la mañana, pero posiblemente algo más barato pero relativamente rápido.

    Exploramos algunos escenarios más mediante simulación. La tabla 1 muestra los resultados. Los escenarios 1 a 4 suponen que llega una demanda adicional sorpresa de 10 unidades el día 3, lo que desencadena un pedido inmediato de reabastecimiento adicional. El tamaño y el plazo de entrega del pedido de reabastecimiento varían.

    El escenario 0 muestra que no hacer nada en respuesta a la demanda sorpresa conduce a una tasa de llenado abismal de 41% para ese mes; Lo que no se muestra es que este resultado establece que el próximo mes continuará con un desempeño deficiente. Las operaciones regulares no funcionarán bien. El planificador debe hacer algo para responder a la demanda anómala.

    Hacer algo en respuesta implica realizar un pedido de reabastecimiento de emergencia por única vez. El planificador debe elegir el tamaño y el momento de ese pedido. Los escenarios 1 y 3 representan reposiciones “de tamaño medio”. Los escenarios 1 y 2 representan reabastecimientos al día siguiente, mientras que los escenarios 3 y 4 representan una respuesta garantizada en una semana.

    Los resultados dejan claro que la respuesta inmediata es más importante que el tamaño de la orden de reabastecimiento para restaurar la tasa de cumplimiento. El reabastecimiento nocturno produce tasas de llenado en el rango 70%, mientras que el tiempo de reabastecimiento de una semana reduce la tasa de llenado al rango medio de 50% a medio 60%.

     

    Operaciones irregulares en planificación de inventarios y previsión de demanda 03

    CONCLUSIONES

    El software de gestión de inventario se está expandiendo desde su enfoque tradicional en operaciones normales a un enfoque adicional en operaciones irregulares (IROPS). Esta evolución ha sido posible gracias al desarrollo de nuevos métodos estadísticos para generar escenarios de demanda a nivel diario.

    Consideramos una situación IROPS: la llegada sorpresa de una demanda anormalmente grande. Las simulaciones diarias proporcionaron orientación sobre el momento y el tamaño de una orden de reabastecimiento de emergencia. Los resultados de dicho análisis brindan a los planificadores de inventarios un respaldo crítico al estimar los resultados de intervenciones alternativas que les sugiere su experiencia.